Aging in Normotensive and Spontaneously Hypertensive Rats: Focus on Erythrocyte Properties
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Experimental Animals
2.3. Biochemical Analysis of Blood Plasma
2.4. Erythrocyte Parameters
2.5. Statistical Analyses
3. Results
3.1. Basic Biometric and Cardiovascular Characteristics of Experimental Animals
3.2. Biochemical Analysis of Blood Plasma
3.3. Erythrocyte Characteristics
3.3.1. RBC Deformability—Effect of Age
3.3.2. RBC Deformability—Effect of Hypertension
3.3.3. The Size of RBCs
3.3.4. NO Production by RBCs—Effect of Age
3.3.5. NO Production by RBCs—Effect of Hypertension
3.3.6. Relations between RBC Parameters in Normotensive and Hypertensive Rats
3.3.7. Correlations of RBC Parameters and Biochemical Parameters in Blood Plasma
4. Discussion
4.1. SHRs—The Model of Genetic Hypertension, Their Normotensive Controls, and Aging
4.2. RBC Deformability and NO Production by RBCs—Focus on Age-Related Changes
4.3. RBC Deformability and NO Production by RBCs—Focus on Strain Differences (Normotension versus Hypertension)
4.4. The Size of RBCs—Strain and Age-Related Changes
4.5. Relations between Blood Pressure Value and Erythrocyte Parameters
4.6. What Can Be Responsible for Differences in RBC Deformability in Normotension and Hypertension?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, S.; Ku, Y.; Park, M.-S.; Suh, J.-S. Deformability of red blood cells: A determinant of blood viscosity. J. Mech. Sci. Technol. 2005, 19, 216–223. [Google Scholar] [CrossRef]
- Radosinska, J.; Vrbjar, N. The Role of Red Blood Cell Deformability and Na,K-ATPase Function in Selected Risk Factors of Cardiovascular Diseases in Humans: Focus on Hypertension, Diabetes Mellitus and Hypercholesterolemia. Physiol. Res. 2016, 65 (Suppl. 1), S43–S54. [Google Scholar] [CrossRef] [PubMed]
- Radosinska, J.; Vrbjar, N. Erythrocyte Deformability and Na,K-ATPase Activity in Various Pathophysiological Situations and Their Protection by Selected Nutritional Antioxidants in Humans. Int. J. Mol. Sci. 2021, 22, 11924. [Google Scholar] [CrossRef]
- Cicco, G.; Vicenti, P.; Stingi, G.D.; Tarallo, M.S.; Pirrelli, A. Hemorheology in complicated hypertension. Clin. Hemorheol. Microcirc. 1999, 21, 315–319. [Google Scholar] [PubMed]
- Cicco, G.; Pirrelli, A. Red blood cell (RBC) deformability, RBC aggregability and tissue oxygenation in hypertension. Clin. Hemorheol. Microcirc. 1999, 21, 169–177. [Google Scholar] [PubMed]
- Amaiden, M.R.; Monesterolo, N.E.; Santander, V.S.; Campetelli, A.N.; Arce, C.A.; Pie, J.; Hope, S.I.; Vatta, M.S.; Casale, C.H. Involvement of membrane tubulin in erythrocyte deformability and blood pressure. J. Hypertens. 2012, 30, 1414–1422. [Google Scholar] [CrossRef]
- Plotnikov, M.B.; Aliev, O.I.; Nosarev, A.V.; Shamanaev, A.Y.; Sidekhmenova, A.V.; Anfinogenova, Y.; Anishchenko, A.M.; Pushkina, E.V. Relationship between arterial blood pressure and blood viscosity in spontaneously hypertensive rats treated with pentoxifylline. Biorheology 2016, 53, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Shabanov, V.A.; Terekhina, E.V.; Kostrov, V.A. Changes in blood rheological properties in patients with hypertension. Ter. Arkhiv 2001, 73, 70–73. [Google Scholar]
- Fu, G.-X.; Ji, M.; Han, L.-Z.; Xu, C.-C.; Pan, F.-F.; Hu, T.-J.; Zhong, Y. Erythrocyte rheological properties but not whole blood and plasma viscosity are associated with severity of hypertension in older people. Z. Gerontol. Geriatr. 2017, 50, 233–238. [Google Scholar] [CrossRef]
- Michalska-Małecka, K.; Słowińska-Łożyńska, L. Aggregation and deformability of erythrocytes in primary open-angle glaucoma (POAG); the assessment of arterial hypertension. Clin. Hemorheol. Microcirc. 2012, 51, 277–285. [Google Scholar] [CrossRef]
- Bor-Kucukatay, M.; Wenby, R.B.; Meiselman, H.J.; Baskurt, O.K. Effects of nitric oxide on red blood cell deformability. Am. J. Physiol. Circ. Physiol. 2003, 284, H1577–H1584. [Google Scholar] [CrossRef] [Green Version]
- Cortese-Krott, M.M.; Kelm, M. Endothelial nitric oxide synthase in red blood cells: Key to a new erythrocrine function? Redox Biol. 2014, 2, 251–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nava, E.; Farré, A.L.; Moreno, C.; Casado, S.; Moreau, P.; Cosentino, F.; Lüscher, T.F. Alterations to the nitric oxide pathway in the spontaneously hypertensive rat. J. Hypertens. 1998, 16, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Tegeder, I. Nitric oxide mediated redox regulation of protein homeostasis. Cell. Signal. 2019, 53, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Buford, T.W. Hypertension and aging. Ageing Res. Rev. 2016, 26, 96–111. [Google Scholar] [CrossRef] [Green Version]
- Dickhout, J.G.; Lee, R.M.K.W. Blood pressure and heart rate development in young spontaneously hypertensive rats. Am. J. Physiol. Circ. Physiol. 1998, 274, H794–H800. [Google Scholar] [CrossRef]
- Dornas, W.C.; Silva, M.E. Animal models for the study of arterial hypertension. J. Biosci. 2011, 36, 731–737. [Google Scholar] [CrossRef]
- Sagvolden, T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci. Biobehav. Rev. 2000, 24, 31–39. [Google Scholar] [CrossRef]
- Kluknavsky, M.; Balis, P.; Puzserova, A.; Radosinska, J.; Berenyiova, A.; Drobna, M.; Lukac, S.; Muchova, J.; Bernatova, I. (−)-Epicatechin Prevents Blood Pressure Increase and Reduces Locomotor Hyperactivity in Young Spontaneously Hypertensive Rats. Oxid. Med. Cell. Longev. 2016, 2016, 6949020. [Google Scholar] [CrossRef] [Green Version]
- Kollarova, M.; Puzserova, A.; Balis, P.; Radosinska, D.; Tothova, L.; Bartekova, M.; Barancik, M.; Radosinska, J. Age- and Phenotype-Dependent Changes in Circulating MMP-2 and MMP-9 Activities in Normotensive and Hypertensive Rats. Int. J. Mol. Sci. 2020, 21, 7286. [Google Scholar] [CrossRef]
- Berenyiova, A.; Balis, P.; Kluknavsky, M.; Bernatova, I.; Cacanyiova, S.; Puzserova, A. Age- and Hypertension-Related Changes in NOS/NO/sGC-Derived Vasoactive Control of Rat Thoracic Aortae. Oxid. Med. Cell. Longev. 2022, 2022, 7742509. [Google Scholar] [CrossRef]
- Jasenovec, T.; Radosinska, D.; Kollarova, M.; Vrbjar, N.; Balis, P.; Trubacova, S.; Paulis, L.; Tothova, L.; Shawkatova, I.; Radosinska, J. Monocrotaline-Induced Pulmonary Arterial Hypertension and Bosentan Treatment in Rats: Focus on Plasma and Erythrocyte Parameters. Pharmaceuticals 2022, 15, 1227. [Google Scholar] [CrossRef]
- Jasenovec, T.; Radosinska, D.; Kollarova, M.; Balis, P.; Zorad, S.; Vrbjar, N.; Bernatova, I.; Cacanyiova, S.; Tothova, L.; Radosinska, J. Effects of Taxifolin in Spontaneously Hypertensive Rats with a Focus on Erythrocyte Quality. Life 2022, 12, 2045. [Google Scholar] [CrossRef]
- Radosinska, J.; Jasenovec, T.; Puzserova, A.; Krajcir, J.; Lacekova, J.; Kucerova, K.; Kalnovicova, T.; Tothova, L.; Kovacicova, I.; Vrbjar, N. Promotion of whole blood rheology after vitamin C supplementation: Focus on red blood cells. Can. J. Physiol. Pharmacol. 2019, 97, 837–843. [Google Scholar] [CrossRef]
- Park, S.; Shin, J.; Hong, Y.; Kim, S.; Lee, S.; Park, K.; Lkhagvasuren, T.; Lee, S.-R.; Chang, K.-T.; Hong, Y. Forced Exercise Enhances Functional Recovery after Focal Cerebral Ischemia in Spontaneously Hypertensive Rats. Brain Sci. 2012, 2, 483–503. [Google Scholar] [CrossRef] [PubMed]
- Labat, C.; Cunha, R.S.A.; Challande, P.; Safar, M.E.; Lacolley, P. Respective contribution of age, mean arterial pressure, and body weight on central arterial distensibility in SHR. Am. J. Physiol. Circ. Physiol. 2006, 290, H1534–H1539. [Google Scholar] [CrossRef] [PubMed]
- Niewiadomska, G.; Łukaszewska, I. Increase in body weight of spontaneously hypertensive rats (SHR) under prolonged behavioral stimulation. Physiol. Behav. 1987, 40, 681–684. [Google Scholar] [CrossRef]
- Bruschi, G.; Minari, M.; Bruschi, M.E.; Tacinelli, L.; Milani, B.; Cavatorta, A.; Borghetti, A. Similarities of essential and spontaneous hypertension. Volume and number of blood cells. Hypertension 1986, 8, 983–989. [Google Scholar] [CrossRef] [Green Version]
- Boylan, J.W.; Van Liew, J.B.; Feig, P.U. Inverse changes in erythroid cell volume and number regulate the hematocrit in newborn genetically hypertensive rats. Proc. Natl. Acad. Sci. USA 1991, 88, 9848–9852. [Google Scholar] [CrossRef] [PubMed]
- Naessens, D.M.P.; de Vos, J.; Richard, E.; Wilhelmus, M.M.M.; Jongenelen, C.A.M.; Scholl, E.R.; van der Wel, N.N.; Heijst, J.A.; Teunissen, C.E.; Strijkers, G.J.; et al. Effect of long-term antihypertensive treatment on cerebrovascular structure and function in hypertensive rats. Sci. Rep. 2023, 13, 3481. [Google Scholar] [CrossRef] [PubMed]
- Melissari, M.; Balbi, T.; Gennari, M.; Olivetti, G. The aging of the heart: Weight and structural changes in the left ventricle with age. G. Ital. Cardiol. 1991, 21, 119–130. [Google Scholar]
- Chabanel, A.; Schachter, D.; Chien, S. Increased rigidity of red blood cell membrane in young spontaneously hypertensive rats. Hypertension 1987, 10, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Novozhilov, A.V.; Katiukhin, L.N.; Feĭzullaev, B.A. Dynamics of hematologic parameters and of the erythrocyte deformability index at the juvenal period of rats and guinea pigs. Zh. Evol. Biokhim. Fiziol. 2012, 48, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Jasenovec, T.; Radosinska, D.; Kollarova, M.; Balis, P.; Ferenczyova, K.; Kalocayova, B.; Bartekova, M.; Tothova, L.; Radosinska, J. Beneficial Effect of Quercetin on Erythrocyte Properties in Type 2 Diabetic Rats. Molecules 2021, 26, 4868. [Google Scholar] [CrossRef]
- Ward, K.A.; Baker, C.; Roebuck, L.; Wickline, K.; Schwartz, R.W. Red blood cell deformability: Effect of age and smoking. Age 1991, 14, 73–77. [Google Scholar] [CrossRef]
- Goi, G.; Cazzola, R.; Tringali, C.; Massaccesi, L.; Volpe, S.R.; Rondanelli, M.; Ferrari, E.; Herrera, C.B.; Cestaro, B.; Lombardo, A.; et al. Erythrocyte membrane alterations during ageing affect β-d-glucuronidase and neutral sialidase in elderly healthy subjects. Exp. Gerontol. 2005, 40, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Grau, M.; Pauly, S.; Ali, J.; Walpurgis, K.; Thevis, M.; Bloch, W.; Suhr, F. RBC-NOS-Dependent S-Nitrosylation of Cytoskeletal Proteins Improves RBC Deformability. PLoS ONE 2013, 8, e56759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, J.; Ohtake, K.; Murata, I.; Sonoda, K. Nitric oxide bioavailability for red blood cell deformability in the microcirculation: A review of recent progress. Nitric Oxide 2022, 129, 25–29. [Google Scholar] [CrossRef]
- Loftus, T.J.; Kannan, K.B.; Carter, C.S.; Plazas, J.M.; Mira, J.C.; Brakenridge, S.C.M.; Leeuwenburgh, C.; Efron, P.A.; Mohr, A.M. Persistent injury-associated anemia and aging: Novel insights. J. Trauma Inj. Infect. Crit. Care 2018, 84, 490–496. [Google Scholar] [CrossRef]
- Giuliani, A.; Graldi, G.; Veronesi, M.; Previato, A.; Simoni, M.; Bergamini, C.; Berti, G. Binding of anti-spectrin antibodies to red blood cells and vesiculation in various in vivo and in vitro ageing conditions in the rat. Exp. Gerontol. 2000, 35, 1045–1059. [Google Scholar] [CrossRef]
- Somogyi, V.; Peto, K.; Deak, A.; Tanczos, B.; Nemeth, N. Effects of aging and gender on micro-rheology of blood in 3 to 18 months old male and female Wistar (Crl:WI) rats. Biorheology 2018, 54, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Choi, H.; Park, J.W.; Son, B.R.; Park, J.H.; Jang, L.C.; Gil Lee, J. Age-related changes in mean corpuscular volumes in patients without anaemia: An analysis of large-volume data from a single institute. J. Cell. Mol. Med. 2022, 26, 3548–3556. [Google Scholar] [CrossRef]
- Goldberg, I.; Cohen, E.; Gafter-Gvili, A.; Shochat, T.; Kugler, E.; Margalit, I.; Goldberg, E.; Raanani, P.; Krause, I. A Longitudinal Assessment of the Natural Change in Haemoglobin, Haematocrit, and Mean Corpuscular Volume with Age. Acta Haematol. 2023, 146, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Khecuriani, R.; Lomsadze, G.; Arabuli, M.; Sanikidze, T. Deformability of red blood cells and human aging. Georgian Med. News 2010, 182, 42–46. [Google Scholar]
- Vayá, A.; Alis, R.; Romagnoli, M.; Pérez, R.; Bautista, D.; Alonso, R.; Laiz, B. Rheological blood behavior is not only influenced by cardiovascular risk factors but also by aging itself. Research into 927 healthy Spanish Mediterranean subjects. Clin. Hemorheol. Microcirc. 2013, 54, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Postnov, Y.V.; Kravtsov, G.M.; Orlov, S.N.; Pokudin, N.I.; Postnov, I.Y.; Kotelevtsev, Y.V. Effect of protein kinase C activation on cytoskeleton and cation transport in human erythrocytes. Reproduction of some membrane abnormalities revealed in essential hypertension. Hypertension 1988, 12, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Sharp, D.S.; Curb, J.D.; Schatz, I.J.; Meiselman, H.J.; Fisher, T.C.; Burchfiel, C.M.; Rodriguez, B.L.; Yano, K. Mean Red Cell Volume as a Correlate of Blood Pressure. Circulation 1996, 93, 1677–1684. [Google Scholar] [CrossRef]
- Brugnara, C. Erythrocyte membrane transport physiology. Curr. Opin. Hematol. 1997, 4, 122–127. [Google Scholar] [CrossRef]
- Föller, M.; Lang, F. Ion Transport in Eryptosis, the Suicidal Death of Erythrocytes. Front. Cell Dev. Biol. 2020, 8, 597. [Google Scholar] [CrossRef]
- Adragna, N.; Canessa, M.; Bize, I.; Solomon, H.; Tosteson, D.C. Ki+-Na+o Countertransport in Erythrocytes of Patients with Essential Hypertension. Clin. Sci. 1981, 61, 11s–12s. [Google Scholar] [CrossRef] [PubMed]
- Bizjak, D.A.; Brinkmann, C.; Bloch, W.; Grau, M. Increase in Red Blood Cell-Nitric Oxide Synthase Dependent Nitric Oxide Production during Red Blood Cell Aging in Health and Disease: A Study on Age Dependent Changes of Rheologic and Enzymatic Properties in Red Blood Cells. PLoS ONE 2015, 10, e0125206. [Google Scholar] [CrossRef] [Green Version]
- Letcher, R.L.; Chien, S.; Pickering, T.G.; Sealey, J.E.; Laragh, J.H. Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects: Role of fibrinogen and concentration. Am. J. Med. 1981, 70, 1195–1202. [Google Scholar] [CrossRef]
- Shamanaev, A.Y.; Aliev, O.I.; Anishchenko, A.M.; Sidehmenova, A.V.; Plotnikov, M.B. Hemorheological effects of amlodipine in spontaneously hypertensive rats. Indian J. Pharmacol. 2017, 49, 312–316. [Google Scholar] [CrossRef]
- Kumar, N.; Maurya, P.K.; Kant, R.; Rizvi, S.I. (−)-Epicatechin in vitro ameliorates erythrocyte protein carbonyl content in hypertensive patients: Comparison with L-ascorbic acid. Arch. Physiol. Biochem. 2016, 122, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Broncel, M.; Bała, A.; Koter-Michalak, M.; Duchnowicz, P.; Wojsznis, W.; Chojnowska-Jezierska, J. Physicochemical modifications induced by statins therapy on human erythrocytes membranes. Wiadomości Lek. 2007, 60, 321–328. [Google Scholar]
- Hanson, M.G.; Zahradka, P.; Taylor, C.G. Lentil-based diets attenuate hypertension and large-artery remodelling in spontaneously hypertensive rats. Br. J. Nutr. 2014, 111, 690–698. [Google Scholar] [CrossRef] [Green Version]
- Kitts, D.D.; Yuan, Y.V.; Godin, D.V. Plasma and Lipoprotein Lipid Composition and Hepatic Antioxidant Status in Spontaneously Hypertensive (SHR) and Normotensive (WKY) Rats. Can. J. Physiol. Pharmacol. 1998, 76, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Júnior, S.A.O.; Okoshi, K.; Lima-Leopoldo, A.P.; Leopoldo, A.S.; Campos, D.H.; Martinez, P.F.; Okoshi, M.P.; Padovani, C.R.; Pai-Silva, M.D.; Cicogna, A.C. Nutritional and Cardiovascular Profiles of Normotensive and Hypertensive Rats Kept on a High Fat Diet. Arq. Bras. Cardiol. 2009, 93, 526–533. [Google Scholar] [CrossRef]
- Nikelshparg, E.I.; Baizhumanov, A.A.; Bochkova, Z.V.; Novikov, S.M.; Yakubovsky, D.I.; Arsenin, A.V.; Volkov, V.S.; Goodilin, E.A.; Semenova, A.A.; Sosnovtseva, O.; et al. Detection of Hypertension-Induced Changes in Erythrocytes by SERS Nanosensors. Biosensors 2022, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vieyra, V.; Rodríguez-Varela, M.; García-Rubio, D.; De La Mora-Mojica, B.; Méndez-Méndez, J.; Durán-Álvarez, C.; Cerecedo, D. Alterations to plasma membrane lipid contents affect the biophysical properties of erythrocytes from individuals with hypertension. Biochim. Biophys. Acta BBA Biomembr. 2019, 1861, 182996. [Google Scholar] [CrossRef]
- Montenay-Garestier, T.; Aragon, I.; Devynck, M.-A.; Meyer, P.; Helene, C. Evidence for structural changes in erythrocyte membranes of spontaneously hypertensive rats. A fluorescence polarization study. Biochem. Biophys. Res. Commun. 1981, 100, 660–665. [Google Scholar] [CrossRef] [PubMed]
WKY-7 n = 5–12 | SHR-7 n = 5–7 | WKY-20 n = 6–10 | SHR-20 n = 5–7 | WKY-52 n = 5–7 | SHR-52 n = 5–10 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NT-proBNP (pg/mL) | 113 | ± | 5.7 | 467 | ± | 160 xx | 148 | ± | 44 | 230 | ± | 163 | 171 | ± | 70 | 294 | ± | 187 |
Total cholesterol (mmol/L) | 2.6 | ± | 0.42 | 2.9 | ± | 0.34 | 2.8 | ± | 0.53 | 1.4 | ± | 0.11 *,x | 4.0 | ± | 0.34 *,+ | 1.7 | ± | 0.43 *,x |
Triglycerides (mmol/L) | 1.3 | ± | 0.33 | 1.9 | ± | 0.28 x | 1.4 | ± | 0.21 | 1.3 | ± | 0.32 * | 1.3 | ± | 0.23 | 0.93 | ± | 0.55 * |
Uric acid (µmol/L) | 40 | ± | 11 | 53 | ± | 18 | 45 | ± | 16 | 35 | ± | 9.4 * | 29 | ± | 13 + | 30 | ± | 9.2 * |
Bilirubin (µmol/L) | 1.4 | ± | 0.68 | 0.82 | ± | 0.18 | 2.2 | ± | 0.55 *** | 1.2 | ± | 0.29 xx | 2.1 | ± | 0.084 * | 1.5 | ± | 0.51 |
GSH/GSSG | 11 | ± | 0.85 | 17 | ± | 3.9 xx | 17 | ± | 1.5 ** | 13 | ± | 1.3 | 15 | ± | 3.9 | 17 | ± | 3.8 |
TBARS (µmol/L) | 120 | ± | 22 | 127 | ± | 16 | 95 | ± | 8.4 | 71 | ± | 7.5 *** | 132 | ± | 7.8 ++ | 58 | ± | 13 ***,xxx |
FRUC (mmol/g) | 17 | ± | 4.5 | 21 | ± | 3.5 | 16 | ± | 3.7 | 18 | ± | 6.1 | 11 | ± | 2.3 | 15 | ± | 5.0 |
AGEs (mg/g) | 19 | ± | 4.2 | 19 | ± | 5.1 | 12 | ± | 1.9 ** | 9.7 | ± | 1.1 *** | 12 | ± | 2.1 *** | 15 | ± | 1.8 + |
FRAP (mmol/L) | 1.2 | ± | 0.15 | 1.3 | ± | 0.23 | 1.0 | ± | 0.14 | 1.1 | ± | 0.12 | 1.1 | ± | 0.17 | 1.1 | ± | 0.10 |
AOPP (µmol/g) | 2.3 | ± | 0.87 | 3.5 | ± | 1.00 | 2.9 | ± | 0.89 | 2.6 | ± | 0.83 | 2.01 | ± | 0.64 | 2.1 | ± | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radosinska, J.; Kollarova, M.; Jasenovec, T.; Radosinska, D.; Vrbjar, N.; Balis, P.; Puzserova, A. Aging in Normotensive and Spontaneously Hypertensive Rats: Focus on Erythrocyte Properties. Biology 2023, 12, 1030. https://doi.org/10.3390/biology12071030
Radosinska J, Kollarova M, Jasenovec T, Radosinska D, Vrbjar N, Balis P, Puzserova A. Aging in Normotensive and Spontaneously Hypertensive Rats: Focus on Erythrocyte Properties. Biology. 2023; 12(7):1030. https://doi.org/10.3390/biology12071030
Chicago/Turabian StyleRadosinska, Jana, Marta Kollarova, Tomas Jasenovec, Dominika Radosinska, Norbert Vrbjar, Peter Balis, and Angelika Puzserova. 2023. "Aging in Normotensive and Spontaneously Hypertensive Rats: Focus on Erythrocyte Properties" Biology 12, no. 7: 1030. https://doi.org/10.3390/biology12071030
APA StyleRadosinska, J., Kollarova, M., Jasenovec, T., Radosinska, D., Vrbjar, N., Balis, P., & Puzserova, A. (2023). Aging in Normotensive and Spontaneously Hypertensive Rats: Focus on Erythrocyte Properties. Biology, 12(7), 1030. https://doi.org/10.3390/biology12071030