Differences in Intestinal Microbiota Between White and Common Cranes in the Yellow River Delta During Winter
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. DNA Sample Extraction and Sequencing Analysis
2.3. Data Analysis
3. Results
3.1. Bacterial Community Diversity
3.2. Bacterial Community Composition
3.3. LEfse Analysis
3.4. Function Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidson, G.L.; Wiley, N.; Cooke, A.C.; Johnson, C.N.; Fouhy, F.; Reichert, M.S.; de la Hera, I.; Crane, J.M.S.; Kulahci, I.G.; Ross, R.P.; et al. Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird. Sci. Rep. 2019, 10, 20783. [Google Scholar] [CrossRef] [PubMed]
- Moeller, A.H.; Sanders, J.G. Roles of the gut microbiota in the adaptive evolution of mammalian species. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2020, 375, 20190597. [Google Scholar] [CrossRef] [PubMed]
- Shapira, M. Gut Microbiotas and Host Evolution: Scaling Up Symbiosis. Trends Ecol. Evol. 2016, 31, 539–549. [Google Scholar] [CrossRef]
- de Kivit, S.; Tobin, M.C.; DeMeo, M.T.; Fox, S.; Garssen, J.; Forsyth, C.B.; Keshavarzian, A.; Landay, A.L. In vitro evaluation of intestinal epithelial TLR activation in preventing food allergic responses. Clin. Immunol. 2014, 154, 91–99. [Google Scholar] [CrossRef]
- Sun, F.F.; Chen, J.F.; Liu, K.; Tang, M.Z.; Yang, Y.W. The avian gut microbiota: Diversity, influencing factors, and future directions. Front. Microbiol. 2022, 13, 934272. [Google Scholar] [CrossRef]
- Fu, R.; Xiang, X.; Dong, Y.; Cheng, L.; Zhou, L. Comparing the intestinal bacterial communies of sympatric wintering Hooded Crane (Grus monacha) and Domestic Goose (Anser anser domesticus). Avian Res. 2020, 11, 13. [Google Scholar] [CrossRef]
- Gul, S.; Shi, Y.R.; Hu, J.; Song, S. The Influence of Microbiota on Wild Birds’ Parental Coprophagy Behavior: Current Advances and Future Research Directions. Microorganisms 2024, 12, 2468. [Google Scholar] [CrossRef] [PubMed]
- Xi, L.; Song, Y.; Han, J.; Qin, X. Microbiome analysis reveals the significant changes in gut microbiota of diarrheic Baer’s Pochards (Aythya baeri). Microb. Pathog. 2021, 157, 105015. [Google Scholar] [CrossRef]
- Li, Z.; Duan, T.; Wang, L.; Wu, J.; Meng, Y.; Bao, D.; Gao, L.; Liu, L. Comparative analysis of the gut bacteria and fungi in migratory demoiselle cranes (Grus virgo) and common cranes (Grus grus) in the Yellow River Wetland, China. Front. Microbiol. 2024, 15, 1341512. [Google Scholar] [CrossRef]
- Barwisch, I.; Mewes, W.; Ornes, A.S. Long-term monitoring data reveal effects of age, population density, and environmental aspects on hatching success of Common Cranes (Grus grus). Avian Res. 2022, 13, 100040. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, Y.; Cao, L.; Yin, H.; Xu, M.; Wang, Z.; Liu, Y.; Wang, X.; Deng, Y. Habitat environments impacted the gut microbiome of long-distance migratory swan geese but central species conserved. Sci. Rep. 2018, 8, 13314. [Google Scholar] [CrossRef] [PubMed]
- Berlow, M.; Wada, H.; Derryberry, E.P. Experimental Exposure to Noise Alters Gut Microbiota in a Captive Songbird. Microb. Ecol. Int. J. 2022, 84, 1264–1277. [Google Scholar] [CrossRef]
- Redford, K.H.; Segre, J.A.; Salafsky, N.; Rio, C.M.D.; Mcaloose, D. Conservation and the microbiome. Conserv. Biol. J. Soc. Conserv. Biol. 2012, 26, 195–197. [Google Scholar] [CrossRef]
- Wu, H.; Wu, N.; Liu, X.C.; Zhang, L.; Zhao, D.P. Diet Drives Gut Bacterial Diversity of Wild and Semi-Captive Common Cranes (Grus grus). Animals 2024, 14, 1566. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, E.; Tang, Y.; Wu, J.; Muhammad, S.; Shang, P.; Zong, C.; Rong, K.; Ma, J. Comparative analysis of the intestinal microbiota of black-necked cranes (Grus nigricollis) in different wintering areas. Front. Cell. Infect. Microbiol. 2024, 13, 1302785. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Cai, H.; Zhu, Y.; Sun, J.; Liu, W.; Wang, Z.; Li, Y. Extreme drought shapes the gut microbiota composition and function of common cranes (Grus grus) wintering in Poyang Lake. Front. Microbiol. 2024, 15, 1489906. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.T.; Chen, S.L.; Ji, H.Y.; Fan, Y.S.; Li, P. The modern Yellow River Delta in transition: Causes and implications. Mar. Geol. 2021, 436, 106476. [Google Scholar] [CrossRef]
- Liu, J.P.; Li, L.Q.; Shao, Y.; Li, W.J.; Li, Y.Z.; Wang, H.G. Comparative analysis of intestinal flora communitycomposition and diversity ofAnas platyrhynchosandAnser fabalisin the Yellow River Delta. Anim. Biol. 2024, 4, 435–451. [Google Scholar] [CrossRef]
- Shang, S.; Hu, S.; Liu, X.; Zang, Y.; Chen, J.; Gao, N.; Li, L.; Wang, J.; Liu, L.; Xu, J.; et al. Effects of Spartina alterniflora invasion on the community structure and diversity of wetland soil bacteria in the Yellow River Delta. Ecol. Evol. 2022, 12, e8905. [Google Scholar] [CrossRef]
- Rai, S.N.; Qian, C.; Pan, J.; Rai, J.P.; Song, M.; Bagaitkar, J.; Merchant, M.; Cave, M.; Egilmez, N.K.; McClain, C.J. Microbiome data analysis with applications to pre-clinical studies using QIIME2: Statistical considerations. Genes Dis. 2021, 8, 215–223. [Google Scholar] [CrossRef]
- Callahan, B.J.; Mcmurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Waite, D.W.; Taylor, M.W. Characterizing the avian gut microbiota: Membership, driving influences, and potential function. Front. Microbiol. 2014, 5, 223. [Google Scholar] [CrossRef] [PubMed]
- Hird, S.M. Evolutionary Biology Needs Wild Microbiomes. Front. Microbiol. 2017, 8, 725. [Google Scholar] [CrossRef]
- Laviad-Shitrit, S.; Izhaki, I.; Lalzar, M.; Halpern, M. Comparative Analysis of Intestine Microbiota of Four Wild Waterbird Species. Front. Microbiol. 2019, 10, 1911. [Google Scholar] [CrossRef]
- Mainwaring, M.C.; Hartley, I.R.; Lambrechts, M.M.; Deeming, D.C. The design and function of birds’ nests. Ecol. Evol. 2014, 4, 3909–3928. [Google Scholar] [CrossRef]
- Ambrosini, R.; Corti, M.; Franzetti, A.; Caprioli, M.; Rubolini, D.; Motta, V.M.; Costanzo, A.; Saino, N.; Gandolfi, I. Cloacal microbiomes and ecology of individual barn swallows. FEMS Microbiol. Ecol. 2019, 96, fiz061. [Google Scholar] [CrossRef]
- García-Amado, M.A.; Shin, H.; Sanz, V.; Lentino, M.; Domínguez-Bello, M.G. Comparison of gizzard and intestinal microbiota of wild neotropical birds. PLoS ONE 2018, 13, e0194857. [Google Scholar] [CrossRef] [PubMed]
- Bodawatta, K.H.; Klečková, I.; Klečka, J.; Pužejová, K.; Koane, B.; Poulsen, M.; Jønsson, K.A.; Sam, K. Specific gut bacterial responses to natural diets of tropical birds. Sci. Rep. 2022, 12, 713. [Google Scholar] [CrossRef]
- Flint, H.J.; Bayer, E.A.; Rincon, M.T.; Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 2008, 6, 121–131. [Google Scholar] [CrossRef]
- Santos, S.S.; Pardal, S.; Proença, D.N.; Lopes, R.J.; Ramos, J.A.; Mendes, L.; Morais, P.V. Diversity of cloacal microbial community in migratory shorebirds that use the Tagus estuary as stopover habitat and their potential to harbor and disperse pathogenic microorganisms. FEMS Microbiol. Ecol. 2012, 82, 63–74. [Google Scholar] [CrossRef]
- Wu, H.; Wu, F.T.; Zhou, Q.H.; Zhao, D.P. Comparative Analysis of Gut Microbiota in Captive and Wild Oriental White Storks: Implications for Conservation Biology. Front. Microbiol. 2021, 12, 649466. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, S.; Yang, L.; Zhang, G. Comparative Analysis of the Fecal Bacterial Microbiota of Wintering Whooper Swans (Cygnus Cygnus). Front. Vet. Sci. 2021, 8, 670645. [Google Scholar] [CrossRef]
- Hoffmanns, L.; Svedberg, D.; Mateus, A. Protein O-glycosylation in the Bacteroidota phylum. FEBS Open Bio 2025. [Google Scholar] [CrossRef]
- Wang, N.; Wang, W.; Jiang, Y.; Dai, W.; Li, P.; Yao, D.; Wang, J.; Shi, Y.; Cui, Z.; Cao, H.; et al. Variations in bacterial taxonomic profiles and potential functions in response to the gut transit of earthworms (Eisenia fetida) feeding on cow manure. Sci. Total Environ. 2021, 787, 147392. [Google Scholar] [CrossRef]
- Góngora, E.; Elliott, K.H.; Whyte, L. Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia). Sci. Rep. 2021, 11, 1200. [Google Scholar] [CrossRef]
- Benskin, C.M.H.; Rhodes, G.; Pickup, R.W.; Wilson, K.; Hartley, I.R. Diversity and temporal stability of bacterial communities in a model passerine bird, the zebra finch. Mol. Ecol. 2010, 19, 5531–5544. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.Z.; Zhou, L.Z.; Yang, Z.Q.; Gu, J.J. Effects of Food Changes on Intestinal Bacterial Diversity of Wintering Hooded Cranes (Grus monacha). Animals 2021, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Sampson, T.R.; Mazmanian, S.K. Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host Microbe 2015, 17, 565–576. [Google Scholar] [CrossRef]
- Ohashi, Y.; Ushida, K. Health-beneficial effects of probiotics: Its mode of action. Anim. Sci. J. 2009, 80, 361–371. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Zhang, M.; Yao, Y.; Tian, H.; Sang, Z.; Wang, L.; Xu, H. Structural changes in the gut microbiota community of the black-necked crane (Grus nigricollis) in the wintering period. Arch. Microbiol. 2021, 203, 6203–6214. [Google Scholar] [CrossRef]
- Shi, S.; Qi, Z.; Jiang, W.; Quan, S.; Sheng, T.; Tu, J.; Shao, Y.; Qi, K. Effects of probiotics on cecal microbiome profile altered by duck Escherichia coli 17 infection in Cherry Valley ducks. Microb. Pathog. 2019, 138, 103849. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Liu, Y.; Yao, Z.; Chen, Y.; Li, L.; Shang, S. Differences in Intestinal Microbiota Between White and Common Cranes in the Yellow River Delta During Winter. Biology 2025, 14, 704. https://doi.org/10.3390/biology14060704
Gao X, Liu Y, Yao Z, Chen Y, Li L, Shang S. Differences in Intestinal Microbiota Between White and Common Cranes in the Yellow River Delta During Winter. Biology. 2025; 14(6):704. https://doi.org/10.3390/biology14060704
Chicago/Turabian StyleGao, Xiaodong, Yunpeng Liu, Zhicheng Yao, Yuelong Chen, Lei Li, and Shuai Shang. 2025. "Differences in Intestinal Microbiota Between White and Common Cranes in the Yellow River Delta During Winter" Biology 14, no. 6: 704. https://doi.org/10.3390/biology14060704
APA StyleGao, X., Liu, Y., Yao, Z., Chen, Y., Li, L., & Shang, S. (2025). Differences in Intestinal Microbiota Between White and Common Cranes in the Yellow River Delta During Winter. Biology, 14(6), 704. https://doi.org/10.3390/biology14060704