Diet Reconstruction Under Limited Prior Information: Dietary Contributions and Isotopic Niche of Metridium senile in the North Yellow Sea
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Area and Sample Collection
2.2. Functional Groups
2.3. Stable Isotope Analysis and Models
2.4. Trophic Position Estimation
2.5. Data Analysis
3. Results
3.1. Stable Isotope Signatures of Demersal Fisheries Species in the North Yellow Sea
3.2. Trophic Position Analysis
3.3. Isotopic Niche Overlap Analysis
3.4. Spatial Point Pattern Analysis (Mixing-Space Diagnostics)
3.5. Bayesian Mixing Model
4. Discussion
4.1. Baseline Selection and Trophic Structure
4.2. From Passive Suspension Feeding to an Opportunistic Generalist
4.3. Diet Reconstruction Under Limited Prior Information
4.4. Ecological and Management Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richards, T.M.; Sutton, T.T.; Wells, R.J.D. Trophic structure and sources of variation influencing the stable isotope signatures of meso- and bathypelagic micronekton fishes. Front. Mar. Sci. 2020, 7, 507992. [Google Scholar] [CrossRef]
- Li, Y.; Xu, K.D. Species diversity and faunal characteristics of the order Actiniaria (Cnidaria: Anthozoa) in the seas of China. Oceanol. Limnol. Sin. 2020, 51, 434–443. (In Chinese) [Google Scholar]
- Teng, G.L.; Jin, X.S.; Fu, C.H.; Guan, L.S.; Jin, Y.; Chen, Y.L.; Yang, T.; Ding, Q.; Shan, X.J. Is seafloor litter contributing to sea anemone blooms? Sci. Total Environ. 2021, 759, 143479. [Google Scholar] [CrossRef]
- Nelson, M.L.; Craig, S.F. Role of the sea anemone Metridium senile in structuring a developing subtidal fouling community. Mar. Ecol. Prog. Ser. 2011, 421, 139–149. [Google Scholar] [CrossRef]
- Östman, C.; Roat Kultima, J.; Roat, C. Tentacle cnidae of the sea anemone Metridium senile (Linnaeus, 1761) (Cnidaria: Anthozoa). Sci. Mar. 2010, 74, 511–521. [Google Scholar] [CrossRef]
- Anthony, K.R.N. Prey capture by the sea anemone Metridium senile (L.): Effects of body size, flow regime, and upstream neighbors. Biol. Bull. 1997, 192, 73–86. [Google Scholar] [CrossRef]
- Lynn, K.D.; Quintanilla-Ahumada, D.; Duarte, C.; Quijón, P.A. Artificial light at night alters the feeding activity and two molecular indicators in the plumose sea anemone Metridium senile (L.). Mar. Pollut. Bull. 2024, 202, 116352. [Google Scholar] [CrossRef]
- Teng, G.L.; Shan, X.J.; Jin, X.S. Cascade effects of seafloor litter on benthic ecosystems in the northern Yellow Sea. Front. Mar. Sci. 2022, 9, 1044232. [Google Scholar] [CrossRef]
- Liu, X.S.; Ni, D.P.; Zhong, X.; Zhang, Z.N. Structure of benthic food web and trophic relationship of macrofauna in the Yellow Sea. Period. Ocean Univ. China 2020, 50, 20–33. (In Chinese) [Google Scholar] [CrossRef]
- Layman, C.A.; Araújo, M.S.; Boucek, R.; Hammerschlag-Peyer, C.M.; Harrison, E.; Jud, Z.R.; Matich, P.; Rosenblatt, A.E.; Vaudo, J.J.; Yeager, L.A.; et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 2012, 87, 545–562. [Google Scholar] [CrossRef]
- Minagawa, M.; Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 1984, 48, 1135–1140. [Google Scholar] [CrossRef]
- Peterson, B.J.; Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Evol. Syst. 1987, 18, 293–320. [Google Scholar] [CrossRef]
- Post, D.M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 2002, 83, 703–718. [Google Scholar] [CrossRef]
- Fry, B. Stable Isotope Ecology; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Parnell, A.C.; Phillips, D.L.; Bearhop, S.; Semmens, B.X.; Ward, E.J.; Moore, J.W.; Jackson, A.L.; Grey, J.; Kelly, D.J.; Inger, R. Bayesian stable isotope mixing models. Environmetrics 2013, 24, 387–399. [Google Scholar] [CrossRef]
- Schlesinger, A.; Zlotkin, E.; Kramarsky-Winter, E.; Loya, Y. Cnidarian internal stinging mechanism. Proc. R. Soc. B Biol. Sci. 2009, 276, 1063–1067. [Google Scholar] [CrossRef]
- Xie, B.; Huang, C.; Wang, Y.; Zhou, X.J.; Peng, G.G.; Tao, Y.C.; Huang, J.J.; Lin, X.Q.; Huang, L.F. Trophic gauntlet effects on fisheries recovery: A case study in Sansha Bay, China. Ecosyst. Health Sustain. 2021, 7, 1965035. [Google Scholar] [CrossRef]
- Rolff, C. Seasonal variation in δ13C and δ15N of size-fractionated plankton at a coastal station in the northern Baltic Proper. Mar. Ecol. Prog. Ser. 2000, 203, 47–65. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Y.; Ma, L. Fishes of the Bohai Sea and Yellow Sea; Science Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Leng, Y.; Zhang, H.; Wang, Z. Atlas of Benthonic Animals of the Yellow Sea and Bohai Sea; Ocean Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Zhang, S.; Zhang, J.; Chen, Z.; Xu, F. Atlas of Marine Mollusks in the Bohai and Yellow Seas; Science Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Christensen, V.; Walters, C.J. Ecopath with Ecosim: Methods, capabilities and limitations. Ecol. Modell. 2004, 172, 109–139. [Google Scholar] [CrossRef]
- McIntyre, P.B.; Flecker, A.S. Rapid turnover of tissue nitrogen of primary consumers in tropical freshwaters. Oecologia 2006, 148, 12–21. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.Y.; Wang, K.; Zeng, Q.F.; Zhang, M.; Zhang, H. Protocols for sample collection, pretreatment and preservation of aquatic organisms in stable isotope ecology. Acta Hydrobiol. Sin. 2020, 44, 989–997. (In Chinese) [Google Scholar] [CrossRef]
- Swanson, H.K.; Lysy, M.; Stasko, A.D.; Power, M.; Johnson, J.D.; Reist, J.D. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 2015, 96, 318–324. [Google Scholar] [CrossRef]
- Phillips, D.L.; Gregg, J.W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 2003, 136, 261–269. [Google Scholar] [CrossRef]
- Parnell, A.C.; Inger, R.; Bearhop, S.; Jackson, A.L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 2010, 5, e9672. [Google Scholar] [CrossRef]
- Rowlingson, B.; Diggle, P. Splancs: Spatial point pattern analysis code in S-Plus. Comput. Geosci. 1993, 19, 627–655. [Google Scholar] [CrossRef]
- Parnell, A.C. simmr: Stable Isotope Mixing Models in R.; R Package Version 0.4. 2016. Available online: https://CRAN.R-project.org/package=simmr (accessed on 20 October 2024).
- Vander Zanden, M.J.; Chandra, S.; Allen, B.C.; Reuter, J.E.; Goldman, C.R. Historical food web structure and restoration of native aquatic communities in the Lake Tahoe (California–Nevada) Basin. Ecosystems 2003, 6, 274–288. [Google Scholar] [CrossRef]
- Cabana, G.; Rasmussen, J.B. Comparison of aquatic food chains using nitrogen isotopes. Proc. Natl. Acad. Sci. USA 1996, 93, 10844–10847. [Google Scholar] [CrossRef]
- Lorrain, A.; Graham, B.S.; Popp, B.N.; Allain, V.; Olson, R.J.; Hunt, B.P.V.; Potier, M.; Fry, B.; Galván-Magaña, F.; Menkes, C.E.R.; et al. Nitrogen isotopic baselines and implications for estimating foraging habitat and trophic position of yellowfin tuna in the Indian and Pacific Oceans. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2015, 113, 188–198. [Google Scholar] [CrossRef]
- Vander Zanden, M.J.; Rasmussen, J.B. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 1999, 80, 1395–1404. [Google Scholar] [CrossRef]
- Piola, R.F.; Moore, S.K.; Suthers, I.M. Carbon and nitrogen stable isotope analysis of three types of oyster tissue in an impacted estuary. Estuar. Coast. Shelf Sci. 2006, 66, 255–266. [Google Scholar] [CrossRef]
- Abrantes, K.G.; Barnett, A.; Bouillon, S. Stable isotope-based community metrics as a tool to identify patterns in estuarine food webs. Funct. Ecol. 2014, 28, 270–282. [Google Scholar] [CrossRef]
- Pinnegar, J.K.; Polunin, N.V.C. Contributions of stable-isotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia. 2000, 122, 399–409. [Google Scholar] [CrossRef]
- France, R.L. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol. Oceanogr. 1995, 40, 1310–1313. [Google Scholar] [CrossRef]
- Dorado, S.; Rooker, J.R.; Wissel, B.; Quigg, A. Isotope baseline shifts in pelagic food webs of the Gulf of Mexico. Mar. Ecol. Prog. Ser. 2012, 464, 37–49. [Google Scholar] [CrossRef]
- Drazen, J.C.; Buckley, T.W.; Hoff, G.R. The feeding habits of slope dwelling macrourid fishes in the eastern North Pacific. Deep-Sea Res. Part I Oceanogr. Res. Pap. 2001, 48, 909–935. [Google Scholar] [CrossRef]
- Iken, K.; Bluhm, B.A.; Gradinger, R. Food web structure in the high Arctic Canada Basin: Evidence from δ13C and δ15N analysis. Polar Biol. 2005, 28, 238–249. [Google Scholar] [CrossRef]
- Iken, K.; Brey, T.; Wand, U.; Voigt, J.; Junghans, P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): A stable isotope analysis. Prog. Oceanogr. 2001, 50, 383–405. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, L.; Li, Y.-K. Selection of isotopic baselines in marine ecosystems. Chin. J. Appl. Ecol. 2017, 28, 2399–2404. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Q.; Niu, M.-X.; Jin, X.-S. Variation in feeding ecology within the fish community in the North Yellow Sea. J. Fish. Sci. China 2011, 18, 1343–1350. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, B.; Tang, Q.; Jin, X. Decadal-scale variations of trophic levels at high trophic levels in the Yellow Sea and the Bohai Sea ecosystem. J. Mar. Syst. 2007, 67, 304–311. [Google Scholar] [CrossRef]
- Pauly, D.; Watson, R. Background and interpretation of the ‘Marine Trophic Index’ as a measure of biodiversity. Philos. Trans. R. Soc. B 2005, 360, 415–423. [Google Scholar] [CrossRef]
- Alleway, H.K.; Connell, S.D.; Ward, T.M.; Gillanders, B.M. Historical changes in mean trophic level of southern Australian fisheries. Mar. Freshwater Res. 2014, 65, 884–893. [Google Scholar] [CrossRef]
- Chao, M.; Quan, W.; Li, C.; Chen, Y. Changes in trophic level of marine catches in the East China Sea region. Mar. Sci. 2005, 29, 51–55. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYKX200509011.htm (accessed on 20 October 2024). (In Chinese).
- Wu, J.Y.; Xue, Y.; Liu, X.X.; Ren, Y.P.; Wan, R. Long-term trends in the mean trophic level of marine fisheries in the Yellow Sea and Bohai Sea. Period. Ocean Univ. China 2017, 47, 53–60. Available online: https://link.cnki.net/doi/10.16441/j.cnki.hdxb.20170070 (accessed on 20 October 2024). (In Chinese).
- Zhang, B.; Tang, Q.S. Study on trophic level of important resource species at high trophic levels in the Bohai Sea, Yellow Sea and East China Sea. Adv. Mar. Sci. 2004, 22, 393–404. Available online: https://www.cbd.int/ecosystems/doc/qisheng-tang-yslme-2009-en.pdf (accessed on 20 October 2024). (In Chinese).
- Porat, D.; Chadwick-Furman, N.E. Effects of Anemonefish on Giant Sea Anemones: Expansion Behavior, Growth, and Survival. Hydrobiologia 2004, 530, 513–520. [Google Scholar] [CrossRef]
- Ates, R.M.L. Fishes that eat sea anemones, a review. J. Nat. Hist. 1989, 23, 71–79. [Google Scholar] [CrossRef]
- Nanami, A. Spatial distribution and feeding substrate of butterflyfishes (family Chaetodontidae) on an Okinawan coral reef. PeerJ 2020, 8, e9666. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S.W. The association between the sea anemone Metridiumsenile (L.) and the mussel Mytilus edulis (L.) reduces predation by the starfish Asterias forbesii (Desor). J. Exp. Mar. Biol. Ecol. 1984, 79, 155–157. [Google Scholar] [CrossRef]
- Haag, E.; Dyson, K. Trade-off between safety and feeding in the sea anemone Anthopleura aureoradiata. N. Z. J. Mar. Freshwater Res. 2014, 4, 540–551. [Google Scholar] [CrossRef]
- Komisarenko, A.; Gaevskaia, A.; Malyutina, M.; Glebov, S.; Vedenin, A.; Sushko, O.; Dautova, T.; Tzetlin, A.; Zakharov, E.; Malyutina, I. A comparison of food sources of nudibranch mollusks at different depths off the Kuril Islands using fatty acid trophic markers. PeerJ. 2021, 9, e12336. [Google Scholar] [CrossRef]
- Shick, J.M. A Functional Biology of Sea Anemones; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar] [CrossRef]
- Wahl, M. Dispersion and Small-Scale Colonization by the Combined Strategy of Locomotion and Asexual Reproduction (Laceration) in Metridium senile. Mar. Ecol. Prog. Ser. 1985, 26, 271–277. [Google Scholar] [CrossRef]
- Riemann-Zürneck, K. How Sessile Are Sea Anemones? A Review of Free-Living Forms in the Actiniaria (Cnidaria: Anthozoa). Mar. Ecol. 1998, 19, 247–261. [Google Scholar] [CrossRef]
- Sebens, K.P. The Allometry of Feeding, Energetics, and Body Size in Three Sea Anemone Species. Biol. Bull. 1981, 161, 152–171. [Google Scholar] [CrossRef]
- Rodríguez, E.; Barbeitos, M.S.; Brugler, M.R.; Crowley, L.M.; Grajales, A.; Gusmão, L.; Häussermann, V.; Reft, A.; Daly, M. Hidden among sea anemones: The first comprehensive phylogenetic reconstruction of the order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) reveals a novel group of hexacorals. PLoS ONE 2014, 9, e96998. [Google Scholar] [CrossRef]
- Phillips, D.L.; Inger, R.; Bearhop, S.; Jackson, A.L.; Moore, J.W.; Parnell, A.C.; Semmens, B.X.; Ward, E.J. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 2014, 92, 823–835. [Google Scholar] [CrossRef]
- Moore, J.W.; Semmens, B.X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 2008, 11, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Hyslop, E.J. Stomach contents analysis—A review of methods and their application. J. Fish Biol. 1980, 17, 411–429. [Google Scholar] [CrossRef]
- Connolly, R.M.; Guest, M.A.; Melville, A.J.; Oakes, J.M. Sulfur stable isotopes separate producers in marine food-web analysis. Oecologia 2004, 138, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Raoult, V.; Phillips, A.A.; Nelson, J.; Niella, Y.; Skinner, C.; Bell-Tilcock, M.; Burke, P.J.; Szpak, P.; James, W.R.; Harrod, C. Why aquatic scientists should use sulfur stable isotope ratios (δ34S) more often. Chemosphere 2024, 355, 141816. [Google Scholar] [CrossRef]
- Chikaraishi, Y.; Ogawa, N.O.; Kashiyama, Y.; Takano, Y.; Suga, H.; Tomitani, A.; Miyashita, H.; Kitazato, H.; Ohkouchi, N. Determination of aquatic food-web structure based on compound-specific nitrogen isotopic composition of amino acids. Limnol. Oceanogr. Methods 2009, 7, 740–750. [Google Scholar] [CrossRef]
- McMahon, K.W.; McCarthy, M.D. Embracing variability in amino acid δ15N fractionation: Mechanisms, implications, and applications for trophic ecology. Ecosphere 2016, 7, e01511. [Google Scholar] [CrossRef]
- Nielsen, J.M.; Popp, B.N.; Winder, M. Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms. Oecologia 2015, 178, 631–642. [Google Scholar] [CrossRef]
- Ishikawa, N.F. Use of compound-specific nitrogen isotope analysis of amino acids in trophic ecology: Assumptions, applications, and implications. Ecol. Res. 2018, 33, 825–837. [Google Scholar] [CrossRef]
- Pompanon, F.; Deagle, B.E.; Symondson, W.O.C.; Brown, D.S.; Jarman, S.N.; Taberlet, P. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 2012, 21, 1931–1950. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, B.D.; Trevelline, B.K.; Latta, S.C.; Porter, B.A. Integrating DNA-based prey occurrence probability into stable isotope mixing models. Integr. Comp. Biol. 2022, 62, 211–222. [Google Scholar] [CrossRef] [PubMed]












| Label | Functional Group | Species Composition | 
|---|---|---|
| a | Phytoplankton | Phytoplankton | 
| b | Zooplankton | Zooplankton | 
| c | POM | Suspended particulate organic matter | 
| d | SOM | Sedimentary particulate organic matter | 
| e | Jellyfishes | Moon jelly (Aurelia aurita), Flame jellyfish (Rhopilema esculentum), etc. | 
| f | Brittle Stars | Notched brittle star (Ophiura sarsii) | 
| g | Sea Stars | North Pacific seastar (Asterias amurensis) and Luidia yesoensis | 
| h | Sea Urchins | Hardwick’s sea urchin (Temnopleurus hardwickii), Cardiac sea potato (Echinocardium cordatum), and Striped spine sea urchin (Temnopleurus toreumaticus) | 
| i | Sea Anemones | Metridium senile | 
| j | Gastropodsand Bivalves | Large weathervane scallop (Mizuhopecten yessoensis), Volutharpa perryi, Purple whelk (Rapana venosa), and Bladder moon snail (Glossaulax didyma) | 
| k | Cephalopods | Japanese squid (Loliolus japonica), Butterfly bobtail (Sepiola birostrata), Mimika bobtail squid (Euprymna morsei), Golden cuttlefish (Sepia esculenta), Whiparm octopus (Octopus variabilis), and Gold-spot octopus (Amphioctopus fangsiao) | 
| l | Shrimps | Hakodate sand shrimp (Crangon affinis), Eualus sinensis, Kishi velvet shrimp (Metapenaeopsis dalei), Chinese ditch prawn (Palaemon gravieri), Southern rough shrimp (Trachypenaeus curvirostris), Japanese snapping shrimp (Alpheus japonicus), Lesser glass shrimp (Leptochela gracilis), Isada krill (Euphausia pacifica), etc. | 
| m | Mantis Shrimps | Japanese squillid mantis shrimp (Oratosquilla oratoria) | 
| n | Crabs | Edward’s hermit crab (Diogenes edwardsii), Graceful decorator crab (Oregonia gracilis), Gibbous rock crab (Romaleon gibbosulum), Two-spot swimming crab (Charybdis bimaculata), etc. | 
| o | Small-Sized Fishes | Japanese anchovy (Engraulis japonicus), Scaly hairfin anchovy (Setipinna taty), Pacific sandlance (Ammodytes personatus), Yellow croaker (Larimichthys polyactis), Pygmy sculpin (Cottus paulus), Smallhead hairtail (Eupleurogrammus muticus), Ocellate spot skate (Okamejei kenojei), Indian perch (Jaydia lineata), Japanese sillago (Sillago japonica), Whitespotted dragonet (Callionymus beniteguri), Pholis fangi, Amblychaeturichthys hexanema, etc. | 
| p | Medium-Sized Fishes | Tanaka’s snailfish (Liparis tanakae), Silver croaker (Pennahia argentata), Whitespotted conger (Conger myriaster), Pacific cod (Gadus macrocephalus), Sôhachi (Cleisthenes pinetorum), Yellow goosefish (Lophius litulon), Eelpout (Zoarces viviparus), Korean rockfish (Sebastes schlegelii), Fat greenling (Hexagrammos otakii), Silver pomfret (Pampus argenteus), Japanese seabass (Lateolabrax japonicus), Bartail flathead (Platycephalus indicus), Ridged-eye flounder (Pleuronichthys cornutus), Bluefin gurnard (Chelidonichthys kumu), Whitespotted conger (Conger myriaster), Hemitripterus villosus, Chirolophis japonicus, Yellowfin pufferfish (Takifugu xanthopterus), Spotted halibut (Verasper variegatus), etc. | 
| Label | Functional Groups | Sample Size (n) | Mean of TP | SD of TP | TL | 
|---|---|---|---|---|---|
| a | Phytoplankton | 6 | 1.34 | 0.16 | 1 | 
| b | Zooplankton | 5 | 1.97 | 0.20 | 2 | 
| c | POM | 4 | 1.08 | 0.07 | 1 | 
| d | SOM | 10 | 0.63 | 0.29 | 1 | 
| e | Jellyfishes | 3 | 2.51 | 0.10 | 3 | 
| f | Brittle Stars | 4 | 1.78 | 0.34 | 2 | 
| g | Sea Stars | 6 | 2.36 | 0.20 | 2 | 
| h | Sea Urchins | 7 | 1.80 | 0.43 | 2 | 
| i | Sea Anemones | 10 | 3.09 | 0.25 | 3 | 
| j | Gastropods and Bivalves | 13 | 2.05 | 0.40 | 2 | 
| k | Cephalopods | 21 | 2.93 | 0.24 | 3 | 
| l | Shrimps | 18 | 2.51 | 0.14 | 3 | 
| m | Mantis shrimps | 10 | 3.23 | 0.18 | 3 | 
| n | Crabs | 15 | 2.80 | 0.22 | 3 | 
| o | Small-Sized Fishes | 36 | 2.71 | 0.32 | 3 | 
| p | Medium-Sized Fishes | 70 | 3.02 | 0.27 | 3 | 
| Sea Anemones | Small-Sized Fishes | Medium-Sized Fishes | |
|---|---|---|---|
| Sea Anemones | NA | 52.68 | 63.04 | 
| Small-Sized Fishes | 21.57 | NA | 78.31 | 
| Medium-Sized Fishes | 24.08 | 85.81 | NA | 
| Sea Anemones | Gastropods and Bivalves | Cephalopods | |
|---|---|---|---|
| Sea Anemones | NA | 0.07 | 78.30 | 
| Gastropods and Bivalves | 0.02 | NA | 18.13 | 
| Cephalopods | 19.26 | 16.36 | NA | 
| Sea Anemones | Shrimps | Mantis Shrimps | Crabs | |
|---|---|---|---|---|
| Sea Anemones | NA | 1.76 | 2.66 | 13.87 | 
| Shrimps | 2.87 | NA | 0.84 | 68.22 | 
| Mantis shrimps | 3.16 | 0.74 | NA | 59.37 | 
| Crabs | 8.87 | 37.77 | 29.67 | NA | 
| Sea Anemones | Jellyfishes | Brittle Stars | Sea Stars | Sea Urchins | |
|---|---|---|---|---|---|
| Sea Anemones | NA | 0.00 | 1.32 | 3.86 | 1.97 | 
| Jellyfishes | 0.01 | NA | 0.01 | 14.16 | 75.64 | 
| Brittle Stars | 0.24 | 0.00 | NA | 1.45 | 44.06 | 
| Sea Stars | 3.36 | 1.29 | 2.63 | NA | 55.89 | 
| Sea Urchins | 0.23 | 1.42 | 6.81 | 18.33 | NA | 
| Category | Number | Mean of δ13C | SD of δ13C | Mean of δ15N | SD of δ15N | 
|---|---|---|---|---|---|
| Small-Sized Fishes | 36 | −20.10‰ | 0.36‰ | 11.00‰ | 1.19‰ | 
| Shrimps | 18 | −18.24‰ | 0.99‰ | 10.58‰ | 0.52‰ | 
| Zooplankton | 5 | −24.11‰ | 0.80‰ | 7.58‰ | 0.78‰ | 
| POM | 5 | −24.41‰ | 0.76‰ | 4.53‰ | 0.20‰ | 
| SOM | 10 | −22.42‰ | 0.59‰ | 3.40‰ | 1.03‰ | 
| Sea Anemones | 10 | −20.16‰ | 0.50‰ | 12.45‰ | 0.74‰ | 
| Food Source Category | Mean ± SD (‰) | 95% Credible Interval (‰) | R-Hat Values | 
|---|---|---|---|
| Small-Sized Fishes | 29.7 ± 14.8 | 4.4–61.1 | 1 | 
| Shrimps | 35.6 ± 12.7 | 9.0–58.7 | 1 | 
| Zooplankton | 13.2 ± 7.7 | 2.1–30.9 | 1 | 
| POM | 10.7 ± 6.0 | 1.8–24.2 | 1 | 
| SOM | 10.8 ± 5.7 | 2.0–23.5 | 1 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Shan, X.; Teng, G.; Song, S.; Chen, Y.; Jin, X. Diet Reconstruction Under Limited Prior Information: Dietary Contributions and Isotopic Niche of Metridium senile in the North Yellow Sea. Biology 2025, 14, 1508. https://doi.org/10.3390/biology14111508
Zhao Y, Shan X, Teng G, Song S, Chen Y, Jin X. Diet Reconstruction Under Limited Prior Information: Dietary Contributions and Isotopic Niche of Metridium senile in the North Yellow Sea. Biology. 2025; 14(11):1508. https://doi.org/10.3390/biology14111508
Chicago/Turabian StyleZhao, Yongsong, Xiujuan Shan, Guangliang Teng, Shiqi Song, Yunlong Chen, and Xianshi Jin. 2025. "Diet Reconstruction Under Limited Prior Information: Dietary Contributions and Isotopic Niche of Metridium senile in the North Yellow Sea" Biology 14, no. 11: 1508. https://doi.org/10.3390/biology14111508
APA StyleZhao, Y., Shan, X., Teng, G., Song, S., Chen, Y., & Jin, X. (2025). Diet Reconstruction Under Limited Prior Information: Dietary Contributions and Isotopic Niche of Metridium senile in the North Yellow Sea. Biology, 14(11), 1508. https://doi.org/10.3390/biology14111508
 
         
                                                

 
                         
       