Comprehensive Assessment and Trading Mechanism of Carbon Sink in China’s Marine Aquaculture
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Estimation of Total CSMA
2.3. Effect Analysis Model
- Production Function: . The output of marine aquaculture (Q) is modeled as a function of labor input (L), capital input (K), and marine ecological quality (E), where enhancements in E are assumed to boost Q.
- CSMA Capacity Function: . The amount of CSMA (C) is defined as an increasing function of production output (Q) and ecological quality (E), reflecting that higher Q and improved E enhance carbon sink capacity.
- Environmental Governance Cost Function: . The cost (M) incurred by coastal authorities or aquaculture firms to improve ecological quality (E) is modeled as an increasing function of E. This cost function satisfies , ; that is, improving E requires additional investment, with increasing marginal costs.
- Carbon Price: . It is treated as an exogenous variable, set by market supply and demand conditions.
3. Results
3.1. Total Variation of CSMA
3.2. Differences in CSMA Capability
3.2.1. Species-Level Differences
3.2.2. Regional Differences
3.2.3. Category–Region Interaction
3.3. CSMA Trading Mechanism
3.3.1. Mechanism Design
- (1)
- Pre-Transaction: Identification of Participants and Monitoring and Evaluation
- (2)
- Transaction: Platform Development and Price Negotiation
- (3)
- Post-Transaction: Supervision and Feedback Adjustment
3.3.2. Effect Analysis
- (1)
- Economic Effect
- (2)
- Ecological Effect
- (3)
- Synergy Effect
3.3.3. Practical Cases of CSMA Trading
- (1)
- Lianjiang: China’s First CSMA Transaction
- (2)
- Ningbo: China’s First CSMA Auction
- (3)
- Zhangzhou: China’s First Municipal CSMA Repository
4. Discussion
4.1. China’s CSMA Exhibits Substantial Development Potential
4.2. Significant Species-Level and Regional Differences in CSMA Capacity
4.3. CSMA Trading as the Principal Pathway for Realizing CSMA Value
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lal, R. Carbon sequestration. Philosophical Transactions of the Royal Society B. Biol. Sci. 2008, 363, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Reid, P.C.; Fischer, A.C.; Lewis-Brown, E.; Meredith, M.P.; Sparrow, M.; Andersson, A.J.; Antia, A.; Bates, N.R.; Bathmann, U.; Beaugrand, G.; et al. Impacts of the oceans on climate change. Adv. Mar. Biol. 2009, 56, 1–150. [Google Scholar]
- Bigg, G.R.; Jickells, T.D.; Liss, P.S.; Osborn, T.J. The role of the oceans in climate. Int. J. Climatol. 2003, 23, 1127–1159. [Google Scholar] [CrossRef]
- Khatiwala, S.; Primeau, F.; Hall, T. Reconstruction of the history of anthropogenic CO2 concentrations in the ocean. Nature 2009, 462, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Martínez, M.; Peñuelas, J.; Chevallier, F.; Ciais, P.; Obersteiner, M.; Rödenbeck, C.; Sardans, J.; Vicca, S.; Yang, H.; Sitch, S.; et al. Diagnosing destabilization risk in global land carbon sinks. Nature 2023, 615, 848–853. [Google Scholar] [CrossRef]
- Regnier, P.; Resplandy, L.; Najjar, R.G.; Ciais, P. The land-to-ocean loops of the global carbon cycle. Nature 2022, 603, 401–410. [Google Scholar] [CrossRef]
- Sala, E.; Mayorga, J.; Bradley, D.; Cabral, R.B.; Atwood, T.B.; Auber, A.; Cheung, W.; Costello, C.; Ferretti, F.; Friedlander, A.M.; et al. Protecting the global ocean for biodiversity, food and climate. Nature 2021, 592, 397–402. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Yan, B. Blue carbon sink function and carbon neutrality potential of mangroves. Sci. Total Environ. 2022, 822, 153438. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, T.; Yu, J. Global trends and prospects of blue carbon sinks: A bibliometric analysis. Environ. Sci. Pollut. Res. 2022, 29, 65924–65939. [Google Scholar] [CrossRef]
- Gruber, N.; Bakker, D.C.; DeVries, T.; Gregor, L.; Hauck, J.; Landschützer, P.; McKinley, G.A.; Müller, J.D. Trends and variability in the ocean carbon sink. Nat. Rev. Earth Environ. 2023, 4, 119–134. [Google Scholar] [CrossRef]
- Johannessen, S.C. How can blue carbon burial in seagrass meadows increase long-term, net sequestration of carbon? A critical review. Environ. Res. Lett. 2022, 17, 093004. [Google Scholar] [CrossRef]
- Young, M.A.; Serrano, O.; Macreadie, P.I.; Lovelock, C.E.; Carnell, P.; Ierodiaconou, D. National scale predictions of contemporary and future blue carbon storage. Sci. Total Environ. 2021, 800, 149573. [Google Scholar] [CrossRef] [PubMed]
- Macreadie, P.I.; Costa, M.D.; Atwood, T.B.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Lovelock, C.E.; Serrano, O.; Duarte, C.M. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2021, 2, 826–839. [Google Scholar] [CrossRef]
- Jiao, N.; Herndl, G.J.; Hansell, D.A.; Benner, R.; Kattner, G.; Wilhelm, S.W.; Kirchman, D.L.; Weinbauer, M.G.; Luo, T.; Chen, F.; et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 2010, 8, 593–599. [Google Scholar] [CrossRef]
- Honjo, S.; Eglinton, T.I.; Taylor, C.D.; Ulmer, K.M.; Sievert, S.M.; Bracher, A.; German, C.R.; Edgcomb, V.; Francois, R.; Iglesias-Rodriguez, M.D.; et al. Understanding the role of the biological pump in the global carbon cycle: An imperative for ocean science. Oceanography 2014, 27, 10–16. [Google Scholar] [CrossRef]
- Siegel, D.A.; DeVries, T.; Cetinić, I.; Bisson, K.M. Quantifying the ocean’s biological pump and its carbon cycle impacts on global scales. Annu. Rev. Mar. Sci. 2023, 15, 329–356. [Google Scholar] [CrossRef]
- Dai, Y.; Yu, J.; Ren, H.; Ji, X. Deglacial Subantarctic CO2 outgassing driven by a weakened solubility pump. Nat. Commun. 2022, 13, 5193. [Google Scholar] [CrossRef]
- DeVries, T.; Primeau, F. Atmospheric pCO2 sensitivity to the solubility pump: Role of the low-latitude ocean. Glob. Biogeochem. Cycles 2009, 23, GB4020. [Google Scholar] [CrossRef]
- Boetius, A.; Ravenschlag, K.; Schubert, C.J.; Rickert, D.; Widdel, F.; Gieseke, A.; Amann, R.; Jørgensen, B.B.; Witte, U.; Pfannkuche, O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 2000, 407, 623–626. [Google Scholar] [CrossRef]
- Seifan, M.; Berenjian, A. Microbially induced calcium carbonate precipitation: A widespread phenomenon in the biological world. Appl. Microbiol. Biotechnol. 2019, 103, 4693–4708. [Google Scholar] [CrossRef]
- Zhu, T.; Dittrich, M. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Front. Bioeng. Biotechnol. 2016, 4, 4. [Google Scholar]
- Wang, Y.; Yang, Y.; Hu, X. The evolution and effectiveness of China’s marine carbon sink fishery policies. Ocean Coast. Manag. 2024, 259, 107470. [Google Scholar] [CrossRef]
- Jones, A.R.; Alleway, H.K.; McAfee, D.; Reis-Santos, P.; Theuerkauf, S.J.; Jones, R.C. Climate-friendly seafood: The potential for emissions reduction and carbon capture in marine aquaculture. Bioscience 2022, 72, 123–143. [Google Scholar] [CrossRef]
- Feng, J.-C.; Sun, L.; Yan, J. Carbon sequestration via shellfish farming: A potential negative emissions technology. Renew. Sustain. Energy Rev. 2023, 171, 113018. [Google Scholar] [CrossRef]
- He, J.; Tao, Y.; Shao, S.; Wei, H.; Yan, G.; Tang, C.; Feng, J.; Li, M.; Liao, Z.; Zhang, X.; et al. The hidden acceleration pump uncovers the role of shellfish in oceanic carbon sequestration. Sci. Total Environ. 2024, 951, 175699. [Google Scholar]
- Kaladharan, P.; Veena, S.; Vivekanandan, E. Carbon sequestration by a few marine algae: Observation and projection. J. Mar. Biol. Assoc. India 2009, 51, 107–110. [Google Scholar]
- Sarwer, A.; Hamed, S.M.; Osman, A.I.; Jamil, F.; Al-Muhtaseb, A.H.; Alhajeri, N.S.; Rooney, D.W. Algal biomass valorization for biofuel production and carbon sequestration: A review. Environ. Chem. Lett. 2022, 20, 2797–2851. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S.; Glaser, M. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration. Ambio 2018, 47, 441–452. [Google Scholar] [CrossRef]
- Andreetta, A.; Fusi, M.; Cameldi, I.; Cimò, F.; Carnicelli, S.; Cannicci, S. Mangrove carbon sink. Do burrowing crabs contribute to sediment carbon storage? Evidence from a Kenyan mangrove system. J. Sea Res. 2014, 85, 524–533. [Google Scholar] [CrossRef]
- MacLeod, M.J.; Hasan, M.R.; Robb, D.H.; Mamun-Ur-Rashid, M. Quantifying greenhouse gas emissions from global aquaculture. Sci. Rep. 2020, 10, 11679. [Google Scholar]
- Hammer, A.J.; Millar, C.; Hennige, S.J. Reducing carbon emissions in aquaculture: Using Carbon Disclosures to identify unbalanced mitigation strategies. Environ. Impact Assess. Rev. 2022, 96, 106816. [Google Scholar] [CrossRef]
- Mariani, G.; Cheung, W.W.; Lyet, A.; Sala, E.; Mayorga, J.; Velez, L.; Gaines, S.D.; Dejean, T.; Troussellier, M.; Mouillot, D. Let more big fish sink: Fisheries prevent blue carbon sequestration—Half in unprofitable areas. Sci. Adv. 2020, 6, eabb4848. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Li, P.; Chen, C.; Liu, L.; Li, Z.-H. Shellfish-algal systems as important components of fisheries carbon sinks: Their contribution and response to climate change. Environ. Res. 2023, 224, 115511. [Google Scholar] [CrossRef]
- Ahmed, N.; Glaser, M. Coastal aquaculture, mangrove deforestation and blue carbon emissions: Is REDD+ a solution? Mar. Policy 2016, 66, 58–66. [Google Scholar] [CrossRef]
- Ray, N.E.; Bonaglia, S.; Cavan, E.L.; Sampaio, F.G.; Gephart, J.A.; Hillman, J.R.; Hornborg, S.; Paradis, S.; Petrik, C.M.; Tiano, J.; et al. Biogeochemical consequences of marine fisheries and aquaculture. Nat. Rev. Earth Environ. 2025, 6, 163–177. [Google Scholar] [CrossRef]
- HY/T 0305-2021; Estimation Method of Maricultural Seaweed and Bivalve Carbon Sink—Carbon Stock Variation Method. Marine Industry Standard of the People’s Republic of China: Beijing, China, 2021.
- Raven, J.A. Inorganic carbon acquisition by eukaryotic algae: Four current questions. Photosynth. Res. 2010, 106, 123–134. [Google Scholar] [CrossRef]
- Jiao, Q.; Li, P.; Wu, X.; Ge, M.; Zhang, P. Search on the estimation method and applications of carbon sink in marine fisheries: Take the Bohai Rim Region as an example. Geogr. Res. 2024, 43, 1611–1626. [Google Scholar] [CrossRef]
- Chai, Y.; Wei, J.; Wang, J.; Guo, W.; Yu, Y.; Zhang, X. Research on carbon sink prices in China’s marine fisheries: An analysis based on transcendental logarithmic production function model from 1979 to 2022. Front. Mar. Sci. 2024, 11, 1429631. [Google Scholar] [CrossRef]
- Siikamäki, J.; Sanchirico, J.N.; Jardine, S.; McLaughlin, D.; Morris, D. Blue carbon: Coastal ecosystems, their carbon storage, and potential for reducing emissions. Environ. Sci. Policy Sustain. Dev. 2013, 55, 14–29. [Google Scholar] [CrossRef]
- Kelleway, J.J.; Serrano, O.; Baldock, J.A.; Burgess, R.; Cannard, T.; Lavery, P.S.; Lovelock, C.E.; Macreadie, P.I.; Masqué, P.; Newnham, M.; et al. A national approach to greenhouse gas abatement through blue carbon management. Glob. Environ. Change 2020, 63, 102083. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Song, C.; Gao, G. Carbon removal, sequestration and release by mariculture in an important aquaculture area, China. Sci. Total Environ. 2024, 927, 172272. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Liang, Y.; Li, H.; Li, G.; Chen, X.; Zhao, P.; Jiang, Z.; Zou, D.; Liu, X.; et al. Carbon sequestration processes and mechanisms in coastal mariculture environments in China. Sci. China Earth Sci. 2017, 60, 2097–2107. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, T.; Cheng, T.; Wang, N. Evolution of blue carbon trading of China’s marine ranching under the blue carbon special subsidy mechanism. Ocean Coast. Manag. 2022, 222, 106123. [Google Scholar] [CrossRef]
- Robb, D.H.; MacLeod, M.; Hasan, M.R.; Soto, D. Greenhouse Gas Emissions from Aquaculture: A Life Cycle Assessment of Three Asian Systems; FAO Fisheries and Aquaculture Technical Paper: Rome, Italy, 2017. [Google Scholar]
- Xu, C.; Su, G.; Zhao, K.; Wang, H.; Xu, X.; Li, Z.; Hu, Q.; Xu, J. Assessment of greenhouse gases emissions and intensity from Chinese marine aquaculture in the past three decades. J. Environ. Manag. 2023, 329, 117025. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.; Eding, E.H.; Verdegem, M.C.; Heinsbroek, L.T.; Schneider, O.; Blancheton, J.-P.; d’Orbcastel, E.R.; Verreth, J. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquac. Eng. 2010, 43, 83–93. [Google Scholar] [CrossRef]
- Howarth, R.W.; Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol. Oceanogr. 2006, 51, 364–376. [Google Scholar] [CrossRef]
- Chopin, T.; Cooper, J.A.; Reid, G.; Cross, S.; Moore, C. Open-water integrated multi-trophic aquaculture: Environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Rev. Aquac. 2012, 4, 209–220. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, M.; Cui, Q.; Fan, W.; Qi, J.; Chen, Y.; Zhang, Y.; Gao, K.; Fan, J.; Wang, G.; et al. Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink. Sci. China Earth Sci. 2017, 60, 809–820. [Google Scholar] [CrossRef]
- Guan, H.; Sun, Z.; Zhao, A. Spatio-temporal evolution and influencing factors of net carbon sink in marine aquaculture in China. Front. Environ. Sci. 2022, 10, 978073. [Google Scholar] [CrossRef]
- Yu, L.; Zhu, J.; Guan, X.; Zhai, L.; Zhao, Z.; Mu, Y.; Liu, T. Carbon sink efficiency of Chinese mollusk mariculture. Aquaculture 2025, 596, 741781. [Google Scholar] [CrossRef]
- Guo, S.; Nie, H. Estimation of mariculture carbon sinks in China and its influencing factors. J. Mar. Sci. Eng. 2024, 12, 724. [Google Scholar] [CrossRef]
- Chen, X.; Di, Q.; Liang, C. Heading towards carbon neutrality: How do marine carbon sinks serve as important handle for promoting marine ecological civilization construction? Environ. Sci. Pollut. Res. 2024, 31, 11453–11471. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Zhang, Y.; Li, G. Strategic approach for mariculture to practice “ocean negative carbon emission”. Bull. Chin. Acad. Sci. 2021, 36, 252–258. [Google Scholar]
- Yu, X.; Lin, S.; Shen, W.; Chen, Q. The tiered transaction system for sea use rights in China: Theoretical basis and market construction. Mar. Policy 2023, 147, 105403. [Google Scholar] [CrossRef]
- Weng, Q.; Xu, H. A review of China’s carbon trading market. Renew. Sustain. Energy Rev. 2018, 91, 613–619. [Google Scholar] [CrossRef]
- Zhao, X.-G.; Wu, L.; Li, A. Research on the efficiency of carbon trading market in China. Renew. Sustain. Energy Rev. 2017, 79, 1–8. [Google Scholar] [CrossRef]
- Perdan, S.; Azapagic, A. Carbon trading: Current schemes and future developments. Energy Policy 2011, 39, 6040–6054. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Li, G.; Guo, S. Emission reduction effect and carbon market efficiency of carbon emissions trading policy in China. Energy 2020, 196, 117117. [Google Scholar] [CrossRef]
- Pan, X.; Pu, C.; Yuan, S.; Xu, H. Effect of Chinese pilots carbon emission trading scheme on enterprises’ total factor productivity: The moderating role of government participation and carbon trading market efficiency. J. Environ. Manag. 2022, 316, 115228. [Google Scholar] [CrossRef]
- Zhao, X.; Shang, Y.; Ma, X.; Xia, P.; Shahzad, U. Does carbon trading lead to green technology innovation: Recent evidence from Chinese companies in resource-based industries. IEEE Trans. Eng. Manag. 2022, 71, 2506–2523. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, Z.; Li, G. The impacts of carbon emissions trading scheme on green finance: Evidence from China. Environ. Sci. Pollut. Res. 2024, 31, 13780–13799. [Google Scholar] [CrossRef] [PubMed]
Species | Rd | Mrt | Ms | cMrt | cMs |
---|---|---|---|---|---|
Clam | 52.55 | 1.98 | 98.02 | 44.90 | 11.52 |
Scallop | 63.89 | 14.35 | 85.65 | 42.84 | 11.40 |
Oyster | 65.10 | 6.14 | 93.86 | 45.98 | 12.68 |
Mussel | 75.28 | 8.47 | 91.53 | 44.40 | 11.76 |
Ark Shell | 37.99 | 9.63 | 90.37 | 45.86 | 11.29 |
Razor Clam | 70.48 | 3.26 | 96.74 | 42.24 | 13.24 |
Other Shellfish | 64.21 | 11.41 | 88.59 | 43.87 | 11.44 |
Species | Rs | Wci |
---|---|---|
Kelp | 20 | 31.20 |
Sea Lettuce | 20 | 27.10 |
Gracilaria tikvahiae | 20 | 28.40 |
Nori | 20 | 41.96 |
Gracilaria lemaneiformis | 20 | 31.93 |
Wakame | 20 | 28.81 |
Agarophyte | 20 | 26.37 |
Sargassum | 20 | 30.97 |
Other Algae | 20 | 30.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Guo, H.; Chen, Q. Comprehensive Assessment and Trading Mechanism of Carbon Sink in China’s Marine Aquaculture. Biology 2025, 14, 648. https://doi.org/10.3390/biology14060648
Yu X, Guo H, Chen Q. Comprehensive Assessment and Trading Mechanism of Carbon Sink in China’s Marine Aquaculture. Biology. 2025; 14(6):648. https://doi.org/10.3390/biology14060648
Chicago/Turabian StyleYu, Xuan, Haonan Guo, and Qi Chen. 2025. "Comprehensive Assessment and Trading Mechanism of Carbon Sink in China’s Marine Aquaculture" Biology 14, no. 6: 648. https://doi.org/10.3390/biology14060648
APA StyleYu, X., Guo, H., & Chen, Q. (2025). Comprehensive Assessment and Trading Mechanism of Carbon Sink in China’s Marine Aquaculture. Biology, 14(6), 648. https://doi.org/10.3390/biology14060648