The Human Omental Adipose Depot Mitigates Inflammation, Immune Response, and Oxidative Stress Pathways in Response to Injury via Its Secretome
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Isolation of Exosomes from Om-hASCs
2.3. Droplet Digital Polymerase Chain Reaction (ddPCR)
2.4. Transmission Electron Microscopy (TEM)
2.5. Proteomics
2.6. In Vitro Scratch Assay
2.7. Quantitative Real-Time PCR
2.8. ProteinSimple Jess Automated Western Blot
2.9. WST Assay
2.10. Mitochondrial Stress Test
2.11. Chronic Inflammation
2.12. Animals
2.13. Wounding and Exosome Treatment of Rats
2.14. Immunohistocytology
2.15. RNA Sequencing of Wounds
2.16. Statistical Analysis
3. Results
3.1. The Secretome from Om-hASCs Promotes Wound Healing In Vitro
3.2. Characterization of Om-hASCexos
3.3. Proteomic Analysis of Om-hASCexos
3.4. Om-hASCexos Significantly Improve Cell Migration In Vitro
3.5. Om-hASCexo Treatment Attenuates Oxidative Stress In Vitro
3.6. Om-hASCexo Treatment Attenuates LPS-Induced Inflammation In Vitro
3.7. Om-hASCexo Treatment Improved Wound Healing Rate in an In Vivo Rat Model
3.8. Om-hASCexo Treatment Increased Angiogenesis in Wounds
3.9. Om-hASCexo Treatment Acts upon Pathways Associated with Immune Response, Lipid and Fatty Acid Metabolism, Apoptosis, and Cell Differentiation
3.10. Om-hASCexo Treatment Affected Expression of Pro-Inflammatory and Anti-Apoptotic Factors 7 Days Post-Wounding In Vivo
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EV | Extracellular Vesicles |
| hASC | Human Adipose Stem Cells |
| exo | Exosome |
| om | Omental |
| sc | Subcutaneous |
| GO | Gene Ontology |
| GSEA | Gene Set Enrichment Analysis |
| ORA | Over-Representation Analysis |
| BP | Biological Processes |
| DEG | Differentially Expressed Genes |
| TEM | Transmission Electron Microscopy |
References
- Di Nicola, V. Omentum a powerful biological source in regenerative surgery. Regen. Ther. 2019, 11, 182–191. [Google Scholar] [CrossRef]
- Wang, A.W.; Prieto, J.M.; Cauvi, D.M.; Bickler, S.W.; De Maio, A. The Greater Omentum-A Vibrant and Enigmatic Immunologic Organ Involved in Injury and Infection Resolution. Shock 2020, 53, 384–390. [Google Scholar] [CrossRef]
- Shahraki, A.R.; Abaee, R.; Shahraki, E. Omentum a Powerful Viable Organ in Patient with Liver Crash Trauma: A Case Series. EAS J. Med. Surg. 2024, 6, 64–66. [Google Scholar] [CrossRef]
- Meza-Perez, S.; Randall, T.D. Immunological Functions of the Omentum. Trends Immunol. 2017, 38, 526–536. [Google Scholar] [CrossRef]
- Kim, S.; Kang, S.I.; Kim, S.; Kim, J.H. Clinical effectiveness of omental transposition in facilitating perineal wound healing after abdominoperineal resection: A systematic review. Yeungnam Univ. J. Med. 2021, 38, 219–224. [Google Scholar] [CrossRef]
- Botianu, P.V.H. Current indications for the intrathoracic transposition of the omentum. J. Cardiothorac. Surg. 2019, 14, 103. [Google Scholar] [CrossRef] [PubMed]
- Vyas, R.M.; Prsic, A.; Orgill, D.P. Transdiaphragmatic omental harvest: A simple, efficient method for sternal wound coverage. Plast. Reconstr. Surg. 2013, 131, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.S.; Carter, G.; El Bassit, G.; Patel, A.A.; Cooper, D.R.; Murr, M.; Patel, N.A. Adipose-derived stem cells from lean and obese humans show depot specific differences in their stem cell markers, exosome contents and senescence: Role of protein kinase C delta (PKCdelta) in adipose stem cell niche. Stem Cell Investig. 2016, 3, 2. [Google Scholar] [CrossRef]
- Tkach, M.; Thery, C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell 2016, 164, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Buzas, E.I. The roles of extracellular vesicles in the immune system. Nat. Rev. Immunol. 2023, 23, 236–250. [Google Scholar] [CrossRef]
- Cheng, L.; Hill, A.F. Therapeutically harnessing extracellular vesicles. Nat. Rev. Drug Discov. 2022, 21, 379–399. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun. Signal. 2023, 21, 77. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367. [Google Scholar] [CrossRef]
- Szwedowicz, U.; Lapinska, Z.; Gajewska-Naryniecka, A.; Choromanska, A. Exosomes and Other Extracellular Vesicles with High Therapeutic Potential: Their Applications in Oncology, Neurology, and Dermatology. Molecules 2022, 27, 1303. [Google Scholar] [CrossRef]
- Patel, R.S.; Krause-Hauch, M.; Kenney, K.; Miles, S.; Nakase-Richardson, R.; Patel, N.A. Long Noncoding RNA VLDLR-AS1 Levels in Serum Correlate with Combat-Related Chronic Mild Traumatic Brain Injury and Depression Symptoms in US Veterans. Int. J. Mol. Sci. 2024, 25, 1473. [Google Scholar] [CrossRef]
- Krause-Hauch, M.; Patel, R.S.; Wang, B.; Osborne, B.; Jones, B.; Albear, P.; Patel, N.A. lncRNAs GAS5 and MALAT1 Contained in Human Adipose Stem Cell (hASC)-Derived Exosomes Drive the Cell-Free Repair and Regeneration of Wounds In Vivo. Int. J. Mol. Sci. 2025, 26, 3479. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Wang, X.; Liu, X.; Du, H.; Sun, C.; Shao, X.; Tian, J.; Gu, X.; Wang, H.; Tian, J.; et al. Adipose-Derived Exosomes Exert Proatherogenic Effects by Regulating Macrophage Foam Cell Formation and Polarization. J. Am. Heart Assoc. 2018, 7, e007442. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ye, S.; Liu, B. Roles of extracellular vesicles derived from healthy and obese adipose tissue in inter-organ crosstalk and potential clinical implication. Front. Endocrinol. 2024, 15, 1409000. [Google Scholar] [CrossRef] [PubMed]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound Healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef]
- Patel, R.S.; Impreso, S.; Lui, A.; Vidyarthi, G.; Albear, P.; Patel, N.A. Long Noncoding RNA GAS5 Contained in Exosomes Derived from Human Adipose Stem Cells Promotes Repair and Modulates Inflammation in a Chronic Dermal Wound Healing Model. Biology 2022, 11, 426. [Google Scholar] [CrossRef]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Kassymbek, K.; Jimi, S.; Saparov, A. Immunology of Acute and Chronic Wound Healing. Biomolecules 2021, 11, 700. [Google Scholar] [CrossRef]
- Las Heras, K.; Igartua, M.; Santos-Vizcaino, E.; Hernandez, R.M. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J. Control. Release 2020, 328, 532–550. [Google Scholar] [CrossRef]
- Qian, L.W.; Fourcaudot, A.B.; Yamane, K.; You, T.; Chan, R.K.; Leung, K.P. Exacerbated and prolonged inflammation impairs wound healing and increases scarring. Wound Repair Regen. 2016, 24, 26–34. [Google Scholar] [CrossRef]
- Cano Sanchez, M.; Lancel, S.; Boulanger, E.; Neviere, R. Targeting Oxidative Stress and Mitochondrial Dysfunction in the Treatment of Impaired Wound Healing: A Systematic Review. Antioxidants 2018, 7, 98. [Google Scholar] [CrossRef]
- Wang, G.; Yang, F.; Zhou, W.; Xiao, N.; Luo, M.; Tang, Z. The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed. Pharmacother. 2023, 157, 114004. [Google Scholar] [CrossRef]
- Arya, A.K.; Pokharia, D.; Tripathi, K. Relationship between oxidative stress and apoptotic markers in lymphocytes of diabetic patients with chronic non healing wound. Diabetes Res. Clin. Pract. 2011, 94, 377–384. [Google Scholar] [CrossRef]
- Zhou, X.; Ruan, Q.; Ye, Z.; Chu, Z.; Xi, M.; Li, M.; Hu, W.; Guo, X.; Yao, P.; Xie, W. Resveratrol accelerates wound healing by attenuating oxidative stress-induced impairment of cell proliferation and migration. Burns 2021, 47, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yu, H.; Pan, H.; Zhou, X.; Ruan, Q.; Kong, D.; Chu, Z.; Li, H.; Huang, J.; Huang, X.; et al. Nrf2 Suppression Delays Diabetic Wound Healing Through Sustained Oxidative Stress and Inflammation. Front. Pharmacol. 2019, 10, 1099. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.E.; Wilgus, T.A. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv. Wound Care 2014, 3, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Parag, S.; Patel, R.; Lui, A.; Murr, M.; Cai, J.; Patel, N.A. Stabilization of lncRNA GAS5 by a Small Molecule and Its Implications in Diabetic Adipocytes. Cell Chem. Biol. 2019, 26, 319–330.e6. [Google Scholar] [CrossRef] [PubMed]
- Holm Nielsen, S.; Jonasson, L.; Kalogeropoulos, K.; Karsdal, M.A.; Reese-Petersen, A.L.; Auf dem Keller, U.; Genovese, F.; Nilsson, J.; Goncalves, I. Exploring the role of extracellular matrix proteins to develop biomarkers of plaque vulnerability and outcome. J. Intern. Med. 2020, 287, 493–513. [Google Scholar] [CrossRef]
- Singh, D.; Rai, V.; Agrawal, D.K. Regulation of Collagen I and Collagen III in Tissue Injury and Regeneration. Cardiol. Cardiovasc. Med. 2023, 7, 5–16. [Google Scholar] [CrossRef]
- Cooper, D.R.; Wang, C.; Patel, R.; Trujillo, A.; Patel, N.A.; Prather, J.; Gould, L.J.; Wu, M.H. Human Adipose-Derived Stem Cell Conditioned Media and Exosomes Containing MALAT1 Promote Human Dermal Fibroblast Migration and Ischemic Wound Healing. Adv. Wound Care 2018, 7, 299–308. [Google Scholar] [CrossRef] [PubMed]
- El Bassit, G.; Patel, R.S.; Carter, G.; Shibu, V.; Patel, A.A.; Song, S.; Murr, M.; Cooper, D.R.; Bickford, P.C.; Patel, N.A. MALAT1 in Human Adipose Stem Cells Modulates Survival and Alternative Splicing of PKCdeltaII in HT22 Cells. Endocrinology 2017, 158, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Kuang, L.; Zhang, C.; Li, B.; Deng, H.; Chen, R.; Li, G. Human Keratinocyte-Derived Exosomal MALAT1 Promotes Diabetic Wound Healing by Upregulating MFGE8 via microRNA-1914-3p. Int. J. Nanomed. 2023, 18, 949–970. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.; Miladinovic, B.; Patel, A.A.; Deland, L.; Mastorides, S.; Patel, N.A. Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. BBA Clin. 2015, 4, 102–107. [Google Scholar] [CrossRef]
- Yang, X.; Xie, Z.; Lei, X.; Gan, R. Long non-coding RNA GAS5 in human cancer. Oncol. Lett. 2020, 20, 2587–2594. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Wang, Q.; Xu, Z.; Jiang, J.; Gao, Y.; Gao, M.; Kang, J.; Wu, M.; Xiong, J.; et al. Long non-coding RNA GAS5 controls human embryonic stem cell self-renewal by maintaining NODAL signalling. Nat. Commun. 2016, 7, 13287. [Google Scholar] [CrossRef]
- Ji, Q.; Zhang, L.; Liu, X.; Zhou, L.; Wang, W.; Han, Z.; Sui, H.; Tang, Y.; Wang, Y.; Liu, N.; et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br. J. Cancer 2014, 111, 736–748. [Google Scholar] [CrossRef]
- Li, L.; Chen, H.; Gao, Y.; Wang, Y.W.; Zhang, G.Q.; Pan, S.H.; Ji, L.; Kong, R.; Wang, G.; Jia, Y.H.; et al. Long Noncoding RNA MALAT1 Promotes Aggressive Pancreatic Cancer Proliferation and Metastasis via the Stimulation of Autophagy. Mol. Cancer Ther. 2016, 15, 2232–2243. [Google Scholar] [CrossRef]
- Latorre, E.; Carelli, S.; Raimondi, I.; D’Agostino, V.; Castiglioni, I.; Zucal, C.; Moro, G.; Luciani, A.; Ghilardi, G.; Monti, E.; et al. The Ribonucleic Complex HuR-MALAT1 Represses CD133 Expression and Suppresses Epithelial-Mesenchymal Transition in Breast Cancer. Cancer Res. 2016, 76, 2626–2636. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wu, Z.; Wu, T.; Huang, Y.; Cheng, Z.; Li, X.; Sun, T.; Xie, X.; Zhou, Y.; Du, Z. Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by downregulation of MMP2 and inactivation of ERK/MAPK signaling. Cell Death Dis. 2016, 7, e2123. [Google Scholar] [CrossRef] [PubMed]
- Gummadi, S.; Chitti, S.V.; Kang, T.; Shahi, S.; Mathivanan, S.; Fonseka, P. ExoCarta 2024: A Web-based Repository of Small Extracellular Vesicles Cargo. J. Mol. Biol. 2025, 437, 169218. [Google Scholar] [CrossRef]
- Demonbreun, A.R.; Fallon, K.S.; Oosterbaan, C.C.; Vaught, L.A.; Reiser, N.L.; Bogdanovic, E.; Velez, M.P.; Salamone, I.M.; Page, P.G.T.; Hadhazy, M.; et al. Anti-latent TGFbeta binding protein 4 antibody improves muscle function and reduces muscle fibrosis in muscular dystrophy. Sci. Transl. Med. 2021, 13, eabf0376. [Google Scholar] [CrossRef]
- Su, C.T.; Urban, Z. LTBP4 in Health and Disease. Genes 2021, 12, 795. [Google Scholar] [CrossRef]
- Aya, R.; Ishiko, T.; Noda, K.; Yamawaki, S.; Sakamoto, Y.; Tomihata, K.; Katayama, Y.; Yoshikawa, K.; Kubota, H.; Nakamura, T.; et al. Regeneration of elastic fibers by three-dimensional culture on a collagen scaffold and the addition of latent TGF-beta binding protein 4 to improve elastic matrix deposition. Biomaterials 2015, 72, 29–37. [Google Scholar] [CrossRef][Green Version]
- Noda, K.; Dabovic, B.; Takagi, K.; Inoue, T.; Horiguchi, M.; Hirai, M.; Fujikawa, Y.; Akama, T.O.; Kusumoto, K.; Zilberberg, L.; et al. Latent TGF-beta binding protein 4 promotes elastic fiber assembly by interacting with fibulin-5. Proc. Natl. Acad. Sci. USA 2013, 110, 2852–2857. [Google Scholar] [CrossRef]
- Bagchi, D.P.; Nishii, A.; Li, Z.; DelProposto, J.B.; Corsa, C.A.; Mori, H.; Hardij, J.; Learman, B.S.; Lumeng, C.N.; MacDougald, O.A. Wnt/beta-catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells. Mol. Metab. 2020, 42, 101078. [Google Scholar] [CrossRef]
- Bao, J.; Wang, X.; Chen, L.; Wen, B.; Gao, Q.; Pan, X.; Chen, Y.; Ji, K.; Liu, H. Upregulated TIMP1 facilitates and coordinates myometrial contraction by decreasing collagens and cell adhesive capacity during human labor. Mol. Hum. Reprod. 2023, 29, gaad034. [Google Scholar] [CrossRef]
- Schiefelbein, D.; Goren, I.; Fisslthaler, B.; Schmidt, H.; Geisslinger, G.; Pfeilschifter, J.; Frank, S. Biphasic regulation of HMG-CoA reductase expression and activity during wound healing and its functional role in the control of keratinocyte angiogenic and proliferative responses. J. Biol. Chem. 2008, 283, 15479–15490. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, V.; Choudhary, M.; Bollag, W.B. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process. Int. J. Mol. Sci. 2024, 25, 3790. [Google Scholar] [CrossRef]
- Wu, Y.S.; Chen, S.N. Apoptotic cell: Linkage of inflammation and wound healing. Front. Pharmacol. 2014, 5, 1. [Google Scholar] [CrossRef]
- Sung, P.S.; Hsieh, S.L. CLEC2 and CLEC5A: Pathogenic Host Factors in Acute Viral Infections. Front. Immunol. 2019, 10, 2867. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, C.; Wang, S.; Wu, X.; Sheng, L.; Qi, Z. CLEC5A regulates the proliferation and migration of colon cancer via the AKT/mTOR signaling pathway. J. Gastrointest. Oncol. 2023, 14, 1331–1345. [Google Scholar] [CrossRef]
- Fan, H.W.; Ni, Q.; Fan, Y.N.; Ma, Z.X.; Li, Y.B. C-type lectin domain family 5, member A (CLEC5A, MDL-1) promotes brain glioblastoma tumorigenesis by regulating PI3K/Akt signalling. Cell Prolif. 2019, 52, e12584. [Google Scholar] [CrossRef]
- Tammaro, A.; Derive, M.; Gibot, S.; Leemans, J.C.; Florquin, S.; Dessing, M.C. TREM-1 and its potential ligands in non-infectious diseases: From biology to clinical perspectives. Pharmacol. Ther. 2017, 177, 81–95. [Google Scholar] [CrossRef]
- Saurer, L.; Zysset, D.; Rihs, S.; Mager, L.; Gusberti, M.; Simillion, C.; Lugli, A.; Zlobec, I.; Krebs, P.; Mueller, C. TREM-1 promotes intestinal tumorigenesis. Sci. Rep. 2017, 7, 14870. [Google Scholar] [CrossRef] [PubMed]
- Siskind, S.; Brenner, M.; Wang, P. TREM-1 Modulation Strategies for Sepsis. Front. Immunol. 2022, 13, 907387. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Nishikawa, M.; Shinotsuka, H.; Matsui, Y.; Ohara, S.; Imai, T.; Takakura, Y. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J. Biotechnol. 2013, 165, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Smyth, T.; Kullberg, M.; Malik, N.; Smith-Jones, P.; Graner, M.W.; Anchordoquy, T.J. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J. Control. Release 2015, 199, 145–155. [Google Scholar] [CrossRef]
- Riau, A.K.; Ong, H.S.; Yam, G.H.F.; Mehta, J.S. Sustained Delivery System for Stem Cell-Derived Exosomes. Front. Pharmacol. 2019, 10, 1368. [Google Scholar] [CrossRef] [PubMed]
- Dukharan, V.; Shah, M.; Broughton, L.; Stegura, C.; Samman, L.; Schur, N.; Schlesinger, T. The Role of Exosomes in Medical Dermatology: Literature Review and Update. J. Cosmet. Dermatol. 2025, 24, e16761. [Google Scholar] [CrossRef] [PubMed]
- Moss, L.D.; Sode, D.; Patel, R.; Lui, A.; Hudson, C.; Patel, N.A.; Bickford, P.C. Intranasal delivery of exosomes from human adipose derived stem cells at forty-eight hours post injury reduces motor and cognitive impairments following traumatic brain injury. Neurochem. Int. 2021, 150, 105173. [Google Scholar] [CrossRef]
- Patel, N.A.; Moss, L.D.; Lee, J.Y.; Tajiri, N.; Acosta, S.; Hudson, C.; Parag, S.; Cooper, D.R.; Borlongan, C.V.; Bickford, P.C. Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury. J. Neuroinflamm. 2018, 15, 204. [Google Scholar] [CrossRef] [PubMed]














| Primer | Sense | AntiSense |
|---|---|---|
| Human IL6 | AGACAGCCACTCACCTCTTCAG | TTCTGCCAGTGCCTCTTTGCTG |
| Human IL1-β | CCACAGACCTTCCAGGAGAATG | GTGCAGTTCAGTGATCGTACAGG |
| Human TGFβ | CCCATGCCGCCCTCCGGGCTGC | TCAGCTGCACTTGCAGGAGC |
| Human MMP9 | GTGCTGGGCTGCTGCTTTGCTG | GTCGCCCTCAAAGGTTTGGAAT |
| Human TNFα | TCTTCTCCTTCCTGATCGTGG | TGCCTGGGCCAGAGGGCTGA |
| Human GAPDH | GATCATCAGCAATGCCTCCT | TGTGGTCATGAGTCCTTCCA |
| Rat Malat1 | GGTTACCAGCCCAAACCTCA | GCATCAAGGTGAGGGGTGAA |
| Rat Gas5 | CTGTGATGGGACATCTGGTGG | TCCCATTTTCTGGCTTCCCAT |
| Rat MMP9 | AGGCGCCGTGGTCCCCACTTACTT | GCAGGGTTTGCCGTCTCCGTTGCC |
| Rat TGF-β | GCAACAACGCAATCTSTGAC | CCTGTATTCCGTCTCCTT |
| Rat BCL2 | ATCGCTCTGTGTGGATGACTGAGTAC | AGAGACAGCCAGGAGAAATCAAAC |
| Rat IL6 | TCCTACCCCAACTTCCAATGCTC | TTGGATGGTCTTGGTCCTTAGCC |
| Rat Col1 | AGGGAACAACTGATGGTGCTACTG | GGACTGCTGTGCCAAAATAAGAGA |
| Rat Col3 | AGGGAACAACTGATGCTGCTACTG | GGACTGCTGTGCCAAAATAAGAGA |
| Rat IL1-β | CACCTCTCAAGCAGAGCACAG | GGGTTCCATGGTGAAGTCAAC |
| Rat GAPDH | GGCAAGTTCAATGGCACAGT | TGGTGAAGACGCCAGTAGACTC |
| Antibody | Source | Cat # |
|---|---|---|
| Alix | Cell Signaling Technology (CST) (Danvers, MA, USA) | 92880T |
| CD9 | Millipore Sigma (Burlington, MA, USA) | CBL162 |
| CD69 | Abcam (Cambridge, UK) | Ab216130 |
| TSG101 | Abcam (Cambridge, UK) | Ab125011 |
| Secondary HRP for rabbit | Bio-Rad (Hercules, CA, USA) | 1706515 |
| Secondary HRP for mouse | Invitrogen (Waltham, MA, USA) | 62-6520 |
| Protein | Gene | Log LFQ Intensity | STD Dev |
|---|---|---|---|
| Actin, cytoplasmic 2 | ACTG1 | 25.99 | 0.18 |
| Fibronectin | FN1 | 25.99 | 0.03 |
| Collagen alpha-1(I) chain | COL1A1 | 25.73 | 0.26 |
| Thrombospondin-1 | THBS1 | 24.86 | 0.29 |
| Phospholipid transfer protein | PLTP | 24.82 | 0.11 |
| Decorin | DCN | 24.57 | 0.05 |
| Glia-derived nexin | SERPINE2 | 24.51 | 0.21 |
| Thrombospondin-4 | THBS4 | 24.51 | 0.16 |
| Collagen alpha-2(I) chain | COL1A2 | 24.48 | 0.14 |
| Pentraxin-related protein PTX3 | PTX3 | 24.12 | 0.06 |
| Alpha-2-macroglobulin | A2M | 23.76 | 0.75 |
| Heat shock protein HSP 90-beta | HSP90AB1 | 23.46 | 0.02 |
| Periostin | POSTN | 23.06 | 0.23 |
| Glyceraldehyde-3-phosphate dehydrogenase | GAPDH | 22.71 | 0.10 |
| Complement C3 | C3 | 22.68 | 0.93 |
| Alpha-enolase | ENO1 | 21.87 | 0.14 |
| Fibulin-1 | FBLN1 | 21.85 | 0.19 |
| Filamin-A | FLNA | 21.72 | 0.33 |
| Heat shock cognate 71kDa protein | HSPA8 | 21.65 | 0.59 |
| Metalloproteinase inhibitor 2 | TIMP2 | 21.60 | 0.61 |
| Galectin-3-binding protein | LGALS3BP | 19.89 | 0.63 |
| Group Name | Included Pathways |
|---|---|
| Cell Development/Differentiation | Cell differentiation Cell development Tissue morphogenesis |
| Apoptosis | Apoptotic process Cell death Programmed cell death Regulation of apoptotic process Regulation of programmed cell death |
| Immune Response | Immune system process Immune response Cytokine production |
| Fatty acid and Lipid Biosynthesis | Lipid metabolic process Lipid biosynthetic process Fatty acid metabolic process Fatty acid catabolic process Cellular lipid metabolic process |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krause-Hauch, M.; Patel, R.S.; Wang, B.; Jones, B.; Albear, P.; Patel, N.A. The Human Omental Adipose Depot Mitigates Inflammation, Immune Response, and Oxidative Stress Pathways in Response to Injury via Its Secretome. Biology 2025, 14, 1509. https://doi.org/10.3390/biology14111509
Krause-Hauch M, Patel RS, Wang B, Jones B, Albear P, Patel NA. The Human Omental Adipose Depot Mitigates Inflammation, Immune Response, and Oxidative Stress Pathways in Response to Injury via Its Secretome. Biology. 2025; 14(11):1509. https://doi.org/10.3390/biology14111509
Chicago/Turabian StyleKrause-Hauch, Meredith, Rekha S. Patel, Bangmei Wang, Brianna Jones, Paul Albear, and Niketa A. Patel. 2025. "The Human Omental Adipose Depot Mitigates Inflammation, Immune Response, and Oxidative Stress Pathways in Response to Injury via Its Secretome" Biology 14, no. 11: 1509. https://doi.org/10.3390/biology14111509
APA StyleKrause-Hauch, M., Patel, R. S., Wang, B., Jones, B., Albear, P., & Patel, N. A. (2025). The Human Omental Adipose Depot Mitigates Inflammation, Immune Response, and Oxidative Stress Pathways in Response to Injury via Its Secretome. Biology, 14(11), 1509. https://doi.org/10.3390/biology14111509

