Diet Diversity of the Fluviatile Masu Salmon, Oncorhynchus masou (Brevoort 1856) Revealed via Gastrointestinal Environmental DNA Metabarcoding and Morphological Identification of Contents
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Basic Measurements
2.2. Morphological Observation of Gastrointestinal Tract Contents
2.3. GITeDNA Extraction and Metabarcoding
2.4. Bioinformatics and Statistical Analyses
3. Results
3.1. Identification and Classification of Gastrointestinal Contents
3.2. Diet Diversity and the Effects of Body Size and Age
4. Discussion
4.1. Diet Composition and Diversity of Masu salmon
4.2. Size-Dependent Foraging of Masu salmon
4.3. Comparison of the Study Approaches
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawaguchi, Y.I.; Taniguchi, Y.; Nakano, S. Terrestrial invertebrate inputs determine the local abundance of stream fishes in a forested stream. Ecology 2003, 84, 701–708. [Google Scholar] [CrossRef]
- Romero, G.; Srivastava, D. Food-web composition affects cross-ecosystem interactions and subsidies. J. Anim. Ecol. 2010, 79, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Nakano, S.; Murakami, M. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proc. Natl. Acad. Sci. USA 2001, 98, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Baxter, C.V.; Fausch, K.D.; Carl Saunders, W. Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshw. Biol. 2005, 50, 201–220. [Google Scholar] [CrossRef]
- Polis, G.A.; Anderson, W.B.; Holt, R.D. Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 1997, 28, 289–316. [Google Scholar] [CrossRef]
- Barbini, S.; Scenna, L.; Figueroa, D.; Cousseau, M.; Diaz de Astarloa, J. Feeding habits of the Magellan skate: Effects of sex, maturity stage, and body size on diet. Hydrobiologia 2010, 641, 275–286. [Google Scholar] [CrossRef]
- Kreitzer, J.; Belk, M.; Gonzalez, D.; Tuckfield, C.; Shiozawa, D.; Rasmussen, J. Ontogenetic diet shift in the June sucker Chasmistes liorus (Cypriniformes, Catostomidae) in the early juvenile stage. Ecol. Freshw. Fish 2010, 19, 433–438. [Google Scholar] [CrossRef]
- Barriga, J.; Battini, M. Ecological significances of ontogenetic shifts in the stream-dwelling catfish, Hatcheria macraei (Siluriformes, Trichomycteridae), in a Patagonian river. Ecol. Freshw. Fish 2009, 18, 395–405. [Google Scholar] [CrossRef]
- Liao, L.Y.; Chiu, M.C.; Huang, Y.S.; Kuo, M.H. Size-dependent foraging on aquatic and terrestrial prey by the endangered Taiwan Salmon Oncorhynchus masou formosanus. Zool. Stud. 2012, 51, 671–678. [Google Scholar]
- Gustafsson, P.; Bergman, E.; Greenberg, L.A. Functional response and size-dependent foraging on aquatic and terrestrial prey by brown trout (Salmo trutta L.). Ecol. Freshw. Fish 2010, 19, 170–177. [Google Scholar] [CrossRef]
- Montori, A.; Manuel, J.; Figueroa, T.; Santos, X. The diet of the brown trout salmo trutta (L.) during the reproductive period: Size-related and sexual effects. Environ. Sci. Int. Rev. Hydrobiol. 2006, 91, 438–450. [Google Scholar] [CrossRef]
- Lin, X.; Hu, S.; Liu, S.; Huang, H. Unexpected prey of juvenile spotted scat (Scatophagus argus) near a wharf: The prevalence of fouling organisms in stomach contents. Ecol. Evol. 2018, 8, 8547–8554. [Google Scholar] [CrossRef] [PubMed]
- Hoenig, B.D.; Trevelline, B.K.; Nuttle, T.; Porter, B.A. Dietary DNA metabarcoding reveals seasonal trophic changes among three syntopic freshwater trout species. Freshw. Biol. 2021, 66, 509–523. [Google Scholar] [CrossRef]
- Ueda, H. Physiological mechanisms of imprinting and homing migration in Pacific salmon Oncorhynchus spp. J. Fish Biol. 2012, 81, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Kato, F. Life histories of masu and amago salmon (Oncorhynchus masou and Oncorhynchus rhodurus). In Pacific Salmon Life Histories; UBC Press: Vancouver, BC, Canada, 1991. [Google Scholar]
- Constable, A. The ecosystem approach to managing fisheries: Achieving conservation objectives for predators of fished species. CCAMLR Sci. 2001, 8, 37–64. [Google Scholar]
- Baker, R.; Buckland, A.; Sheaves, M. Fish gut content analysis: Robust measures of diet composition. Fish Fish. 2014, 15, 170–177. [Google Scholar] [CrossRef]
- Hartman, K.; Brandt, S. Trophic Resource Partitioning, Diets, and Growth of Sympatric Estuarine Predators. Trans. Am. Fish. Soc. 1995, 124, 520–537. [Google Scholar] [CrossRef]
- Pompanon, F.; Deagle, B.E.; Symondson, W.O.C.; Brown, D.S.; Jarman, S.N.; Taberlet, P. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 2012, 21, 1931–1950. [Google Scholar] [CrossRef]
- Hynes, H.B.N. The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. J. Anim. Ecol. 1950, 19, 36–58. [Google Scholar] [CrossRef]
- Hyslop, E.J. Stomach contents analysis—A review of methods and their application. J. Fish Biol. 1980, 17, 411–429. [Google Scholar] [CrossRef]
- Reñones, O.; Polunin, N.V.C.; Goni, R. Size related dietary shifts of Epinephelus marginatus in a western Mediterranean littoral ecosystem: An isotope and stomach content analysis. J. Fish Biol. 2002, 61, 122–137. [Google Scholar] [CrossRef]
- Vinson, M.; Angradi, T. Stomach emptiness in fishes: Sources of variation and study design implications. Rev. Fish. Sci. 2011, 19, 63–73. [Google Scholar] [CrossRef]
- Barrett, R.; Camphuysen, C.; Anker-Nilssen, T.; Chardine, J.; Furness, R.; Garthe, S.; Hüppop, O.; Leopold, M.; Montevecchi, W.; Veit, R. Diet studies of seabirds: A review and recommendations. ICES J. Mar. Sci. 2007, 64, 1675–1691. [Google Scholar] [CrossRef]
- Bowen, W.D.; Iverson, S.J. Methods of estimating marine mammal diets: A review of validation experiments and sources of bias and uncertainty. Mar. Mammal Sci. 2013, 29, 719–754. [Google Scholar] [CrossRef]
- Traugott, M.; Thalinger, B.; Wallinger, C.; Sint, D. Fish as predators and prey: DNA-based assessment of their role in food webs. J. Fish Biol. 2021, 98, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Oehm, J.; Thalinger, B.; Eisenkölbl, S.; Traugott, M. Diet analysis in piscivorous birds: What can the addition of molecular tools offer? Ecol. Evol. 2017, 7, 1984–1995. [Google Scholar] [CrossRef] [PubMed]
- Roubinet, E.; Jonsson, T.; Malsher, G.; Staudacher, K.; Traugott, M.; Ekbom, B.; Jonsson, M. High redundancy as well as complementary prey choice characterize generalist predator food webs in agroecosystems. Sci. Rep. 2018, 8, 8054. [Google Scholar] [CrossRef] [PubMed]
- Sint, D.; Kaufmann, R.; Mayer, R.; Traugott, M. Resolving the predator first paradox: Arthropod predator food webs in pioneer sites of glacier forelands. Mol. Ecol. 2019, 28, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Berry, O.; Bulman, C.; Bunce, M.; Coghlan, M.; Murray, D.; Ward, R. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Mar. Ecol. Prog. Ser. 2015, 540, 167–181. [Google Scholar] [CrossRef]
- Sakaguchi, S.O.; Shimamura, S.; Shimizu, Y.; Ogawa, G.; Yamada, Y.; Shimizu, K.; Kasai, H.; Kitazato, H.; Fujiwara, Y.; Fujikura, K.; et al. Comparison of morphological and DNA-based techniques for stomach content analyses in juvenile chum salmon Oncorhynchus keta: A case study on diet richness of juvenile fishes. Fish. Sci. 2017, 83, 47–56. [Google Scholar] [CrossRef]
- Horká, P.; Ibbotson, A.; Jones, J.I.; Cove, R.J.; Scott, L.J. Validation of scale-age determination in European grayling Thymallus thymallus using tag-recapture analysis. J. Fish Biol. 2010, 77, 153–161. [Google Scholar] [CrossRef]
- Reinhardt, L.; Copeland, T.; Davison, M. Validation of scale-derived ages in wild juvenile and adult steelhead using parental-based tagging. N. Am. J. Fish. Manag. 2022, 42, 260–269. [Google Scholar] [CrossRef]
- Wright, K.K.; Schrader, W.C.; Reinhardt, L.; Hernandez, K.; Hohman, C.; Copeland, T. Pacific States Marine Fisheries Commission. Process and Methods for Assigning Ages to Anadromous Salmonids from Scale Samples; Idaho Department of Fish and Game: Boise, ID, USA, 2015. [Google Scholar]
- Kawai, S.; Tanida, K. Aquatic Insects of Japan: Manual with Keys and Illustrations; Tokai University Press: Tokyo, Japan, 2005. [Google Scholar]
- Zheng, B.; Huang, H.; Zhang, Y.; Dai, D. The Fishes of Tumen River; Jilin People’s Publishing House: Changchun, China, 1980. [Google Scholar]
- Pirroni, S.; de Pennafort Dezen, L.; Santi, F.; Riesch, R. Comparative gut content analysis of invasive mosquitofish from Italy and Spain. Ecol. Evol. 2021, 11, 4379–4398. [Google Scholar] [CrossRef] [PubMed]
- Couton, M.; Baud, A.; Daguin-Thiébaut, C.; Corre, E.; Comtet, T.; Viard, F. High-throughput sequencing on preservative ethanol is effective at jointly examining infraspecific and taxonomic diversity, although bioinformatics pipelines do not perform equally. Ecol. Evol. 2021, 11, 5533–5546. [Google Scholar] [CrossRef]
- Hajibabaei, M.; Spall, J.; Shokralla, S.; Konynenburg, S. Assessing biodiversity of a freshwater benthic macroinvertebrate community through non-destructive environmental barcoding of DNA from preservative ethanol. BMC Ecol. 2012, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Zeale, M.R.; Butlin, R.K.; Barker, G.L.; Lees, D.C.; Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 2011, 11, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Meusnier, I.; Singer, G.A.; Landry, J.F.; Hickey, D.A.; Hebert, P.D.; Hajibabaei, M. A universal DNA mini-barcode for biodiversity analysis. BMC Genom. 2008, 9, 214. [Google Scholar] [CrossRef] [PubMed]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Coissac, E. OligoTag: A program for designing sets of tags for next-generation sequencing of multiplexed samples. Methods Mol. Biol. 2012, 888, 13–31. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, Q.; Wang, Y.; Wang, X.; Zhao, J.; Yao, M. Assessment of fish communities using eDNA: Effect of spatial sampling design in lentic systems of different sizes. Mol. Ecol. Resour. 2019, 20, 242–255. [Google Scholar] [CrossRef]
- Korbie, D.J.; Mattick, J.S. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat. Protoc. 2008, 3, 1452–1456. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017, 11, 2639–2643. [Google Scholar] [CrossRef]
- O’Rourke, D.R.; Bokulich, N.A.; Jusino, M.A.; MacManes, M.D.; Foster, J.T. A total crapshoot? Evaluating bioinformatic decisions in animal diet metabarcoding analyses. Ecol. Evol. 2020, 10, 9721–9739. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Corse, E.; Tougard, C.; Archambaud-Suard, G.; Agnèse, J.F.; Messu Mandeng, F.D.; Bilong Bilong, C.F.; Duneau, D.; Zinger, L.; Chappaz, R.; Xu, C.C.Y.; et al. One-locus-several-primers: A strategy to improve the taxonomic and haplotypic coverage in diet metabarcoding studies. Ecol. Evol. 2019, 9, 4603–4620. [Google Scholar] [CrossRef]
- Hardy, N.A.; Berry, T.E.; Kelaher, B.P.; Goldsworthy, S.D.; Bunce, M.; Coleman, M.A.; Gillanders, B.M.; Connell, S.D.; Blewitt, M.; Figueira, W. Assessing the trophic ecology of top predators across a recolonisation frontier using DNA metabarcoding of diets. Mar. Ecol. Prog. Ser. 2017, 573, 237–254. [Google Scholar] [CrossRef]
- Schnell, I.B.; Bohmann, K.; Gilbert, M.T.P. Tag jumps illuminated—Reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 2015, 15, 1289–1303. [Google Scholar] [CrossRef] [PubMed]
- Somogyi, D.; Eros, T.; Mozsár, A.; Czeglédi, I.; Szeles, J.; Tóth, R.; Zulkipli, N.; Antal, L.; Nyeste, K. Intraguild predation as a potential explanation for the population decline of the threatened native fish, the European mudminnow (Umbra krameri Walbaum, 1792) by the invasive Amur sleeper (Perccottus glenii Dybowski, 1877). Neobiota 2023, 83, 95–107. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Whittaker, R.H. Evolution and Measurement of Species Diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, B.; Simpson, G.; Solymos, P.; Stevens, H.; Wagner, H. Vegan: Community Ecology Package; R Package Version 2.2-1; R Foundation for Statistical Computing: Vienna, Austria, 2015; Volume 2, pp. 1–2. [Google Scholar]
- Sánchez-Hernández, J.; Vieira-Lanero, R.; Servia, M.; Cobo, F. First feeding diet of young brown trout fry in a temperate area: Disentangling constraints and food selection. Hydrobiologia 2011, 663, 109–119. [Google Scholar] [CrossRef]
- Dineen, G.; Harrison, S.; Giller, P. Diet partitioning in sympatric Atlantic salmon and brown trout in streams with contrasting riparian vegetation. J. Fish Biol. 2007, 71, 17–38. [Google Scholar] [CrossRef]
- Sakai, M.; Wakiya, R.; Hoshi, G. Flood-induced interspecific interactions in spring-fed tributary as an ecosystem function of heterogeneous river networks. Landsc. Ecol. Eng. 2021, 17, 555–561. [Google Scholar] [CrossRef]
- Pérez, S.; Manosalva, A.; Colin, N.; González, J.; Habit, E.; Ruzzante, D.E.; Górski, K. Juvenile salmon presence effects on the diet of native Puye Galaxias maculatus in lakes and estuaries of Patagonian fjords. Biol. Invasions 2022, 24, 81–92. [Google Scholar] [CrossRef]
- Miyasaka, H.; Nakano, S.; Furukawa-Tanaka, T. Food habit divergence between white-spotted charr and masu salmon in Japanese mountain streams: Circumstantial evidence for competition. Limnology 2003, 4, 1–10. [Google Scholar] [CrossRef]
- Kenney, M.; Sutton-Grier, A.; Smith, R.; Gresens, S. Benthic macroinvertebrates as indicators of water quality: The intersection of science and policy. Terr. Arthropod Rev. 2009, 2, 99–128. [Google Scholar] [CrossRef]
- Tampo, L.; Kaboré, I.; Alhassan, E.H.; Ouéda, A.; Bawa, L.M.; Djaneye-Boundjou, G. Benthic macroinvertebrates as ecological indicators: Their sensitivity to the water quality and human disturbances in a tropical river. Front. Water 2021, 3, 662765. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Schlosser, I.J. The role of predation in age- and size-related habitat use by stream fishes. Ecology 1987, 68, 651–659. [Google Scholar] [CrossRef]
- Braley, M.; Goldsworthy, S.D.; Page, B.; Steer, M.; Austin, J.J. Assessing morphological and DNA-based diet analysis techniques in a generalist predator, the arrow squid Nototodarus gouldi. Mol. Ecol. Resour. 2010, 10, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Valentini, A.; Pompanon, F.; Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 2009, 24, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Banerji, A.; Bagley, M.; Elk, M.; Pilgrim, E.; Martinson, J.; Santo Domingo, J. Spatial and temporal dynamics of a freshwater eukaryotic plankton community revealed via 18S rRNA gene metabarcoding. Hydrobiologia 2018, 818, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, K.M.; Kline, R.J.; Rahman, M.S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 2019, 17, e00547. [Google Scholar] [CrossRef]
- Clarke, L.; Trebilco, R.; Walters, A.; Polanowski, A.; Deagle, B. DNA-based diet analysis of mesopelagic fish from the southern Kerguelen Axis. In Deep Sea Research Part II: Topical Studies in Oceanography; Elsevier: Amsterdam, The Netherlands, 2018; p. 174. [Google Scholar] [CrossRef]
- Yoon, T.-H.; Kang, H.-E.; Lee, S.R.; Lee, J.-B.; Baeck, G.; Park, H.; Kim, H.W. Metabarcoding analysis of the stomach contents of the Antarctic Toothfish (Dissostichus mawsoni) collected in the Antarctic Ocean. PeerJ 2017, 5, e3977. [Google Scholar] [CrossRef]
- Phillips, M.B.; Bonner, T.H. Occurrence and amount of microplastic ingested by fishes in watersheds of the Gulf of Mexico. Mar. Pollut. Bull. 2015, 100, 264–269. [Google Scholar] [CrossRef]
- Seaburg, K.G. A Stomach Sampler for Live Fish. Progress. Fish Cult. 1957, 19, 137–139. [Google Scholar] [CrossRef]
Data | Group | <20 cm | ≥20 cm | <100 g | ≥100 g | Age 1+ | Age 2+ | Age 3+ | Total | |
---|---|---|---|---|---|---|---|---|---|---|
n | ||||||||||
Prey Type | 18 | 13 | 14 | 17 | 8 | 17 | 6 | 31 | ||
GITeDNA (Mean ± sd) | Terrestrial | 6793 ± 15,081 | 7366 ± 25,476 | 4526 ± 9433 | 9098 ± 25,422 | 6080 ± 12,259 | 4480 ± 13,715 | 11,540 ± 37,534 | 7033 ± 19,713 | |
Aquatic | 18,427 ± 19,372 | 5012 ± 13,530 | 22,588 ± 20,115 | 4743 ± 11,806 | 19167 ± 20,719 | 14,067 ± 18,877 | 729 ± 673 | 12,802 ± 18,198 | ||
p | p < 0.01 | p < 0.05 | p < 0.01 | p < 0.05 | p < 0.05 | p < 0.01 | p ≥ 0.05 | p < 0.01 | ||
Morph (Mean ± sd) | Terrestrial | 4.72 ± 5.67 | 0.692 ± 1.18 | 5.5 ± 6.19 | 1 ± 1.41 | 5.25 ± 7.15 | 2.71 ± 3.95 | 1 ± 1.55 | 3.03 ± 4.78 | |
Aquatic | 7.22 ± 7.94 | 5.69 ± 6.40 | 7.93 ± 8.77 | 5.47 ± 5.77 | 4.25 ± 3.65 | 8.24 ± 8.95 | 5 ± 4.43 | 6.58 ± 7.26 | ||
p | p ≥ 0.05 | p < 0.01 | p ≥ 0.05 | p < 0.01 | p ≥ 0.05 | p < 0.01 | p < 0.05 | p < 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Yin, X.; Wan, Q.; Rusitanmu, D.; Han, J. Diet Diversity of the Fluviatile Masu Salmon, Oncorhynchus masou (Brevoort 1856) Revealed via Gastrointestinal Environmental DNA Metabarcoding and Morphological Identification of Contents. Biology 2024, 13, 129. https://doi.org/10.3390/biology13020129
Li L, Yin X, Wan Q, Rusitanmu D, Han J. Diet Diversity of the Fluviatile Masu Salmon, Oncorhynchus masou (Brevoort 1856) Revealed via Gastrointestinal Environmental DNA Metabarcoding and Morphological Identification of Contents. Biology. 2024; 13(2):129. https://doi.org/10.3390/biology13020129
Chicago/Turabian StyleLi, Lijuan, Xuwang Yin, Qianruo Wan, Dilina Rusitanmu, and Jie Han. 2024. "Diet Diversity of the Fluviatile Masu Salmon, Oncorhynchus masou (Brevoort 1856) Revealed via Gastrointestinal Environmental DNA Metabarcoding and Morphological Identification of Contents" Biology 13, no. 2: 129. https://doi.org/10.3390/biology13020129
APA StyleLi, L., Yin, X., Wan, Q., Rusitanmu, D., & Han, J. (2024). Diet Diversity of the Fluviatile Masu Salmon, Oncorhynchus masou (Brevoort 1856) Revealed via Gastrointestinal Environmental DNA Metabarcoding and Morphological Identification of Contents. Biology, 13(2), 129. https://doi.org/10.3390/biology13020129