The A226D Mutation of OmpC Leads to Increased Susceptibility to β-Lactam Antibiotics in Escherichia coli
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search for E. coli Strains with OmpC A226D Mutation
2.2. Mutation of ompC
2.3. Construction of ompC-Containing Strains
2.4. Drug Susceptibility Test
2.5. Survival Assays
2.6. Detection of ompC Expression Level
2.7. Molecular Dynamics and Docking
2.8. Statistics
3. Results
3.1. Identification of an ompC A226D Mutation
3.2. OmpC A226D Mutation Leads to Increase of β-Lactam Susceptibility
3.3. Structural Changes Resulting from A226D Mutation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fan, G.; Hryc, C.F.; Blaza, J.N.; Serysheva, I.I.; Schmid, M.F.; Chiu, W.; Luisi, B.F.; Du, D. An Allosteric Transport Mechanism for the AcrAB-TolC Multidrug Efflux Pump. eLife 2017, 6, e24905. [Google Scholar] [CrossRef]
- Sun, J.; Chen, C.; Cui, C.-Y.; Zhang, Y.; Liu, X.; Cui, Z.-H.; Ma, X.-Y.; Feng, Y.; Fang, L.-X.; Lian, X.-L.; et al. Plasmid-Encoded tet(X) Genes That Confer High-Level Tigecycline Resistance in Escherichia coli. Nat. Microbiol. 2019, 4, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of Plasmid-Mediated Colistin Resistance Mechanism MCR-1 in Animals and Human Beings in China: A Microbiological and Molecular Biological Study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Nasrollahian, S.; Graham, J.P.; Halaji, M. A Review of the Mechanisms That Confer Antibiotic Resistance in Pathotypes of E. coli. Front. Cell Infect. Microbiol. 2024, 14, 1387497. [Google Scholar] [CrossRef] [PubMed]
- Delcour, A.H. Outer Membrane Permeability and Antibiotic Resistance. Biochim. Biophys. Acta 2009, 1794, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Lázaro-Perona, F.; Sotillo, A.; Troyano-Hernáez, P.; Gómez-Gil, R.; de la Vega-Bueno, Á.; Mingorance, J. Genomic Path to Pandrug Resistance in a Clinical Isolate of Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2018, 52, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Cowan, S.W.; Schirmer, T.; Rummel, G.; Steiert, M.; Ghosh, R.; Pauptit, R.A.; Jansonius, J.N.; Rosenbusch, J.P. Crystal Structures Explain Functional Properties of Two E. coli Porins. Nature 1992, 358, 727–733. [Google Scholar] [CrossRef]
- Vasan, A.K.; Haloi, N.; Ulrich, R.J.; Metcalf, M.E.; Wen, P.-C.; Metcalf, W.W.; Hergenrother, P.J.; Shukla, D.; Tajkhorshid, E. Role of Internal Loop Dynamics in Antibiotic Permeability of Outer Membrane Porins. Proc. Natl. Acad. Sci. USA 2022, 119, e2117009119. [Google Scholar] [CrossRef]
- Masi, M.; Winterhalter, M.; Pagès, J.-M. Outer Membrane Porins. Subcell. Biochem. 2019, 92, 79–123. [Google Scholar] [CrossRef]
- Chevalier, S.; Bouffartigues, E.; Bodilis, J.; Maillot, O.; Lesouhaitier, O.; Feuilloley, M.G.J.; Orange, N.; Dufour, A.; Cornelis, P. Structure, Function and Regulation of Pseudomonas Aeruginosa Porins. FEMS Microbiol. Rev. 2017, 41, 698–722. [Google Scholar] [CrossRef] [PubMed]
- Vila, J.; Martí, S.; Sánchez-Céspedes, J. Porins, Efflux Pumps and Multidrug Resistance in Acinetobacter Baumannii. J. Antimicrob. Chemother. 2007, 59, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Nikaido, H. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol. Mol. Biol. Rev. 2003, 67, 593–656. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.F.; Drown, B.S.; Riley, A.P.; Garcia, A.; Shirai, T.; Svec, R.L.; Hergenrother, P.J. Predictive Rules for Compound Accumulation Yield a Broad-Spectrum Antibiotic. Nature 2017, 545, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Taherpour, A.; Hashemi, A. Detection of OqxAB Efflux Pumps, OmpK35 and OmpK36 Porins in Extended-Spectrum-β-Lactamase-Producing Klebsiella pneumoniae Isolates from Iran. Hippokratia 2013, 17, 355–358. [Google Scholar] [PubMed]
- El-Kady, R.A.E.-H.; Elbaiomy, M.A.; Elnagar, R.M. Molecular Mechanisms Mediating Ceftazidime/Avibactam Resistance Amongst Carbapenem-Resistant Klebsiella pneumoniae Isolates from Cancer Patients. Infect. Drug Resist. 2022, 15, 5929–5940. [Google Scholar] [CrossRef] [PubMed]
- Özad Düzgün, A. From Turkey: First Report of KPC-3- and CTX-M-27-Producing Multidrug-Resistant Klebsiella pneumoniae ST147 Clone Carrying OmpK36 and Ompk37 Porin Mutations. Microb. Drug Resist. 2021, 27, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Ganjo, A.R.; Balaky, S.T.J.; Mawlood, A.H.; Smail, S.B.; Shabila, N.P. Characterization of Genes Related to the Efflux Pump and Porin in Multidrug-Resistant Escherichia Coli Strains Isolated from Patients with COVID-19 after Secondary Infection. BMC Microbiol. 2024, 24, 122. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-W.; Li, P.-L.; Zhai, Y.-J.; Pan, Y.-S.; Hu, G.-Z.; He, D.-D. Upregulation of Outer Membrane Porin Gene ompC Contributed to Enhancement of Azithromycin Susceptibility in Multidrug-Resistant Escherichia coli. Microbiol. Spectr. 2024, 12, e0391823. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Yan, J.-J.; Lei, H.-Y.; Teng, C.-H.; Wang, M.-C.; Tseng, C.-C.; Wu, J.-J. Loss of Outer Membrane Protein C in Escherichia coli Contributes to Both Antibiotic Resistance and Escaping Antibody-Dependent Bactericidal Activity. Infect. Immun. 2012, 80, 1815–1822. [Google Scholar] [CrossRef]
- van Boxtel, R.; Wattel, A.A.; Arenas, J.; Goessens, W.H.F.; Tommassen, J. Acquisition of Carbapenem Resistance by Plasmid-Encoded-AmpC-Expressing Escherichia coli. Antimicrob. Agents Chemother. 2017, 61, e01413–e01416. [Google Scholar] [CrossRef] [PubMed]
- Foudraine, D.E.; Aarents, C.N.M.; Wattel, A.A.; van Boxtel, R.; Strepis, N.; Ten Kate, M.T.; Verbon, A.; Luider, T.M.; Klaassen, C.H.W.; Hays, J.; et al. Liquid Chromatography-Tandem Mass Spectrometry Analysis Demonstrates a Decrease in Porins and Increase in CMY-2 β-Lactamases in Escherichia coli Exposed to Increasing Concentrations of Meropenem. Front. Microbiol. 2022, 13, 793738. [Google Scholar] [CrossRef] [PubMed]
- Onishi, R.; Shigemura, K.; Osawa, K.; Yang, Y.-M.; Maeda, K.; Fang, S.-B.; Sung, S.-Y.; Onuma, K.; Uda, A.; Miyara, T.; et al. The Antimicrobial Resistance Characteristics of Imipenem-Non-Susceptible, Imipenemase-6-Producing Escherichia coli. Antibiotics 2021, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Hyatt, D.; Chen, G.-L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Reuter, K.; Drost, H.-G. Sensitive Protein Alignments at Tree-of-Life Scale Using DIAMOND. Nat. Methods 2021, 18, 366–368. [Google Scholar] [CrossRef]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.M.; Tomita, M.; Wanner, B.L.; Hirotada, M. Construction of Escherichia coli K-12 in-Frame, Single-Gene Knockout Mutants: The Keio Collection. Mol. Syst. Biol. 2006, 2, 2006.0008. [Google Scholar] [CrossRef]
- M100 Ed34; Performance Standards for Antimicrobial Disk Susceptibility Tests M100 Ed34. CLSI: Malvern, PA, USA, 2024.
- Baslé, A.; Rummel, G.; Storici, P.; Rosenbusch, J.P.; Schirmer, T. Crystal Structure of Osmoporin OmpC from E. coli at 2.0 Å. J. Mol. Biol. 2006, 362, 933–942. [Google Scholar] [CrossRef]
- Feng, S.; Park, S.; Choi, Y.K.; Im, W. CHARMM-GUI Membrane Builder: Past, Current, and Future Developments and Applications. J. Chem. Therory Comput. 2023, 19, 2161–2185. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Lou, H.; Chen, M.; Black, S.S.; Bushell, S.R.; Ceccarelli, M.; Mach, T.; Beis, K.; Low, A.S.; Bamford, V.A.; Booth, I.R.; et al. Altered Antibiotic Transport in OmpC Mutants Isolated from a Series of Clinical Strains of Multi-Drug Resistant E. coli. PLoS ONE 2011, 6, e25825. [Google Scholar] [CrossRef]
Pores | A226D | WT |
---|---|---|
AMP | ||
Pore 1 | −8.63 | −8.8 |
Pore 2 | −7.96 | −8.56 |
Pore 3 | −8.93 | −8.03 |
PIP | ||
Pore 1 | −7.17 | −9.69 |
Pore 2 | −7.77 | −11.31 |
Pore 3 | −6.64 | −9.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Guo, P.; Zheng, Y.; Xiang, S.; Zhao, Y.; Liu, X.; Fu, C.; Zhang, Y.; Xu, H.; Li, L.; et al. The A226D Mutation of OmpC Leads to Increased Susceptibility to β-Lactam Antibiotics in Escherichia coli. Biology 2024, 13, 600. https://doi.org/10.3390/biology13080600
Zhu J, Guo P, Zheng Y, Xiang S, Zhao Y, Liu X, Fu C, Zhang Y, Xu H, Li L, et al. The A226D Mutation of OmpC Leads to Increased Susceptibility to β-Lactam Antibiotics in Escherichia coli. Biology. 2024; 13(8):600. https://doi.org/10.3390/biology13080600
Chicago/Turabian StyleZhu, Jiaming, Peng Guo, Yuting Zheng, Shiqing Xiang, Yang Zhao, Xinyu Liu, Chengzhang Fu, Youming Zhang, Hai Xu, Ling Li, and et al. 2024. "The A226D Mutation of OmpC Leads to Increased Susceptibility to β-Lactam Antibiotics in Escherichia coli" Biology 13, no. 8: 600. https://doi.org/10.3390/biology13080600
APA StyleZhu, J., Guo, P., Zheng, Y., Xiang, S., Zhao, Y., Liu, X., Fu, C., Zhang, Y., Xu, H., Li, L., Wang, W., & Wang, M. (2024). The A226D Mutation of OmpC Leads to Increased Susceptibility to β-Lactam Antibiotics in Escherichia coli. Biology, 13(8), 600. https://doi.org/10.3390/biology13080600