Neurobiology of Chronic Pain, Posttraumatic Stress Disorder, and Mild Traumatic Brain Injury
Simple Summary
Abstract
1. Background Works
2. Neurobiology
2.1. Chronic Pain Sensitization
2.1.1. Definitions
2.1.2. Critical Research
Sensitization
Other Neurobiology
2.1.3. Interim Conclusion
2.2. Concussion/MTBI Sensitization
2.2.1. Definitions
2.2.2. Critical Research
Sensitization
Other Neurobiology
2.2.3. Interim Conclusion
2.3. Fear/PTSD Sensitization
2.3.1. Definitions
2.3.2. Critical Research
Sensitization
Other Neurobiology
2.3.3. Interim Conclusion
3. Summary
4. Causation
4.1. The Biopsychosocial Model
4.2. Scale
4.3. Reception to Conception
4.4. Psychological Control
4.5. Activation–Inhibition Coordination
5. Sensitization Model of Psychological Injury
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Term |
ACT | Acceptance and Commitment Therapy |
ACRM | American Congress of Rehabilitation Medicine |
ACC | Anterior Cingulate Cortex |
ANS | Autonomic Nervous System |
CEN | Central Executive Network |
CNS | Central Nervous System |
CPTSD | Complex Post Traumatic Stress Disorder |
CRPS | Complex Regional Pain Syndrome |
DMN | Default Mode Network |
DSM-5-TR | Diagnostic and Statistical Manual of Mental Disorders 5th ed Text Revision |
DAI | Diffuse axonal injury |
DSO | Disturbances in self-organization |
EAET | Emotional Awareness and Expression Therapy |
GABA | Gamma-aminobutyric Acid |
GCS | Glasgow Coma Scale |
HPA | Hypothalamic–pituitary–adrenal |
IASP | International Association for the Study of Pain |
ITQ | International Trauma Questionnaire |
LOC | Loss of Consciousness |
MTBI | Mild Traumatic Brain Injury |
MBI | Mindfulness-Based Interventions |
MVA | Motor Vehicle Accident |
MPI | Multidimensional Pain Inventory |
MESSY | Multi-Modal Evaluation of Sensory Sensitivity |
NA | Nucleus accumbens |
PNS | Peripheral Nervous System |
PPCS | Persistent post-concussion syndrome |
PTA | Post Traumatic Amnesia |
PTSD | Post Traumatic Stress Disorder |
PFC | Prefrontal Cortex |
SSD | Somatic Symptom Disorder |
SNS | Sympathetic Nervous System |
TKA | Total knee arthroplasty |
WCST | Wisconsin Card Sorting Test |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5-TR; American Psychiatric Association Publishing: Arlington, VA, USA, 2022. [Google Scholar]
- Young, G.; Bailey, T.; Giromini, L.; Soble, J.R.; Merten, T.; Rogers, R.; Levitt, B.E.; Goldenson, J. Introduction to Psychological Injury and Law: Past, Present, and Future. In Handbook of Psychological Injury and Law; Springer: Cham, Switzerland, 2025; pp. 3–25. [Google Scholar] [CrossRef]
- Woolf, C.J. Central Sensitization: Implications for the Diagnosis and Treatment of Pain. Pain 2011, 152, S2–S15. [Google Scholar] [CrossRef] [PubMed]
- International Association for the Study of Pain (IASP). IASP Website [Internet]. 2020. Available online: https://www.iasp-pain.org/ (accessed on 8 September 2024).
- Treede, R.-D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; et al. Chronic Pain as a Symptom or a Disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019, 160, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Fitzcharles, M.-A.; Cohen, S.P.; Clauw, D.J.; Littlejohn, G.; Usui, C.; Häuser, W. Nociplastic Pain: Towards an Understanding of Prevalent Pain Conditions. Lancet 2021, 397, 2098–2110. [Google Scholar] [CrossRef] [PubMed]
- Kosek, E.; Cohen, M.; Baron, R.; Gebhart, G.F.; Mico, J.-A.; Rice, A.S.C.; Rief, W.; Sluka, A.K. Do We Need a Third Mechanistic Descriptor for Chronic Pain States? Pain 2016, 157, 1382–1386. [Google Scholar] [CrossRef]
- Sterling, M.; Davis, K.D. Introduction to the Biennial Review of Pain. Pain 2024, 165, S1–S2. [Google Scholar] [CrossRef]
- Bułdyś, K.; Górnicki, T.; Kałka, D.; Szuster, E.; Biernikiewicz, M.; Markuszewski, L.; Sobieszczańska, M. What Do We Know About Nociplastic Pain? Healthcare 2023, 11, 1794. [Google Scholar] [CrossRef]
- Volcheck, M.M.; Graham, S.M.; Fleming, K.C.; Mohabbat, A.B.; Luedtke, C.A. Central Sensitization, Chronic Pain, and Other Symptoms: Better Understanding, Better Management. Clevel. Clin. J. Med. 2023, 90, 245–254. [Google Scholar] [CrossRef]
- Chiesa, A.; Serretti, A. Mindfulness-Based Interventions for Chronic Pain: A Systematic Review of the Evidence. J. Altern. Complement. Med. 2011, 17, 83–93. [Google Scholar] [CrossRef]
- Thorsell, J.; Finnes, A.; Dahl, J.; Lundgren, T.; Gybrant, M.; Gordh, T.; Buhrman, M. A Comparative Study of 2 Manual-Based Self-Help Interventions, Acceptance and Commitment Therapy and Applied Relaxation, for Persons with Chronic Pain. Clin. J. Pain 2011, 27, 716–723. [Google Scholar] [CrossRef]
- Vowels, K.E.; Thompson, M. Acceptance and Commitment Therapy for Chronic Pain. In Acceptance and Commitment Therapy for Chronic Pain; New Harbinger Publications: Oakland, CA, USA, 2011; pp. 31–60. [Google Scholar]
- Lumley, M.A.; Schubiner, H.; Lockhart, N.A.; Kidwell, K.M.; Harte, S.E.; Clauw, D.J.; Williams, D.A. Emotional Awareness and Expression Therapy, Cognitive Behavioral Therapy, and Education for Fibromyalgia: A Cluster-Randomized Controlled Trial. Pain 2017, 158, 2354–2363. [Google Scholar] [CrossRef]
- Martin, J.R.; Coronado, R.A.; Wilson, J.M.; Polkowski, G.G.; Shinar, A.A.; Bruehl, S.P. Central Sensitization: The Missing Link Between Psychological Distress and Poor Outcome Following Primary Total Knee Arthroplasty. J. Arthroplast. 2024, 39, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Baller, E.B.; Ross, D.A. Your System Has Been Hijacked: The Neurobiology of Chronic Pain. Biol. Psychiatry 2017, 82, e61–e63. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cheng, H.; Ding, K.; Zhang, Y.; Gao, F.; Zhu, G.; Zhang, Z. New Recognition of the Heart-Brain Axis and Its Implication in the Pathogenesis and Treatment of PTSD. Eur. J. Neurosci. 2024, 60, 4661–4683. [Google Scholar] [CrossRef] [PubMed]
- Kincses, B.; Forkmann, K.; Schlitt, F.; Pawlik, R.J.; Schmidt, K.; Timmann, D.; Elsenbruch, S.; Wiech, K.; Bingel, U.; Spisak, T. An Externally Validated Resting-State Brain Connectivity Signature of Pain-Related Learning. Commun. Biol. 2024, 7, 875. [Google Scholar] [CrossRef]
- Ferraro, S.; Klugah-Brown, B.; Tench, C.R.; Yao, S.; Nigri, A.; Demichelis, G.; Pinardi, C.; Bruzzone, M.G.; Becker, B. Dysregulated Anterior Insula Reactivity as Robust Functional Biomarker for Chronic Pain—Meta Analytic Evidence from Neuroimaging Studies. Hum. Brain Mapp. 2022, 43, 998–1010. [Google Scholar] [CrossRef]
- Mao, C.P.; Yang, H.J.; Zhang, Q.J.; Yang, Q.X.; Li, X.H. Altered Effective Connectivity Within the Cingulo-Frontal-Parietal Cognitive Attention Networks in Chronic Low Back Pain: A Dynamic Causal Modeling Study. Brain Imaging Behav. 2022, 16, 1516–1527. [Google Scholar] [CrossRef]
- Mohapatra, G.; Dachet, F.; Coleman, L.J.; Gillis, B.; Behm, F.G. Identification of Unique Genomic Signatures in Patients with Fibromyalgia and Chronic Pain. Sci. Rep. 2024, 14, 3949. [Google Scholar] [CrossRef]
- Vieira, W.F.; Coelho, D.R.A.; Litwiler, S.T.; McEachern, K.M.; Clancy, J.A.; Morales-Quezada, L.; Cassano, P. Neuropathic Pain, Mood, and Stress-Related Disorders: A Literature Review of Comorbidity and Co-Pathogenesis. Neurosci. Biobehav. Rev. 2024, 161, 105673. [Google Scholar] [CrossRef]
- Devarajan, J.; Mena, S.; Cheng, J. Mechanisms of Complex Regional Pain Syndrome. Front. Pain Res. 2024, 5, 1385889. [Google Scholar] [CrossRef]
- Murray, G.M.; Sessle, B.J. Pain-Sensorimotor Interactions: New Perspectives and a New Model. Neurobiol. Pain 2024, 15, 100150. [Google Scholar] [CrossRef]
- Silverberg, N.D.; Iverson, G.L.; Cogan, A.; Dams-O-Connor, K.; Delmonico, R.; Graf, M.J.; Iaccarino, M.A.; Kajankova, M.; Kamins, J.; McCulloch, K.L.; et al. The American Congress of Rehabilitation Medicine Diagnostic Criteria for Mild Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2023, 104, 1343–1355. [Google Scholar] [CrossRef] [PubMed]
- Thielen, H.; Huenges Wajer, I.M.C.; Tuts, N.; Welkenhuyzen, L.; Lafosse, C.; Gillebert, C.R. The Multi-Modal Evaluation of Sensory Sensitivity (MESSy): Assessing a Commonly Missed Symptom of Acquired Brain Injury. Clin. Neuropsychol. 2023, 38, 377–411. [Google Scholar] [CrossRef] [PubMed]
- Thielen, H.; Tuts, N.; Welkenhuyzen, L.; Huenges Wajer, I.M.; Lafosse, C.; Gillebert, C.R. Sensory Sensitivity After Acquired Brain Injury: A Systematic Review. J. Neuropsychol. 2023, 17, 1–31. [Google Scholar] [CrossRef]
- Giza, C.C.; Hovda, D.A. The New Neurometabolic Cascade of Concussion. Neurosurgery 2014, 75 (Suppl. S4), S24–S33. [Google Scholar] [CrossRef]
- Guerriero, R.M.; Giza, C.C.; Rotenberg, A. Glutamate and GABA Imbalance Following Traumatic Brain Injury. Curr. Neurol. Neurosci. Rep. 2015, 15, 27. [Google Scholar] [CrossRef]
- Thomas, T.C.; Hinzman, J.M.; Gerhardt, G.A.; Lifshitz, J. Hypersensitive Glutamate Signaling Correlates with the Development of Late-Onset Behavioral Morbidity in Diffuse Brain-Injured Circuitry. J. Neurotrauma 2012, 29, 187–200. [Google Scholar] [CrossRef]
- Astafiev, S.V.; Zinn, K.L.; Shulman, G.L.; Corbetta, M. Exploring the Physiological Correlates of Chronic Mild Traumatic Brain Injury Symptoms. Neuroimage Clin. 2016, 11, 10–19. [Google Scholar] [CrossRef]
- Menon, V. Salience Network. In Brain Mapping; Toga, A.W., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 597–611. [Google Scholar] [CrossRef]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The Brain’s Default Network: Anatomy, Function, and Relevance to Disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Slobodskoj-Plusnin, J.Y.; Bocharov, A.V.; Pylkova, L.V. The Default Mode Network and EEG Alpha Oscillations: An Independent Component Analysis. Brain Res. 2011, 1402, 67–79. [Google Scholar] [CrossRef]
- Raichle, M.E.; MacLeod, A.M.; Snyder, A.Z.; Powers, W.J.; Gusnard, D.A.; Shulman, G.L. A Default Mode of Brain Function. Proc. Natl. Acad. Sci. USA 2001, 98, 676–682. [Google Scholar] [CrossRef]
- Bonnelle, V.; Ham, T.E.; Leech, R.; Kinnunen, K.M.; Mehta, M.A.; Greenwood, R.J.; Sharp, D.J. Salience Network Integrity Predicts Default Mode Network Function After Traumatic Brain Injury. Proc. Natl. Acad. Sci. USA 2012, 109, 4690–4695. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lu, L.; Shang, S.; Hu, L.; Chen, H.; Wang, P.; Zhang, H.; Chen, Y.; Yin, X. Disrupted Functional Network Connectivity Predicts Cognitive Impairment After Acute Mild Traumatic Brain Injury. CNS Neurosci. Ther. 2020, 26, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, W.; Chen, X.; Wu, M.; Hu, G.; Zhou, G.; Wang, Z.; Chen, R. Aberrant Correlation Between the Default Mode and Salience Networks in Mild Traumatic Brain Injury. Front. Comput. Neurosci. 2020, 14, 68. [Google Scholar] [CrossRef] [PubMed]
- van der Horn, H.J.; Scheenen, M.E.; de Koning, M.E.; Liemburg, E.J.; Spikman, J.M.; van der Naalt, J. The Default Mode Network as a Biomarker of Persistent Complaints After Mild Traumatic Brain Injury: A Longitudinal Functional Magnetic Resonance Imaging Study. J. Neurotrauma 2017, 34, 3262–3269. [Google Scholar] [CrossRef]
- Zhou, Y.; Milham, M.P.; Lui, Y.W.; Miles, L.; Reaume, J.; Sodickson, D.K.; Grossman, R.I.; Ge, Y. Default-Mode Network Disruption in Mild Traumatic Brain Injury. Radiology 2012, 265, 882–892. [Google Scholar] [CrossRef]
- Jang, S.H. Diagnostic Problems in Diffuse Axonal Injury. Diagnostics 2020, 10, 117. [Google Scholar] [CrossRef]
- Beard, K.; Gauff, A.K.; Pennington, A.M.; Marion, D.W.; Smith, J.; Sloley, S. Biofluid, Imaging, Physiological, and Functional Biomarkers of Mild Traumatic Brain Injury and Subconcussive Head Impacts. J. Neurotrauma, 2024; ahead of print. [Google Scholar] [CrossRef]
- Bigler, E.D. Volumetric MRI Findings in Mild Traumatic Brain Injury (mTBI) and Neuropsychological Outcome. Neuropsychol. Rev. 2023, 33, 5–41. [Google Scholar] [CrossRef]
- Irimia, A.; Ngo, V.; Chaudhari, N.N.; Zhang, F.; Joshi, S.H.; Penkova, A.N.; O’Donnell, L.J.; Sheikh-Bahaei, N.; Zheng, X.; Chui, H.C. White Matter Degradation Near Cerebral Microbleeds Is Associated with Cognitive Change After Mild Traumatic Brain Injury. Neurobiol. Aging 2022, 120, 68–80. [Google Scholar] [CrossRef]
- Papini, M.G.; Avila, A.N.; Fitzgerald, M.; Hellewell, S.C. Evidence for Altered White Matter Organization After Mild Traumatic Brain Injury: A Scoping Review on the Use of Diffusion Magnetic Resonance Imaging and Blood-Based Biomarkers to Investigate Acute Pathology and Relationship to Persistent Post-Concussion Symptoms. J. Neurotrauma 2024, 42, 640–667. [Google Scholar] [CrossRef]
- Wade, B.S.C.; Tate, D.F.; Kennedy, E.; Bigler, E.D.; York, G.E.; Taylor, B.A.; Troyanskaya, M.; Hovenden, E.S.; Goodrich-Hunsaker, N.; Newsome, M.R.; et al. Microstructural Organization of Distributed White Matter Associated With Fine Motor Control in US Service Members With Mild Traumatic Brain Injury. J. Neurotrauma 2023, 41, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Clarke, G.; Brett, J.; Skandsen, T.; Zetterberg, H.; Follestad, T.; Einarsen, C.E.; Vik, A.; Mollnes, T.E.; Pischke, S.E.; Blennow, K.; et al. Longitudinal Associations Between Persistent Post-Concussion Symptoms and Blood Biomarkers of Inflammation and CNS-Injury After Mild Traumatic Brain Injury. J. Neurotrauma 2024, 41, 862–878. [Google Scholar] [CrossRef] [PubMed]
- Klimova, A.; Breukelaar, I.A.; Bryant, R.A.; Korgaonkar, M.S. A Comparison of the Functional Connectome in Mild Traumatic Brain Injury and Post-Traumatic Stress Disorder. Hum. Brain Mapp. 2023, 44, 813–824. [Google Scholar] [CrossRef]
- Onicas, A.I.; Deighton, S.; Yeates, K.O.; Bray, S.; Graff, K.; Abdeen, N.; Beauchamp, M.H.; Beaulieu, C.; Bjornson, B.; Craig, W.; et al. Longitudinal Functional Connectome in Pediatric Concussion: An Advancing Concussion Assessment in Pediatrics Study. J. Neurotrauma 2024, 41, 587–603. [Google Scholar] [CrossRef]
- Mahoney, S.O.; Chowdhury, N.F.; Ngo, V.; Imms, P.; Irimia, A. Mild Traumatic Brain Injury Results in Significant and Lasting Cortical Demyelination. Front. Neurol. 2022, 13, 854396. [Google Scholar] [CrossRef]
- Rowland, J.A.; Stapleton-Kotloski, J.R.; Godwin, D.W.; Hamilton, C.A.; Martindale, S.L. The Functional Connectome and Long-Term Symptom Presentation Associated With Mild Traumatic Brain Injury and Blast Exposure in Combat Veterans. J. Neurotrauma 2024, 41, 2513–2527. [Google Scholar] [CrossRef]
- de Souza, N.L.; Lindsey, H.M.; Dorman, K.; Dennis, E.L.; Kennedy, E.; Menefee, D.S.; Parrott, J.S.; Jia, Y.; Pugh, M.J.V.; Walker, W.C.; et al. Neuropsychological Profiles of Deployment-Related Mild Traumatic Brain Injury: A LIMBIC-CENC Study. Neurology 2024, 102, e209417. [Google Scholar] [CrossRef]
- Shepherd, D.; Landon, J.; Kalloor, M.; Theadom, A. Clinical Correlates of Noise Sensitivity in Patients with Acute TBI. Brain Inj. 2019, 33, 1050–1058. [Google Scholar] [CrossRef]
- Callahan, M.L.; Binder, L.M.; O’Neil, M.E.; Zaccari, B.; Roost, M.S.; Golshan, S.; Huckans, M.; Fann, J.R.; Storzbach, D. Sensory Sensitivity in Operation Enduring Freedom/Operation Iraqi Freedom Veterans with and Without Blast Exposure and Mild Traumatic Brain Injury. Appl. Neuropsychol. Adult 2016, 25, 126–136. [Google Scholar] [CrossRef]
- Shepherd, D.; Heinonen-Guzejev, M.; Heikkilä, K.; Landon, J.; Theadom, A. Sensitivity to Noise Following a Mild Traumatic Brain Injury: A Longitudinal Study. J. Head Trauma Rehabil. 2021, 36, E289–E301. [Google Scholar] [CrossRef]
- Elliott, J.E.; Opel, R.A.; Weymann, K.B.; Chau, A.Q.; Papesh, M.A.; Callahan, M.L.; Storzbach, D.; Lim, M.M. Sleep Disturbances in Traumatic Brain Injury: Associations with Sensory Sensitivity. J. Clin. Sleep Med. 2018, 14, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Leeuw, M.; Goossens, M.E.; Linton, S.J.; Crombez, G.; Boersma, K.; Vlaeyen, J.W. The Fear-Avoidance Model of Musculoskeletal Pain: Current State of Scientific Evidence. J. Behav. Med. 2006, 30, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Vlaeyen, J.W.S.; Linton, S.J. Fear-Avoidance and Its Consequences in Chronic Musculoskeletal Pain: A State of the Art. Pain 2000, 85, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, N.D.; Panenka, W.J.; Iverson, G.L. Fear Avoidance and Clinical Outcomes from Mild Traumatic Brain Injury. J. Neurotrauma 2018, 35, 1864–1873. [Google Scholar] [CrossRef]
- Wijenberg, M.L.; Stapert, S.Z.; Verbunt, J.A.; Ponsford, J.L.; Van Heugten, C.M. Does the fear avoidance model explain persistent symptoms after traumatic brain injury? Brain Inj. 2017, 31, 1597–1604. [Google Scholar] [CrossRef]
- Aljabri, A.; Halawani, A.; Ashqar, A.; Alageely, O.; Alhazzani, A. The efficacy of vestibular rehabilitation therapy for mild traumatic brain injury: A systematic review and meta-analysis. J. Head Trauma Rehab. 2024, 39, E59–E69. [Google Scholar] [CrossRef]
- Definitions of Chronic Pain Syndromes. Available online: https://www.iasp-pain.org/advocacy/definitions-of-chronic-pain-syndromes/#:~:text=E%20are%20fulfilled%3A-,Chronic%20pain%20(persistent%20or%20recurrent%20for%20longer%20than%203%20months,months%20after%20the%20initiating%20event (accessed on 16 May 2025).
- Cloitre, M. ICD-11 Complex Post-Traumatic Stress Disorder: Simplifying Diagnosis in Trauma Populations. Br. J. Psychiatry 2020, 216, 129–131. [Google Scholar] [CrossRef]
- Brewin, C.R.; Cloitre, M.; Hyland, P.; Shevlin, M.; Maercker, A.; Bryant, R.A.; Humayun, A.; Jones, L.M.; Kagee, A.; Rousseau, C.; et al. A Review of Current Evidence Regarding the ICD-11 Proposals for Diagnosing PTSD and Complex PTSD. Clin. Psychol. Rev. 2017, 58, 1–15. [Google Scholar] [CrossRef]
- Kerig, P.K.; Mozley, M.M.; Mendez, L. Forensic Assessment of PTSD via DSM-5 versus ICD-11 Criteria: Implications for Current Practice and Future Research. Psychol. Inj. Law 2020, 13, 383–411. [Google Scholar] [CrossRef]
- Cloitre, M.; Shevlin, M.; Brewin, C.R.; Bisson, J.I.; Roberts, N.P.; Maercker, A.; Karatzias, T.; Hyland, P. The International Trauma Questionnaire: Development of a Self-Report Measure of ICD-11 PTSD and Complex PTSD. Acta Psychiatr. Scand. 2018, 138, 536–546. [Google Scholar] [CrossRef]
- Rosen, J.B.; Schulkin, J. Hyperexcitability: From Normal Fear to Pathological Anxiety and Trauma. Front. Syst. Neurosci. 2022, 16, 727054. [Google Scholar] [CrossRef] [PubMed]
- Fleming, L.L.; Harnett, N.G.; Reesler, K.J. Sensory Alterations in Post-Traumatic Stress Disorder. Curr. Opin. Neurobiol. 2024, 84, 102821. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.; Dougherty, D.D.; Sorg, S.F.; Pitman, R.K.; Tanev, K.S. Cognition and Ventral Attention Network Connectivity: Associations With Treatment Response in Posttraumatic Stress Disorder. J. Neuropsychiatry Clin. Neurosci. 2025, 37, 163–169. [Google Scholar] [CrossRef]
- Harnett, N.G.; Fleming, L.L.; Clancy, K.J.; Ressler, K.J.; Rosso, I.M. Affective Visual Circuit Dysfunction in Trauma and Stress-Related Disorders. Biol. Psychiatry 2025, 97, 405–416. [Google Scholar] [CrossRef]
- María-Ríos, C.E.; Morrow, J.D. Mechanisms of Shared Vulnerability to Post-Traumatic Stress Disorder and Substance Use Disorders. Front. Behav. Neurosci. 2020, 14, 6. [Google Scholar] [CrossRef]
- Shalev, A.; Cho, D.; Marmar, C.R. Neurobiology and Treatment of Posttraumatic Stress Disorder. Am. J. Psychiatry 2024, 181, 705–719. [Google Scholar] [CrossRef]
- Breukelaar, I.A.; Bryant, R.A.; Korgaonkar, M.S. The Functional Connectome in Posttraumatic Stress Disorder. Neurobiol. Stress 2021, 14, 100321. [Google Scholar] [CrossRef]
- Dai, Y.; Zhou, Z.; Chen, F.; Zhang, L.; Ke, J.; Qi, R.; Lu, G.; Zhong, Y. Altered Dynamic Functional Connectivity Associates with Post-Traumatic Stress Disorder. Brain Imaging Behav. 2023, 17, 294–305. [Google Scholar] [CrossRef]
- Suo, X.; Zuo, C.; Lan, H.; Li, W.; Li, L.; Kemp, G.J.; Wang, S.; Gong, Q. Multilayer Network Analysis of Dynamic Network Reconfiguration in Adults with Posttraumatic Stress Disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2023, 8, 452–461. [Google Scholar] [CrossRef]
- Davis, L.L.; Hamner, M.B. Post-Traumatic Stress Disorder: The Role of the Amygdala and Potential Therapeutic Interventions—A Review. Front. Psychiatry 2024, 15, 1356563. [Google Scholar] [CrossRef]
- Haris, E.M.; Bryant, R.A.; Williamson, T.; Korgaonkar, M.S. Functional Connectivity of Amygdala Subnuclei in PTSD: A Narrative Review. Mol. Psychiatry 2023, 28, 3581–3594. [Google Scholar] [CrossRef] [PubMed]
- Huggins, A.A.; Baird, C.L.; Briggs, M.; Laskowitz, S.; Hussain, A.; Fouda, S.; Haswell, C.; Sun, D.; Salminen, L.E.; Jahanshad, N.; et al. Smaller total and subregional cerebellar volumes in posttraumatic stress disorder: A mega-analysis by the ENIGMA-PGC PTSD workgroup. Mol. Psychiatry 2024, 29, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Korem, N.; Duek, O.; Ben-Zion, Z.; Spiller, T.R.; Gordon, C.; Amen, S.; Levy, I.; Harpaz-Rotem, I. Post-Treatment Alterations in White Matter Integrity in PTSD: Effects on Symptoms and Functional Connectivity a Secondary Analysis of an RCT. Psychiatry Res. Neuroimaging 2024, 343, 111864. [Google Scholar] [CrossRef] [PubMed]
- McCall, A.; Forouhandehpour, R.; Celebi, S.; Richard-Malenfant, C.; Hamati, R.; Guimond, S.; Tuominen, L.; Weinshenker, D.; Jaworska, N.; McQuaid, R.J.; et al. Evidence for Locus Coeruleus–Norepinephrine System Abnormality in Military Posttraumatic Stress Disorder Revealed by Neuromelanin-Sensitive Magnetic Resonance Imaging. Biol. Psychiatry 2024, 96, 268–277. [Google Scholar] [CrossRef]
- Szeszko, P.R.; Bierer, L.M.; Bader, H.N.; Chu, K.-W.; Tang, C.Y.; Murphy, K.M.; Hazlett, E.A.; Flory, J.D.; Yehuda, R. Cingulate and Hippocampal Subregion Abnormalities in Combat-Exposed Veterans with PTSD. J. Affect. Disord. 2022, 311, 432–439. [Google Scholar] [CrossRef]
- Venkataraman, A.; Dias, B.G. Expanding the Canon: An Inclusive Neurobiology of Thalamic and Subthalamic Fear Circuits. Neuropharmacology 2023, 236, 109380. [Google Scholar] [CrossRef]
- Zhong, R.; Zhang, L.; Li, H.; Wang, Y.; Cao, L.; Bao, W.; Gao, Y.; Gong, Q.; Huang, X. Elucidating Trauma-Related and Disease-Related Regional Cortical Activity in Post-Traumatic Stress Disorder. Cereb. Cortex 2024, 34, bhae307. [Google Scholar] [CrossRef]
- Seligowski, A.V.; Harnett, N.G.; Ellis, R.A.; Grasser, L.R.; Hanif, M.; Wiltshire, C.; Ely, T.D.; Lebois, L.A.M.; van Rooij, S.J.H.; House, S.L.; et al. Probing the Neurocardiac Circuit in Trauma and Posttraumatic Stress. J. Psychiatr. Res. 2024, 176, 173–181. [Google Scholar] [CrossRef]
- Cardoner, N.; Andero, R.; Cano, M.; Marin-Blasco, I.; Porta-Casteràs, D.; Serra-Blasco, M.; Via, E.; Vicent-Gil, M.; Portella, M.J. Impact of Stress on Brain Morphology: Insights into Structural Biomarkers of Stress-Related Disorders. Curr. Neuropharmacol. 2024, 22, 935–962. [Google Scholar] [CrossRef]
- Dmytriv, T.R.; Tsiumpala, S.A.; Semchyshyn, H.M.; Storey, K.B.; Lushchak, V.I. Mitochondrial Dysfunction as a Possible Trigger of Neuroinflammation at Post-Traumatic Stress Disorder (PTSD). Front. Physiol. 2023, 14, 1222826. [Google Scholar] [CrossRef]
- Patas, K.; Baker, D.G.; Chrousos, G.P.; Agorastos, A. Inflammation in Posttraumatic Stress Disorder: Dysregulation or Recalibration? Curr. Neuropharmacol. 2024, 22, 524–542. [Google Scholar] [CrossRef] [PubMed]
- Dahrendorff, J.; Wani, A.; Keller, T.; Armstrong, D.; Qu, A.; Wildman, D.E.; Valero, M.C.; Koenen, K.C.; Aiello, A.E.; Uddin, M. Analysis of Posttraumatic Stress Disorder Gene Expression Profiles in a Prospective, Community-Based Cohort. Hum. Biol. 2023, 95, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Nievergelt, C.M.; Maihofer, A.X.; Atkinson, E.G.; Chen, C.Y.; Choi, K.W.; Coleman, J.R.I.; Daskalakis, N.P.; Duncan, L.E.; Polimanti, R.; Aaronson, C.; et al. Largest Genome-Wide Association Study for PTSD Identifies Genetic Risk Loci in European and African Ancestries and Implicates Novel Biological Pathways. Nat. Neurosci. 2019, 22, 1670–1680. [Google Scholar] [CrossRef]
- Bommaraju, S.; Dhokne, M.D.; Arun, E.; Srinivasan, K.; Sharma, S.S.; Datusalia, A.K. An Insight into Crosstalk among Multiple Signalling Pathways Contributing to the Pathophysiology of PTSD and Depressive Disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 131, 110943. [Google Scholar] [CrossRef]
- Borst, B.; Jovanovic, T.; House, S.L.; Bruce, S.E.; Harnett, N.G.; Roeckner, A.R.; Ely, T.D.; Lebois, L.A.M.; Young, D.; Beaudoin, F.L.; et al. Sex Differences in Response Inhibition-Related Neural Predictors of Posttraumatic Stress Disorder in Civilians with Recent Trauma. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2024, 9, 668–680. [Google Scholar] [CrossRef]
- Agathos, J.; Putica, A.; Steward, T.; Felmingham, K.L.; O’Donnell, M.L.; Davey, C.; Harrison, B.J. Neuroimaging Evidence of Disturbed Self-Appraisal in Posttraumatic Stress Disorder: A Systematic Review. Psychiatry Res. Neuroimaging 2024, 344, 111888. [Google Scholar] [CrossRef]
- Liddell, B.J.; Das, P.; Malhi, G.S.; Jobson, L.; Lau, W.; Felmingham, K.L.; Nickerson, A.; Askovic, M.; Aroche, J.; Coello, M.; et al. Self-Construal Modulates Default Mode Network Connectivity in Refugees with PTSD. J. Affect. Disord. 2024, 361, 268–276. [Google Scholar] [CrossRef]
- Aupperle, R.L.; Melrose, A.J.; Stein, M.B.; Paulus, M.P. Executive Function and PTSD: Disengaging from Trauma. Neuropharmacology 2012, 62, 686–694. [Google Scholar] [CrossRef]
- Bomyea, J.; Johnson, A.; Lang, A.J. Information Processing in PTSD: Evidence for Biased Attentional, Interpretation, and Memory Processes. Psychopathol. Rev. 2017, 4, 218–243. [Google Scholar] [CrossRef]
- Cisler, J.M.; Wolitzky-Taylor, K.B.; Adams, T.G.; Babson, K.A.; Badour, C.L.; Willems, J.L. The Emotional Stroop Task and Posttraumatic Stress Disorder: A Meta-Analysis. Clin. Psychol. Rev. 2011, 31, 817–828. [Google Scholar] [CrossRef]
- Constans, J.I. Information-Processing Biases in PTSD. In Neuropsychology of PTSD: Biological, Cognitive, and Clinical Perspectives; Vasterling, J.J., Brewin, C.R., Eds.; Guilford Press: New York, NY, USA, 2005; pp. 85–113. [Google Scholar]
- Fani, N.; Tone, E.B.; Phifer, J.; Norrholm, S.D.; Bradley, B.; Ressler, K.J.; Kamkwalala, A.; Jovanovic, T. Attention Bias toward Threat Is Associated with Exaggerated Fear Expression and Impaired Extinction in PTSD. Psychol. Med. 2012, 42, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Liberzon, I.; Abelson, J.L. Context Processing and the Neurobiology of Post-Traumatic Stress Disorder. Neuron 2016, 92, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, A.; Clark, D.M. A Cognitive Model of Posttraumatic Stress Disorder. Behav. Res. Ther. 2000, 38, 319–345. [Google Scholar] [CrossRef] [PubMed]
- Young, G. Unifying Causality and Psychology: Being, Brain, and Behaviour; Springer Nature: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Dobson, K.S. Clinical Depression: An Individualized, Biopsychosocial Approach to Assessment and Treatment; American Psychological Association: Washington, DC, USA, 2024. [Google Scholar] [CrossRef]
- McGuire, A.P.; Howard, B.A.; Burns, C.; Zambrano-Vazquez, L.; Szabo, Y.Z. Biopsychosocial Correlates and Individual Differences for Eliciting Moral Elevation in Veterans with PTSD. J. Nerv. Ment. Dis. 2023, 212, 33–42. [Google Scholar] [CrossRef]
- Young, G. Psychotherapeutic Change Mechanisms and Causal Psychotherapy: Applications to Child Abuse and Trauma. J. Child Adolesc. Trauma 2022, 15, 911–923. [Google Scholar] [CrossRef]
- D’Angelo, E.; Jirsa, V. The Quest for Multiscale Brain Modeling. Trends Neurosci. 2022, 45, 777–790. [Google Scholar] [CrossRef]
- Suárez, L.E.; Markello, R.D.; Betzel, R.F.; Misic, B. Linking Structure and Function in Macroscale Brain Networks. Trends Cogn. Sci. 2020, 24, 302–315. [Google Scholar] [CrossRef]
- Young, G. Activation-Inhibition Coordination in Neuron, Brain, and Behavior Sequencing/Organization: Implications for Laterality and Lateralization. Symmetry 2022, 14, 2051. [Google Scholar] [CrossRef]
- Damasceno, B. Sensation and Perception. In Research on Cognition Disorders; Springer: Cham, Switzerland, 2020; pp. 15–24. [Google Scholar] [CrossRef]
- Thórisson, K.R.; Wang, P.; Chella, A.; Ruff, B.; Helgason, H.P. Editorial: Cognitive Perception: Cognition-Dependent Perception, Perception-Dependent Cognition. Front. Psychol. 2024, 15, 1371091. [Google Scholar] [CrossRef]
- Tsur, N.; Talmon, A. Post-Traumatic Orientation to Bodily Signals: A Systematic Literature Review. Trauma Violence Abus. 2023, 24, 174–188. [Google Scholar] [CrossRef]
- Oliveira, I.; Vaz Garrido, M.; Carvalho, H.; Figueira Bernardes, S. Sensing the Body Matters: Profiles of Interoceptive Sensibility in Chronic Pain Adjustment. Pain 2023, 165, 412–422. [Google Scholar] [CrossRef] [PubMed]
- Young, G. Psychological Reserve/Psychological Control in Psychotherapy: Integrating Causality in Practice and Theory. Front. Psychol. 2024, submitted.
- Peck, R.B.; Samuelson, K.W.; Shoji, K.; Benight, C.C. The Roles of Cognitive Control and Coping Self-Efficacy in Posttraumatic Stress Symptoms Following a Motor Vehicle Collision. Psychol. Trauma Theory Res. Pract. Policy 2025. [Google Scholar] [CrossRef] [PubMed]
- Palyo, S.A.; Beck, G.J. Post-Traumatic Stress Disorder Symptoms, Pain, and Perceived Life Control: Associations with Psychosocial and Physical Functioning. Pain 2005, 117, 121–127. [Google Scholar] [CrossRef]
- Kerns, R.D.; Turk, D.C.; Rudy, T.E. The West Haven-Yale Multidimensional Pain Inventory (WHYMPI). Pain 1985, 23, 345–356. [Google Scholar] [CrossRef]
- Hass, N.C.; Wachen, J.S.; Straud, C.L.; Checko, E.; McGeary, D.D.; McGeary, C.A.; Mintz, J.; Litz, B.T.; Young-McCaughan, S.; Yarvis, J.S.; et al. Changes in Pain and Related Health Outcomes after Cognitive Processing Therapy in an Active Duty Military Sample. J. Trauma. Stress, 2025; early view. [Google Scholar] [CrossRef]
- Babik, I.; Lobo, M.A. Hand-Use Preferences for Reaching and Object Exploration in Children with Impaired Upper Extremity Functioning: The Role of Environmental Affordances. Symmetry 2023, 15, 2161. [Google Scholar] [CrossRef]
- He, J.; Xiao, M.; Yu, W.; Wang, Z.; Du, X.; Zheng, W.X. How Can Anomalous-Diffusion Neural Networks under Connectomics Generate Optimized Spatiotemporal Dynamics. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 8728–8742. [Google Scholar] [CrossRef]
Category | Literature Review Findings |
---|---|
Sensitization | |
Central/peripheral | Both central and peripheral sensitization are involved; peripheral sensitization takes place especially at the receptor level. |
Other Neurobiology | |
Regions/Circuitry | Dorsal horn, amygdala, insula, nucleus accumbens, anterior cingulate cortex, secondary somatosensory cortex, prefrontal cortex, fronto–parietal cortex, cingulo–parietal–frontal cortex. |
Category | Literature Review Findings |
---|---|
Sensitization | |
Central/peripheral | Both central and peripheral sensitization appear involved; sensitization takes place especially at the sensory level. |
Other Neurobiology | |
Regions/Circuitry | Perceptual regions, salience, attention networks, default mode network, executive control network, visual, auditory networks. |
Category | Literature Review Findings |
---|---|
Sensitization | |
Central/peripheral | Both central and peripheral sensitization appear involved; sensitization takes place especially at the perceptual level. |
Other Neurobiology | |
Regions/Connectome | Thalamus, cerebellum, limbic system, amygdala, hippocampus, insula, locus coeruleus, anterior cingulate cortex, prefrontal cortex, central executive network. |
Category | Literature Review Findings |
---|---|
Biopsychosocial Model | |
Multifactorial | Psychological injuries are multifactorial, with no biomarkers, and their causal components interact at multiple levels. |
Psychological Reserve/Psychological Control | |
Reserve/Control | Psychological injuries are expressed when reserve is low and a sense of having no control in the environment is high. |
Activation/Inhibition Coordination | |
Activation/Inhibition | This coordination takes place at multiple levels of the brain/behavior axis: from neuron to neuronal circuitry to behavior. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, G.; Thielen, H.; Samuelson, K.; Jin, J. Neurobiology of Chronic Pain, Posttraumatic Stress Disorder, and Mild Traumatic Brain Injury. Biology 2025, 14, 662. https://doi.org/10.3390/biology14060662
Young G, Thielen H, Samuelson K, Jin J. Neurobiology of Chronic Pain, Posttraumatic Stress Disorder, and Mild Traumatic Brain Injury. Biology. 2025; 14(6):662. https://doi.org/10.3390/biology14060662
Chicago/Turabian StyleYoung, Gerald, Hella Thielen, Kristin Samuelson, and Joel Jin. 2025. "Neurobiology of Chronic Pain, Posttraumatic Stress Disorder, and Mild Traumatic Brain Injury" Biology 14, no. 6: 662. https://doi.org/10.3390/biology14060662
APA StyleYoung, G., Thielen, H., Samuelson, K., & Jin, J. (2025). Neurobiology of Chronic Pain, Posttraumatic Stress Disorder, and Mild Traumatic Brain Injury. Biology, 14(6), 662. https://doi.org/10.3390/biology14060662