Impact of Benzodiazepine Delorazepam on Growth and Behaviour of Artemia salina Nauplii
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. DLZ Solution Preparation
2.2. Artemia salina Care and Maintenance
2.3. Hatching Test
2.4. Mortality, Larval Staging, and Growth Evaluation
2.5. Phenotypic Analyses
2.6. Cardiac Beats Measurement
2.7. Determination of Locomotory Performance
2.8. Video Tracking and Evaluation of Locomotory Performance
2.9. Statistical Analysis
3. Results
3.1. Effect of DLZ on Hatching and Growth
3.2. Effects of DLZ on Naupliar Growth
3.3. Effects of DLZ on Naupliar Anatomy
3.4. Effects of DLZ on Eye Anatomy
3.5. Effects of DLZ on Lipid Distribution
3.6. Effects of DLZ on Heartbeat Rate
3.7. Locomotor Performance of Nauplii
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khasawneh, O.F.S.; Palaniandy, P. Occurrence and removal of pharmaceuticals in wastewater treatment plants. Process Saf. Environ. Prot. 2021, 150, 532–556. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, C.E.; Ramírez-Morales, D.; Masis-Mora, M.; Montiel-Mora, J.R.; Soto-Garita, C.; Araya-Valverde, E.; Balcázar, J.L. Occurrence and risk assessment of pharmaceuticals in hospital wastewater in Costa Rica. Chemosphere 2023, 339, 139746. [Google Scholar] [CrossRef]
- Dos Santos, C.R.; Lebron, Y.A.R.; Moreira, V.R.; Koch, K.; Amaral, M.C.S. Biodegradability, environmental risk assessment and ecological footprint in wastewater technologies for pharmaceutically active compounds removal. Bioresour. Technol. 2022, 343, 126150. [Google Scholar] [CrossRef] [PubMed]
- Engin, E. GABAA receptor subtypes and benzodiazepine use, misuse, and abuse. Front. Psychiatry 2023, 13, 1060949. [Google Scholar] [CrossRef]
- Carmona Araújo, A.; Casal, R.J.; Goulão, J.; Martins, A.P. Misuse of psychoactive medicines and its consequences in the European Union—A scoping review. J. Subst. Use 2024, 29, 629–640. [Google Scholar] [CrossRef]
- Bencan, Z.; Sledge, D.; Levin, E.D. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol. Biochem. Behav. 2009, 94, 75–80. [Google Scholar] [CrossRef]
- Lebreton, M.; Malgouyres, J.M.; Carayon, J.L.; Bonnafé, E.; Géret, F. Effects of the anxiolytic benzodiazepine oxazepam on freshwater gastropod reproduction: A prospective study. Ecotoxicology 2021, 30, 1880–1892. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.J.; Yang, B.; Ye, P.; Yang, Y.Y.; Zhao, J.L.; Liu, Y.S.; Xie, L.; Ying, G.G. Occurrence, fate and mass loading of benzodiazepines and their transformation products in eleven wastewater treatment plants in Guangdong province, China. Sci. Total Environ. 2021, 755 Pt 2, 142648. [Google Scholar] [CrossRef]
- Lei, H.; Yao, K.; Yang, B.; Xie, L.; Ying, G. Occurrence, spatial and seasonal variation, and environmental risk of pharmaceutically active compounds in the Pearl River basin, South China. Front. Environ. Sci. Eng. 2023, 17, 46. [Google Scholar] [CrossRef]
- Fick, J.; Brodin, T.; Heynen, M.; Klaminder, J.; Jonsson, M.; Grabicova, K.; Randak, T.; Grabic, R.; Kodes, V.; Slobodnik, J.; et al. Screening of benzodiazepines in thirty European rivers. Chemosphere 2017, 176, 324–332. [Google Scholar] [CrossRef]
- Grabicová, K.; Grabic, R.; Fedorova, G.; Kolářová, J.; Turek, J.; Brooks, B.W.; Randák, T. Psychoactive pharmaceuticals in aquatic systems: A comparative assessment of environmental monitoring approaches for water and fish. Environ. Pollut. 2020, 261, 114150. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Z.; Chen, F.; Yang, F. Basin-scale exposure risk of psychiatric pharmaceuticals and illicit drugs in tap water in Eastern China. Emerg. Contam. 2024, 10, 100330. [Google Scholar] [CrossRef]
- Valdez-Carrillo, M.; Abrell, L.; Ramírez-Hernández, J.; Reyes-López, J.A.; Carreón-Diazconti, C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: A review. Environ. Sci. Pollut. Res. 2020, 27, 44863–44891. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, A.; McMahon, T.; Gude, J. Benzodiazepine misuse: An epidemic within a pandemic. Cureus 2021, 13, e15816. [Google Scholar] [CrossRef]
- Brodin, T.; Fick, J.; Jonsson, M.; Klaminder, J. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 2013, 339, 814–815. [Google Scholar] [CrossRef]
- Gagné, F.; André, C.; Gélinas, M. Neurochemical effects of benzodiazepine and morphine on freshwater mussels. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2010, 152, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Da Pozzo, E.; Martini, C. 18-kDa translocator protein association complexes in the brain: From structure to function. Biochem. Pharmacol. 2020, 177, 114015. [Google Scholar] [CrossRef]
- Furuhagen, S.; Fuchs, A.; Lundström Belleza, E.; Breitholtz, M.; Gorokhova, E. Are pharmaceuticals with evolutionary conserved molecular drug targets more potent to cause toxic effect in non-target organisms? PLoS ONE 2014, 9, e105028. [Google Scholar] [CrossRef]
- Fogliano, C.; Motta, C.M.; Venditti, P.; Fasciolo, G.; Napolitano, G.; Avallone, B.; Carotenuto, R. Environmental concentrations of a delorazepam-based drug impact on embryonic development of non-target Xenopus laevis. Aquat. Toxicol. 2022, 250, 106244. [Google Scholar] [CrossRef]
- Fogliano, C.; Carotenuto, R.; Panzuto, R.; Spennato, V.; De Bonis, S.; Simoniello, P.; Raggio, A.; Avallone, B.; Agnisola, C.; Motta, C.M. Behavioral alterations and gills damage in Mytilus galloprovincialis exposed to an environmental concentration of delorazepam. Environ. Toxicol. Pharmacol. 2023, 97, 104030. [Google Scholar] [CrossRef]
- Fogliano, C.; Carotenuto, R.; Rusciano, G.; Sasso, A.; Motta, C.M.; Agnisola, C.; Avallone, B. Structural and functional damage to the retina and skeletal muscle in Xenopus laevis embryos exposed to the commonly used psychotropic benzodiazepine delorazepam. Environ. Toxicol. Pharmacol. 2023, 102, 104235. [Google Scholar] [CrossRef] [PubMed]
- Fogliano, C.; Carotenuto, R.; Agnisola, C.; Simoniello, P.; Karam, M.; Manfredonia, C.; Avallone, B.; Motta, C.M. Benzodiazepine delorazepam induces locomotory hyperactivity and alterations in pedal mucus texture in the freshwater Gastropod Planorbarius corneus. Int. J. Mol. Sci. 2023, 24, 17070. [Google Scholar] [CrossRef] [PubMed]
- Cerveny, D.; Brodin, T.; Cisar, P.; McCallum, E.S.; Fick, J. Bioconcentration and behavioral effects of four benzodiazepines and their environmentally relevant mixture in wild fish. Sci. Total Environ. 2020, 702, 134780. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, M.; Sire, S.; Carayon, J.L.; Malgouyres, J.M.; Vignet, C.; Geret, F.; Bonnafe, E. Low concentrations of oxazepam induce feeding and molecular changes in Radix balthica juveniles. Aquat. Toxicol. 2021, 230, 105694. [Google Scholar] [CrossRef]
- Oggier, D.M.; Weisbrod, C.J.; Stoller, A.M.; Zenker, A.K.; Fent, K. Effects of diazepam on gene expression and link to physiological effects in different life stages in zebrafish Danio rerio. Environ. Sci. Technol. 2010, 44, 7685–7691. [Google Scholar] [CrossRef]
- Fogliano, C.; Carotenuto, R.; Cirino, P.; Panzuto, R.; Ciaravolo, M.; Simoniello, P.; Sgariglia, I.; Motta, C.M.; Avallone, B. Benzodiazepine interference with fertility and embryo development: A preliminary survey in the sea urchin Paracentrotus lividus. Int. J. Mol. Sci. 2024, 25, 1969. [Google Scholar] [CrossRef]
- Bareggi, S.R.; Truci, G.; Leva, S.; Zecca, L.; Pirola, R.; Smirne, S. Pharmacokinetics and bioavailability of intravenous and oral chlordesmethyldiazepam in humans. Eur. J. Clin. Pharmacol. 1988, 34, 109–112. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, X.; Li, T.; Xu, Y.; Wu, X. The use of a brine shrimp (Artemia salina) bioassay to assess the water quality in Hangzhou section of Beijing-Hangzhou Grand Canal. Bull. Environ. Contam. Toxicol. 2012, 88, 472–476. [Google Scholar] [CrossRef]
- Zulkifli, S.Z.; Aziz, F.Z.A.; Ajis, S.Z.M.; Ismail, A. Nauplii of brine shrimp (Artemia salina) as a potential toxicity testing organism for heavy metals contamination. In From Sources to Solution: Proceedings of the International Conference on Environmental Forensics 2013; Springer: Singapore, 2014; pp. 233–237. [Google Scholar] [CrossRef]
- Jeyavani, J.; Sibiya, A.; Bhavaniramya, S.; Mahboob, S.; Al-Ghanim, K.A.; Nisa, Z.U.; Riaz, M.; Nicoletti, M.; Govindarajan, M.; Vaseeharan, B. Toxicity evaluation of polypropylene microplastic on marine microcrustacean Artemia salina: An analysis of implications and vulnerability. Chemosphere 2022, 296, 133990. [Google Scholar] [CrossRef]
- Gambardella, C.; Nichino, D.; Iacometti, C.; Ferrando, S.; Falugi, C.; Faimali, M. Long-term exposure to low-dose neurotoxic pesticides affects the hatching, viability and cholinesterase activity of Artemia sp. Aquat. Toxicol. 2018, 196, 79–89. [Google Scholar] [CrossRef]
- Koutsaftis, A.; Aoyama, I. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Sci. Total Environ. 2007, 387, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Cunha, D.L.; Mendes, M.P.; Marques, M. Environmental risk assessment of psychoactive drugs in the aquatic environment. Environ. Sci. Pollut. Res. 2019, 26, 78–90. [Google Scholar] [CrossRef]
- Verginica, S.; Mihaela, I.I.; Pavalache, G. Effects of diazepam on biotester organisms. Turk. J. Health Sci. Life 2018, 1, 1–6. [Google Scholar]
- Silva, A.Q.D.; Nilin, J.; Loureiro, S.; Costa-Lotufo, L.V. Acute and chronic toxicity of the benzodiazepine diazepam to the tropical crustacean Mysidopsis juniae. An. Acad. Bras. Ciênc. 2020, 92, e20180595. [Google Scholar] [CrossRef]
- Hannas, B.R.; Das, P.C.; Li, H.; LeBlanc, G.A. Intracellular conversion of environmental nitrate and nitrite to nitric oxide with resulting developmental toxicity to the crustacean Daphnia magna. PLoS ONE 2010, 5, e12453. [Google Scholar] [CrossRef]
- Vanhaecke, P.; Persoone, G.; Claus, C.; Sorgeloos, P. Proposal for a short-term toxicity test with Artemia nauplii. Ecotoxicol. Environ. Saf. 1981, 5, 382–387. [Google Scholar] [CrossRef]
- Solis, P.N.; Wright, C.W.; Anderson, M.M.; Gupta, M.P.; Phillipson, J.D. A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Medica 1993, 59, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Piazza, V.; Dragić, I.; Sepčić, K.; Faimali, M.; Garaventa, F.; Turk, T.; Berne, S. Antifouling activity of synthetic alkylpyridinium polymers using the barnacle model. Mar. Drugs 2014, 12, 1959–1976. [Google Scholar] [CrossRef]
- Copf, T.; Rabet, N.; Celniker, S.E.; Averof, M. Posterior patterning genes and the identification of a unique body region in the brine shrimp Artemia franciscana. Development 2003, 130, 5915–5927. [Google Scholar] [CrossRef]
- Motta, C.M.; Cerciello, R.; De Bonis, S.; Mazzella, V.; Cirino, P.; Panzuto, R.; Ciaravolo, M.; Simoniello, P.; Toscanesi, M.; Trifuoggi, M.; et al. Potential toxicity of improperly discarded exhausted photovoltaic cells. Environ. Pollut. 2016, 216, 786–792. [Google Scholar] [CrossRef]
- Motta, C.M.; Simoniello, P.; Arena, C.; Capriello, T.; Panzuto, R.; Vitale, E.; Agnisola, C.; Tizzano, M.; Avallone, B.; Ferrandino, I. Effects of four food dyes on development of three model species, Cucumis sativus, Artemia salina and Danio rerio: Assessment of potential risk for the environment. Environ. Pollut. 2019, 253, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Rosati, L.; Chianese, T.; De Gregorio, V.; Verderame, M.; Raggio, A.; Motta, C.M.; Scudiero, R. Glyphosate interference in follicular organization in the wall lizard Podarcis siculus. Int. J. Mol. Sci. 2023, 24, 7363. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, G.E.; Hand, S.C. Subcellular differentiation arrested in Artemia embryos under anoxia: Evidence supporting a regulatory role for intracellular pH. J. Exp. Zool. 1990, 253, 287–302. [Google Scholar] [CrossRef]
- Gilchrist, B.M. Scanning electron microscope studies of the egg shell in some Anostraca (Crustacea: Branchiopoda). Cell Tissue Res. 1978, 193, 337–351. [Google Scholar] [CrossRef] [PubMed]
- De Chaffoy, D.; De Maeyer-Criel, G.; Kondo, M. On the permeability and formation of the embryonic cuticle during development in vivo and in vitro of Artemia salina embryos. Differentiation 1978, 12, 99–109. [Google Scholar] [CrossRef]
- Olson, C.S.; Clegg, J.S. Cell division during the development of Artemia salina. Wilhelm Roux’s Arch. Dev. Biol. 1978, 184, 1–13. [Google Scholar] [CrossRef]
- Ikezaki, K.; Black, K.L. Stimulation of cell growth and DNA synthesis by peripheral benzodiazepine. Cancer Lett. 1990, 49, 115–120. [Google Scholar] [CrossRef]
- Ma, W.M.; Li, H.W.; Dai, Z.M.; Yang, J.S.; Yang, F.; Yang, W.J. Chitin-binding proteins of Artemia diapause cysts participate in formation of the embryonic cuticle layer of cyst shells. Biochem. J. 2013, 449, 285–294. [Google Scholar] [CrossRef]
- de Carvalho, L.M.L. Toxicology and Forensic Entomology. In Current Concepts in Forensic Entomology; Amendt, J., Goff, M., Campobasso, C., Grassberger, M., Eds.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Chophi, R.; Sharma, S.; Sharma, S.; Singh, R. Forensic entomotoxicology: Current concepts, trends and challenges. J. Forensic Leg. Med. 2019, 67, 28–36. [Google Scholar] [CrossRef]
- Wheeler, R.; Yudin, A.I.; Clark, W.H., Jr. Hatching events in the cysts of Artemia salina. Aquaculture 1979, 18, 59–67. [Google Scholar] [CrossRef]
- Fan, T.; Wang, J.; Yuan, W.; Zhong, Q.; Shi, Y.; Cong, R. Purification and characterization of hatching enzyme from brine shrimp Artemia salina. Acta Biochim. Biophys. Sin. 2010, 42, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Fogliano, C.; Motta, C.M.; Acloque, H.; Avallone, B.; Carotenuto, R. Water contamination by delorazepam induces epigenetic defects in the embryos of the clawed frog Xenopus laevis. Sci. Total Environ. 2023, 896, 165300. [Google Scholar] [CrossRef] [PubMed]
- Trabelsi, A.; Gardeur, J.-N.; Teletchea, F.; Brun-Bellut, J.; Fontaine, P. Hatching time effect on the intra-spawning larval morphology and growth in Northern pike (Esox lucius L.). Aquat. Res. 2013, 44, 657–666. [Google Scholar] [CrossRef]
- Løtvedt, P.; Jensen, P. Effects of hatching time on behavior and weight development of chickens. PLoS ONE 2014, 9, e103040. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; In, S.; Choi, H.; Chung, H. Validation of a simultaneous analytical method for the detection of 27 benzodiazepines and metabolites and zolpidem in hair using LC-MS/MS and its application to human and rat hair. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 878–886. [Google Scholar] [CrossRef]
- van Drooge, D.J.; Hinrichs, W.L.; Frijlink, H.W. Anomalous dissolution behaviour of tablets prepared from sugar glass-based solid dispersions. J. Control. Release 2004, 97, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, B.M.; Green, J. The pigments of Artemia. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 1960, 152, 118–136. [Google Scholar] [CrossRef]
- Markin, P.A.; Brito, A.; Moskaleva, N.E.; Tagliaro, F.; Tarasov, V.V.; La Frano, M.R.; Savitskii, M.V.; Appolonova, S.A. Short- and medium-term exposures of diazepam induce metabolomic alterations associated with the serotonergic, dopaminergic, adrenergic and aspartic acid neurotransmitter systems in zebrafish (Danio rerio) embryos/larvae. Comp. Biochem. Physiol. Part D Genom. Proteom. 2021, 38, 100816. [Google Scholar] [CrossRef]
- Ogueji, E.O.; Iheanacho, S.C.; Nwani, C.D.; Mbah, C.E.; Okeke, O.C.; Ibrahim, B.U. Toxicity of diazepam on lipid peroxidation, biochemical and oxidative stress indicators on liver and gill tissues of African catfish Clarias gariepinus (Burchell, 1822). Int. J. Fish. Aquat. Stud. 2017, 5, 114–123. [Google Scholar]
- Tu, L.N.; Zhao, A.H.; Hussein, M.; Stocco, D.M.; Selvaraj, V. Translocator Protein (TSPO) affects mitochondrial fatty acid oxidation in steroidogenic cells. Endocrinology 2016, 157, 1110–1121. [Google Scholar] [CrossRef]
- Gavish, M.; Veenman, L. Regulation of mitochondrial, cellular, and organismal functions by TSPO. Adv. Pharmacol. 2018, 82, 103–136. [Google Scholar] [CrossRef] [PubMed]
- Hollis, D.M.; Boyd, S.K. Distribution of GABA-like immunoreactive cell bodies in the brains of two amphibians, Rana catesbeiana and Xenopus laevis. Brain Behav. Evol. 2005, 65, 127–142. [Google Scholar] [CrossRef]
- Chen, C.; Li, L.; Li, M.; Wu, M.; Liang, W.; Takai, Y.; Oshima, Y. Impacts of diazepam on the survival, development, and response to light stimulation in early–life stages of Zebrafish (Danio rerio). J. Fac. Agric. Kyushu Univ. 2021, 66, 205–210. [Google Scholar] [CrossRef]
- Schaeffer, D.O. Anaesthesia and analgesia in nontraditional laboratory animal species. In Anesthesia and Analgesia in Laboratory Animals; Academic Press: Cambridge, MA, USA, 1997; pp. 337–378. [Google Scholar]
- McGaw, I.J.; Nancollas, S.J. Patterns of heart rate and cardiac pausing in unrestrained resting decapod crustaceans. J. Exp. Zool. 2021, 335, 678–690. [Google Scholar] [CrossRef] [PubMed]
- DeFur, P.L.; Mangum, C.P. The effects of environmental variables on the heart rates of invertebrates. Comp. Biochem. Physiol. Part A Physiol. 1979, 62, 283–294. [Google Scholar] [CrossRef]
- Handy, R.D.; Depledge, M.H. Physiological responses: Their measurement and use as environmental biomarkers in ecotoxicology. Ecotoxicology 1999, 8, 329–349. [Google Scholar] [CrossRef]
- Mailliet, F.; Galloux, P.; Poisson, D. Comparative effects of melatonin, zolpidem and diazepam on sleep, body temperature, blood pressure and heart rate measured by radiotelemetry in Wistar rats. Psychopharmacology 2001, 156, 417–426. [Google Scholar] [CrossRef]
- Hughes, D.A. Acute chloroquine poisoning: A comprehensive experimental toxicology assessment of the role of diazepam. Br. J. Pharmacol. 2020, 177, 4975–4989. [Google Scholar] [CrossRef]
- Castilhos, Z.; Rodrigues-Filho, S.; Cesar, R.; Rodrigues, A.P.; Villas-Bôas, R.; de Jesus, I.; Lima, M.; Faial, K.; Miranda, A.; Brabo, E.; et al. Human exposure and risk assessment associated with mercury contamination in artisanal gold mining areas in the Brazilian Amazon. Environ. Sci. Pollut. Res. Int. 2015, 22, 11255–11264. [Google Scholar] [CrossRef]
- Bignami, G.; Dell’Omo, G.; Alleva, E. Species specificity of organ toxicity: Behavioural differences. In Toxicology in Transition. Archives of Toxicology; Degen, G.H., Seiler, J.P., Bentley, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 17. [Google Scholar] [CrossRef]
- Freeman, J.A. The integument of Artemia during early development. In Biochemistry and Cell Biology of Artemia, 1st ed.; CRC Press: Boca Raton, FL, USA, 1989; pp. 233–256. ISBN 9781351070157. [Google Scholar]
- Vanhaecke, P.; Siddall, S.E.; Sorgeloos, P. International study on Artemia. XXXII. Combined effects of temperature and salinity on the survival of Artemia of various geographical origins. J. Exp. Mar. Biol. Ecol. 1984, 80, 259–275. [Google Scholar] [CrossRef]
- Avallone, B.; Crispino, R.; Cerciello, R.; Simoniello, P.; Panzuto, R.; Motta, C.M. Cadmium effects on the retina of adult Danio rerio. Comptes Rendus Biol. 2015, 338, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Simoniello, P.; Trinchella, F.; Filosa, S.; Scudiero, R.; Magnani, D.; Theil, T.; Motta, C.M. Cadmium-contaminated soil affects retinogenesis in lizard embryos. J. Exp. Zool. Part A Ecol. Genet. Physiol. 2014, 321, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Ventura, T.; Stewart, M.J.; Chandler, J.C.; Rotgans, B.; Elizur, A.; Hewitt, A.W. Molecular aspects of eye development and regeneration in the Australian red claw crayfish, Cherax quadricarinatus. Aquac. Fish. 2019, 4, 27–36. [Google Scholar] [CrossRef]
- Kiernan, D.A.; Hertzler, P.L. Muscle development in dendrobranchiate shrimp, with comparison with Artemia. Evol. Dev. 2006, 8, 537–549. [Google Scholar] [CrossRef]
- Sattelle, D.B.; Lummis, S.C.; Wong, J.F.; Rauh, J.J. Pharmacology of insect GABA receptors. Neurochem. Res. 1991, 16, 363–374. [Google Scholar] [CrossRef]
- Smart, T.G.; Constanti, A. Studies on the mechanism of action of picrotoxinin and other convulsants at the crustacean muscle GABA receptor. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1986, 227, 191–216. [Google Scholar] [CrossRef]
- Northcutt, A.J.; Lett, K.M.; Garcia, V.B.; Diester, C.M.; Lane, B.J.; Marder, E.; Schulz, D.J. Deep sequencing of transcriptomes from the nervous systems of two decapod crustaceans to characterize genes important for neural circuit function and modulation. BMC Genom. 2016, 17, 868. [Google Scholar] [CrossRef]
- Wadhwa, N.; Andersen, A.; Kiørboe, T. Hydrodynamics and energetics of jumping copepod nauplii and copepodits. J. Exp. Biol. 2014, 217, 3085–3094. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fogliano, C.; Carotenuto, R.; Agnisola, C.; Motta, C.M.; Avallone, B. Impact of Benzodiazepine Delorazepam on Growth and Behaviour of Artemia salina Nauplii. Biology 2024, 13, 808. https://doi.org/10.3390/biology13100808
Fogliano C, Carotenuto R, Agnisola C, Motta CM, Avallone B. Impact of Benzodiazepine Delorazepam on Growth and Behaviour of Artemia salina Nauplii. Biology. 2024; 13(10):808. https://doi.org/10.3390/biology13100808
Chicago/Turabian StyleFogliano, Chiara, Rosa Carotenuto, Claudio Agnisola, Chiara Maria Motta, and Bice Avallone. 2024. "Impact of Benzodiazepine Delorazepam on Growth and Behaviour of Artemia salina Nauplii" Biology 13, no. 10: 808. https://doi.org/10.3390/biology13100808
APA StyleFogliano, C., Carotenuto, R., Agnisola, C., Motta, C. M., & Avallone, B. (2024). Impact of Benzodiazepine Delorazepam on Growth and Behaviour of Artemia salina Nauplii. Biology, 13(10), 808. https://doi.org/10.3390/biology13100808