Phylogenetic Analysis of the Mpox Virus in Sub-Saharan Africa (2022–2024)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Phylogenetic Analysis
2.2. Mutational Analysis
2.3. Functional Analysi
3. Results
3.1. Phylogenetic Analysis
3.2. Mutational Analysis
3.3. Functional Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full Term |
MPXV | Monkeypox Virus |
APOBEC3 | Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3 |
OPG | Orthopoxvirus Gene |
DRC | Democratic Republic of the Congo |
WHO | World Health Organization |
BIC | Bayesian Information Criterion |
CAR | Central African Republic |
ML | Maximum Likelihood |
MSA | Multiple Sequence Alignment |
MSM | Men Who Have Sex with Men |
PHEIC | Public Health Emergency of International Concern |
ITR | Inverted terminal repeats |
pLDDT | predicted Local Distance Difference Test |
MAFFT | Multiple Alignment using Fast Fourier Transform |
iTOL | Interactive Tree of Life |
PROCHECK | Protein Checking program |
Cryo-EM | Cryogenic Electron Microscopy |
References
- Alakunle, E.; Kolawole, D.; Diaz-Cánova, D.; Alele, F.; Adegboye, O.; Moens, U.; Okeke, M.I. A comprehensive review of monkeypox virus and mpox characteristics. Front. Cell. Infect. Microbiol. 2024, 14, 1360586. [Google Scholar] [CrossRef]
- Martínez-Fernández, D.E.; Fernández-Quezada, D.; Casillas-Muñoz, F.A.G.; Carrillo-Ballesteros, F.J.; Ortega-Prieto, A.M.; Jimenez-Guardeño, J.M.; Regla-Nava, J.A. Human Monkeypox: A Comprehensive Overview of Epidemiology, Pathogenesis, Diagnosis, Treatment, and Prevention Strategies. Pathogens 2023, 12, 947. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, V.; Paul, A.; Trivedi, V.; Bhatnagar, R.; Bhalsinge, R.; Jadhav, S.V. Global epidemiology, viral evolution, and public health responses: A systematic review on Mpox (1958–2024). J. Glob. Health 2025, 15, 04061. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Director-General Declares Mpox Outbreak a Public Health Emergency of International Concern. WHO 2024, August 14. Available online: https://www.who.int/news/item/14-08-2024-who-director-general-declares-mpox-outbreak-a-public-health-emergency-of-international-concern (accessed on 25 September 2024).
- Shchelkunov, S.N.; Totmenin, A.V.; Safronov, P.F.; Mikheev, M.V.; Gutorov, V.V.; Ryazankina, O.I.; Petrov, N.A.; Babkin, I.V.; Uvarova, E.A.; Sandakhchiev, L.S.; et al. Analysis of the monkeypox virus genome. Virology 2002, 297, 172–194. [Google Scholar] [CrossRef] [PubMed]
- Happi, C.; Adetifa, I.; Mbala, P.; Njouom, R.; Nakoune, E.; Happi, A.; Ndodo, N.; Ayansola, O.; Mboowa, G.; Bedford, T.; et al. Urgent need for a non-discriminatory and non-stigmatizing nomenclature for monkeypox virus. PLoS Biol. 2022, 20, e3001769. [Google Scholar] [CrossRef]
- Senkevich, T.G.; Yutin, N.; Wolf, Y.I.; Koonin, E.V.; Moss, B. Ancient Gene Capture and Recent Gene Loss Shape the Evolution of Orthopoxvirus-Host Interaction Genes. mBio 2021, 12, e01495-21. [Google Scholar] [CrossRef]
- Duarte, P.M.; Adesola, R.O.; Priyadarsini, S.; Singh, R.; Shaheen, M.N.F.; Ogundijo, O.A.; Gulumbe, B.H.; Lounis, M.; Samir, M.; Govindan, K.; et al. Unveiling the Global Surge of Mpox (Monkeypox): A comprehensive review of current evidence. Microbe 2024, 4, 100141. [Google Scholar] [CrossRef]
- Africa CDC. Outbreak Report: Mpox SSituation in Africa. Africa CDC 2024, July 30. Available online: https://africacdc.org/disease-outbreak/mpox-situation-in-africa/ (accessed on 5 April 2025).
- Khodakevich, L.; Szczeniowski, M.; Jezek, Z.; Marennikova, S.; Nakano, J.; Messinger, D. The role of squirrels in sustaining monkeypox virus transmission. Trop. Geogr. Med. 1987, 39, 115–122. [Google Scholar] [PubMed]
- World Health Organization. (1 April 2025). Global Mpox Trends. Available online: https://worldhealthorg.shinyapps.io/mpx_global/#8_Disclaimers (accessed on 2 April 2025).
- Satapathy, P.; Mohanty, P.; Manna, S.; Shamim, M.A.; Rao, P.P.; Aggarwal, A.K.; Khubchandani, J.; Mohanty, A.; Nowrouzi-Kia, B.; Chattu, V.K.; et al. Potentially Asymptomatic Infection of Monkeypox Virus: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 2083. [Google Scholar] [CrossRef]
- Vaughan, A.M.; Afzal, M.; Nannapaneni, P.; Leroy, M.; Andrianou, X.; Pires, J.; Funke, S.; Roman, C.; Reyes-Uruena, J.; Aberle, S.; et al. Continued Circulation of Mpox: An Epidemiological and Phylogenetic Assessment, European Region, 2023 to 2024. Eurosurveillance 2024, 29, 2400330. [Google Scholar] [CrossRef]
- Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The Changing Epidemiology of Human Monkeypox—A Potential Threat? A Systematic Review. PLOS Neglected Trop. Dis. 2022, 16, e0010141. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; Wada, O.Z.; Fidelis, S.C.; Oluwole, O.S.; Alisi, C.S.; Orimabuyaku, N.F.; Clement David-Olawade, A. Strengthening Africa’s Response to Mpox (Monkeypox): Insights from Historical Outbreaks and the Present Global Spread. Sci. One Health 2024, 3, 100085. [Google Scholar] [CrossRef]
- Tiwari, A.; Kalonji, T.; Miller, T.; Van Den Bossche, T.; Krolicka, A.; Muhindo-Mavoko, H.; Mitashi, P.; Tahita, M.C.; Lood, R.; Pitkänen, T.; et al. Emergence and Global Spread of Mpox Clade Ib: Challenges and the Role of Wastewater and Environmental Surveillance. J. Infect. Dis. 2025, 231, jiaf006. [Google Scholar] [CrossRef]
- Gigante, C.M.; Korber, B.; Seabolt, M.H.; Wilkins, K.; Davidson, W.; Rao, A.K.; Zhao, H.; Smith, T.G.; Hughes, C.M.; Minhaj, F.; et al. Multiple lineages of monkeypox virus detected in the United States, 2021–2022. Science 2022, 378, 560–565. [Google Scholar] [CrossRef]
- Isidro, J.; Borges, V.; Pinto, M.; Sobral, D.; Santos, J.D.; Nunes, A.; Mixão, V.; Ferreira, R.; Santos, D.; Duarte, S.; et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 2022, 28, 1569–1572. [Google Scholar] [CrossRef]
- Luna Niño, N.; Ramírez, A.; Muñoz, M.; Ballesteros, N.; Patiño, L.; Castañeda Garzon, S.; Bonilla-Aldana, D.; Paniz-Mondolfi, A.; Ramírez, J. Phylogenomic analysis of the monkeypox virus (MPXV) 2022 outbreak: Emergence of a novel viral lineage? Travel Med. Infect. Dis. 2022, 49, 102402. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shang, J.; Weng, S.; Aliyari, S.R.; Ji, C.; Cheng, G.; Wu, A. Genomic annotation and molecular evolution of monkeypox virus outbreak in 2022. J. Med. Virol. 2023, 95, e28036. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.Y.; Mtshali, P.S.; Grobbelaar, A.; Moolla, N.; Mohale, T.; Lowe, M.; Du Plessis, M.; Ismail, A.; Weyer, J. Coding-complete genome sequences for two confirmed monkeypox cases in South Africa 2022. Microbiol. Resour. Announc. 2022, 11, e00802-22. [Google Scholar] [CrossRef]
- Djuicy, D.D.; Sadeuh-Mba, S.A.; Bilounga, C.N.; Yonga, M.G.; Tchatchueng-Mbougua, J.B.; Essima, G.D.; Esso, L.; Nguidjol, I.M.E.; Metomb, S.F.; Chebo, C.; et al. Concurrent Clade I and Clade II monkeypox virus circulation, Cameroon, 1979–2022. Emerg. Infect. Dis. 2024, 30, 432–443. [Google Scholar] [CrossRef]
- Ekpunobi, N.; Akinsuyi, O.; Ariri, T.; Ogunmola, T. The reemergence of monkeypox in Nigeria. Challenges 2023, 14, 2. [Google Scholar] [CrossRef]
- Kinganda-Lusamaki, E.; Amuri-Aziza, A.; Fernandez-Nuñez, N.; Makangara-Cigolo, J.-C.; Pratt, C.; Vakaniaki, E.H.; Hoff, N.A.; Luakanda-Ndelemo, G.; Akil-Bandali, P.; Nundu, S.S.; et al. Clade I mpox virus genomic diversity in the Democratic Republic of the Congo, 2018–2024: Predominance of zoonotic transmission. Cell 2025, 188, 4–14.e6. [Google Scholar] [CrossRef] [PubMed]
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely Available Python Tools for Computational Molecular Biology and Bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A Tool for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Larsson, A. AliView: A Fast and Lightweight Alignment Viewer and Editor for Large Datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent Updates to the Phylogenetic Tree Display and Annotation Tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993, 26, 283–291. [Google Scholar] [CrossRef]
- Rodrigues, C.H.; Pires, D.E.; Ascher, D.B. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018, 46, W350–W355. [Google Scholar] [CrossRef]
- Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016, 44, W344–W350. [Google Scholar] [CrossRef]
- Chakraborty, C.; Bhattacharya, M.; Das, A.; Abdelhameed, A.S. Phylogenetic analyses of the spread of Clade I MPOX in African and non-African nations. Virus Genes 2025, 61, 265–276. [Google Scholar] [CrossRef]
- Langat, S.K.; Gathii, K.; Limbaso, K.; Roba, A.; Ndia, M.; Mutai, B.; Pilarowski, G.; Ochieng, M.; Juma, B.; Onyango, C.; et al. Complete genome of an mpox Clade 1b virus from Kenya. Microbiol. Resour. Announc. 2025, 14, e00050-25. [Google Scholar] [CrossRef]
- Nzoyikorera, N.; Nduwimana, C.; Schuele, L.; Nieuwenhuijse, D.F.; Koopmans, M.; Otani, S.; Aarestrup, F.M.; Ihorimbere, T.; Niyomwungere, D.; Ndihokubwayo, A.; et al. Monkeypox Clade Ib virus introduction into Burundi: First findings, July to mid-August 2024. Euro Surveill. 2024, 29, 2400666. [Google Scholar] [CrossRef]
- Bbosa, N.; Nabirye, S.E.; Namagembe, H.S.; Kiiza, R.; Ssekagiri, A.; Munyagwa, M.; Bwambale, A.; Bagonza, S.; Bosa, H.K.; Downing, R.; et al. Case reports of human monkeypox virus infections, Uganda, 2024. Emerg. Infect. Dis. 2025, 31, 144–148. [Google Scholar] [CrossRef]
- Stavrou, S.; Ross, S.R. APOBEC3 Proteins in Viral Immunity. J. Immunol. 2015, 195, 4565–4570. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, Á.; Neher, R.A.; Ndodo, N.; Borges, V.; Gannon, B.; Gomes, J.P.; Groves, N.; King, D.J.; Maloney, D.; Lemey, P.; et al. APOBEC3 deaminase editing in mpox virus as evidence for sustained human transmission since at least 2016. Science 2023, 382, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Martinez, T.; Shapiro, M.; Bhaduri-McIntosh, S.; MacCarthy, T. Evolutionary effects of the AID/APOBEC family of mutagenic enzymes on human gamma-herpesviruses. Virus Evol. 2019, 5, vey040. [Google Scholar] [CrossRef]
- Abdi, B.; Lambert-Niclot, S.; Wirden, M.; Jary, A.; Teyssou, E.; Sayon, S.; Palich, R.; Tubiana, R.; Simon, A.; Valantin, M.-A.; et al. Presence of HIV-1 G-to-A mutations linked to APOBEC editing is more prevalent in non-B HIV-1 subtypes and is associated with lower HIV-1 reservoir. J. Antimicrob. Chemother. 2021, 76, 2148–2152. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. A code within the genetic code: Codon usage regulates co-translational protein folding. Cell Commun. Signal. 2020, 18, 145. [Google Scholar] [CrossRef]
- Sauna, Z.E.; Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 2011, 12, 683–691. [Google Scholar] [CrossRef]
- Karumathil, S.; Raveendran, N.T.; Ganesh, D.; Kumar NS, S.; Nair, R.R.; Dirisala, V.R. Evolution of Synonymous Codon Usage Bias in West African and Central African Strains of Monkeypox Virus. Evol. Bioinform. 2018, 14, 1176934318761368. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, J.; Qin, H.; Chen, X.; Wu, C.; Hong, X.; Zhang, Y.; Zhang, Z. Exploring the key genomic variation in monkeypox virus during the 2022 outbreak. BMC Genom. Data 2023, 24, 67. [Google Scholar] [CrossRef]
- Shan, K.-J.; Wu, C.; Tang, X.; Lu, R.; Hu, Y.; Tan, W.; Lu, J. Molecular Evolution of Protein Sequences and Codon Usage in Monkeypox Viruses. Genom. Proteom. Bioinform. 2024, 22, 1. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, F.; Peng, Y.; Gong, X.; Fan, G.; Lin, Y.; Yang, L.; Shen, L.; Niu, S.; Liu, J.; et al. Evolutionary trajectory and characteristics of Mpox virus in 2023 based on a large-scale genomic surveillance in Shenzhen, China. Nat. Commun. 2024, 15, 7452. [Google Scholar] [CrossRef] [PubMed]
- Zandi, M.; Shafaati, M.; Hosseini, F. Mechanisms of immune evasion of monkeypox virus. Front. Microbiol. 2023, 14. [Google Scholar] [CrossRef]
- Boyle, K.A.; Arps, L.; Traktman, P. Biochemical and genetic analysis of the vaccinia virus D5 protein: Multimerization-dependent ATPase activity is required to support viral DNA replication. J. Virol. 2007, 81, 844–859. [Google Scholar] [CrossRef] [PubMed]
- Bloom, J.D.; Labthavikul, S.T.; Otey, C.R.; Arnold, F.H. Protein stability promotes evolvability. Proc. Natl. Acad. Sci. USA 2006, 103, 5869–5874. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xu, Y.; Li, Y.; Qu, H.-Q.; Hakonarson, H.; Li, J.; Xia, Q. Genomic variation and impact on the proteins of Mpox virus. J. Infect. 2025, 90, 106452. [Google Scholar] [CrossRef]
- Tokuriki, N.; Tawfik, D.S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 2009, 19, 596–604. [Google Scholar] [CrossRef]
Clade/Lineage | Synonymous Variants | % APOBEC3 (Synonymous) | Non-Synonymous Variants | % APOBEC3 (NON-Synonymous) |
---|---|---|---|---|
IIa | 137 | 29.20% (40/137) | 124 | 25.81% (32/124) |
IIbA.2.3 | 15 | 73.33% (11/15) | 31 | 74.19% (23/31) |
IIbA.2 | 12 | 75.00% (9/12) | 22 | 95.45% (21/22) |
IIbA.3 | 28 | 46.43% (13/28) | 55 | 38.18% (21/55) |
IIbA | 7 | 0.00% (0/7) | 8 | 25.00% (2/8) |
IIb | 23 | 13.04% (3/23) | 23 | 8.70% (2/23) |
Ia | 364 | 26.65% (97/364) | 240 | 24.17% (58/240) |
IIbB1 | 27 | 88.89% (24/27) | 32 | 90.63% (29/32) |
IIbF.2 | 38 | 86.84% (33/38) | 33 | 90.91% (30/33) |
IIbB.17 | 28 | 89.29% (25/28) | 36 | 88.89% (32/36) |
Ib | 380 | 28.42% (108/380) | 261 | 27.20% (71/261) |
IIbA.2.2 | 9 | 66.67% (6/9) | 21 | 95.24% (20/21) |
Total | 1068(54.65%) | 34.55% (369/1068) | 886(45.35%) | 41.89% (371/886) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochieng, M.; Kiboi, D.; Nasimiyu, C.; Osoro, E.; Omoga, D.C.A.; Kuja, J.O. Phylogenetic Analysis of the Mpox Virus in Sub-Saharan Africa (2022–2024). Biology 2025, 14, 773. https://doi.org/10.3390/biology14070773
Ochieng M, Kiboi D, Nasimiyu C, Osoro E, Omoga DCA, Kuja JO. Phylogenetic Analysis of the Mpox Virus in Sub-Saharan Africa (2022–2024). Biology. 2025; 14(7):773. https://doi.org/10.3390/biology14070773
Chicago/Turabian StyleOchieng, Millicent, Daniel Kiboi, Carolyne Nasimiyu, Eric Osoro, Dorcus C. A. Omoga, and Josiah O. Kuja. 2025. "Phylogenetic Analysis of the Mpox Virus in Sub-Saharan Africa (2022–2024)" Biology 14, no. 7: 773. https://doi.org/10.3390/biology14070773
APA StyleOchieng, M., Kiboi, D., Nasimiyu, C., Osoro, E., Omoga, D. C. A., & Kuja, J. O. (2025). Phylogenetic Analysis of the Mpox Virus in Sub-Saharan Africa (2022–2024). Biology, 14(7), 773. https://doi.org/10.3390/biology14070773