Germplasm Resources of Oaks (Quercus L.) in China: Utilization and Prospects
Abstract
:Simple Summary
Abstract
1. Introduction
2. Germplasm Resources and Distribution of Oaks
2.1. Germplasm Resources of Oaks
2.1.1. Indigenous Oak Species in China
2.1.2. Imported Oak Tree Species
No. | Species Name | No. | Species Name |
---|---|---|---|
1 | Quercus acrodonta Seemen | 49 | Quercus yiwuensis Huang |
2 | Quercus acutissima Carruth. | 50 | Quercus yunnanensis Franch. (Formal name: Quercus dentata subsp. yunnanensis (Franch.) Menitsky) |
3 | Quercus aliena Blume | 51 | Quercus acutissima var. septentrionalis Liou (Formal name: Quercus acutissima subsp. acutissima) |
4 | Quercus aquifolioides Rehder. et E.H.Wilson. | 52 | Quercus acutissima var. depressinucata H.W.Jen et R.Q.Gao (Formal name: Quercus acutissima subsp. acutissima) |
5 | Quercus baronii Skan | 53 | Quercus aliena var. pekingensis Schottky |
6 | Quercus bawanglingensis Huang, Li et Xing | 54 | Quercus aliena var. pekingensis f. jeholensis (Liou et Li) H.Wei Jen et L.M.Wang (Formal name: Quercus aliena var. pekingensis Schottky) |
7 | Quercus chenii Nakai | 55 | Quercus aliena var. acutiserrata Maxim. |
8 | Quercus cocciferoides Hand.-Mazz. | 56 | Quercus baronii var. capillata (Kozlova) Liou |
9 | Quercus dentata Thunb. | 57 | Quercus cocciferoides var. taliensis (A.Camus) Y.C.Hsu et H.Wei Jen |
10 | Quercus dolicholepis A. Camus | 58 | Quercus mongolica var. crispula (Blume) H.Ohashi |
Quercus dolicholepis var. elliptica Y. C. Hsu et H. W. Jen (Formal name: Quercus dolicholepis A. Camus) | 59 | Quercus mongolica var. mongolica | |
11 | Quercus edithiae Skan | 59 | Quercus serrata Murray |
12 | Quercus engleriana Seem. | Quercus glandulifera var. stellatopilosa W.H.Zhang (Formal name: Quercus serrata Murray) | |
13 | Quercus fabri Hance | Quercus serrata var. brevipetiolata (A.DC.) Nakai (Formal name: Quercus serrata Murray) | |
14 | Quercus × fangshanensis Liou | Quercus serrata var. tomentosa (B.C.Ding et T.B.Chao) Y.C.Hsu et H.Wei Jen (Formal name: Quercus serrata Murray) | |
15 | Quercus × fenchengensis H. W. Jen et L. M. Wang | 60 | Quercus senescens var. muliensis (Hu) Y.C.Hsu et H.Wei Jen |
16 | Quercus franchetii Skan | 61 | Quercus palustris Münchh. [33] |
17 | Quercus fimbriata Y.C.Hsu et H.Wei Jen | 62 | Quercus robur L. [34] |
18 | Quercus gilliana Rehder. et E.H.Wilson. | 63 | Quercus suber L. [30] |
19 | Quercus griffithii Hook. f. et Thomson ex Miq. | 64 | Quercus texana Buckley [33] |
20 | Quercus guyavifolia H. Lév. | 65 | Quercus shumardii Buckley [37] |
21 | Quercus × hopeiensis Liou | 66 | Quercus nigra L. [36,38] |
22 | Quercus kingiana Craib | 67 | Quercus phellos L. [33,34] |
23 | Quercus kongshanensis Y.C.Hsu et H.W.Jen | 68 | Quercus virginiana Mill. [33,37] |
24 | Quercus lanceolata M.Martens et Galeotti ex A.DC. | 69 | Quercus coccinea Münchh. [34] |
25 | Quercus lodicosa O.E.Warb. et E.F.Warb. | 70 | Quercus rubra L. [34] |
26 | Quercus longispica (Hand.-Mazz.) A.Camus | 71 | Quercus falcata Michx. [33] |
27 | Quercus malacotricha A.Camus | 72 | Quercus petraea subsp. Petraea [33] |
28 | Quercus marlipoensis Hu et W.C.Cheng | 73 | Quercus velutina Lam. [34,38] |
29 | Quercus mongolica Fisch. ex Ledeb. | 74 | Quercus stellata Wangenh. [38] |
30 | Quercus × mongolicodentata Nakai | 75 | Quercus macrocarpa Michx. [38] |
31 | Quercus monimotricha Hand.-Mazz. | 76 | Quercus alba L. [38] |
32 | Quercus monnula Y.C.Hsu et H.Wei Jen | 77 | Quercus laurifolia Michx. [36] |
33 | Quercus oxyphylla (E.H.Wilson) Hand.-Mazz. | 78 | Quercus × schuettei Trel. [39] |
34 | Quercus pannosa Hand.-Mazz. | 79 | Quercus michauxii Nutt. [39] |
35 | Quercus phillyraeoides A. Gray | 80 | Quercus lyrata Walter [39] |
36 | Quercus pseudosemecarpifolia A. Camus | 81 | Quercus ithaburensis subsp. macrolepis (Kotschy) Hedge et Yalt. [26] |
37 | Quercus rehderiana Hand.-Mazz. | 82 | Quercus bicolor Willd. [40] |
38 | Quercus semecarpifolia Sm. | 83 | Quercus cerris L. [40] |
39 | Quercus senescens Hand.-Mazz. | 84 | Quercus ellipsoidalis E.J.Hill. [40] |
40 | Quercus setulosa Hickel et A.Camus | 85 | Quercus gambellii [40] |
41 | Quercus sichourensis (Y.C.Hsu) C.C.Huang et Y.T.Chang | 86 | Quercus glauca [40] |
42 | Quercus spinosa David | 87 | Quercus imbricaria [40] |
43 | Quercus tungmaiensis Y.T.Chang | 88 | Quercus libani [40] |
44 | Quercus dentata subsp. stewardii (Rehder) A.Camus | 89 | Quercus muehlenbergii [40] |
45 | Quercus tarokoensis Hayata | 90 | Quercus petaea [40] |
46 | Quercus utilis Hu et Cheng | 91 | Quercus prinus L. [40] |
47 | Quercus variabilis Blume | 92 | Quercus salicina Blume [40] |
Quercus variabilis var. pyramidalis T.B.Chao, Z.I.Chang et W.C.Li (Formal name: Quercus variabilis Blume) | 93 | Quercus velutina [40] | |
48 | Quercus wutaishanica Mayr | 94 | Quercus stellata var. margaretta [40] |
2.2. Distribution of Oak Trees
2.2.1. Historical Distribution of Oaks in China
2.2.2. Current Distribution of Oaks in China
2.3. Ecological Adaptability of Oak Trees
2.3.1. Morphological and Physiological Adaptability of Oaks
2.3.2. Climate Change Influences
2.4. Threats to Oak Trees
3. Utilization of Oak Trees
3.1. Oak Trees as Sources of Timber
3.2. Food and Feed Value of Oaks
3.3. Medicinal Value and Chemical Extracts of Oaks
3.4. Industrial Value of Oak Trees
3.5. Greening and Ornamental Value of Oaks
4. Strategies for the Utilization of Oaks
4.1. Collecting, Protecting, and Utilizing the Germplasm Resources of Oaks
4.2. Promoting the Comprehensive Utilization of Oaks
4.3. Studies on Species Introduction, Domestication, Breeding, and Propagation of Oak Trees
4.4. Promoting the Utilization of Oak Trees in Urban and Rural Landscaping
4.5. Developing Ecological Rearing of Tussah in Oak Forests
4.6. Improving the Utilization of the Pruning Material of Oak Trees
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manos, P.S.; Doyle, J.J.; Nixon, K.C. Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol. Phylogenet. Evol. 1999, 12, 333–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nixon, K.C. Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann. For. Sci. 1993, 50, 25s–34s. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; Liu, H.; Wu, S.; Yuan, Y.; Li, H.; Dong, J.; Liu, Z.; An, C.; Su, Z.; Li, B. Species Identification of Oaks (Quercus L., Fagaceae) from Gene to Genome. Int. J. Mol. Sci. 2019, 20, 5940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plomion, C.; Aury, J.M.; Amselem, J.; Alaeitabar, T.; Barbe, V.; Belser, C.; Bergès, H.; Bodénès, C.; Boudet, N.; Boury, C.; et al. Decoding the oak genome: Public release of sequence data, assembly, annotation and publication strategies. Mol. Ecol. Resour. 2016, 16, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Dimitrov, D.; Shrestha, N.; Rahbek, C.; Wang, Z.; Jordan, G. A consistent species richness–climate relationship for oaks across the Northern Hemisphere. Glob. Ecol. Biogeogr. 2019, 28, 1051–1066. [Google Scholar] [CrossRef]
- Ma, C.L.; Robert, K.M.; Chen, W.Y.; Zhou, Z.K. Plant diversity and priority conservation areas of northwestern Yunnan, China. Biodivers. Conserv. 2007, 16, 757–774. [Google Scholar]
- Chen, L.; Yuan, Z.; Shao, H.; Wang, D.; Mu, X. Effects of thinning intensities on soil infiltration and water storage capacity in a Chinese pine-oak mixed forest. Sci. World J. 2014, 2014, 268157. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.R.; Liu, W.; Wang, G.B.; Zhou, X.J.; Qin, L. Research Advances in Germplasm Resource and Utilization of Quercus L. Sci. Seric. 2019, 45, 577–585. [Google Scholar]
- Yang, Y.C.; Zhou, T.; Duan, D.; Yang, J.; Feng, L.; Zhao, G.F. Comparative analysis of the complete chloroplast genomes of five Quercus species. Front. Plant Sci. 2016, 7, 959. [Google Scholar] [CrossRef] [Green Version]
- Hipp, A.L.; Manos, P.S.; Gonzalez-Rodriguez, A.; Hahn, M.; Kaproth, M.; McVay, J.D.; Avalos, S.V.; Cavender-Bares, J. Sympatric parallel diversification of major oak clades in the americas and the origins of mexican species diversity. New Phytol. 2018, 217, 439–452. [Google Scholar] [CrossRef] [Green Version]
- Sancho-Knapik, D.; Escudero, A.; Mediavilla, S.; Scoffoni, C.; Zailaa, J.; Cavender-Bares, J.; Álvarez-Arenas, T.G.; Molins, A.; Alonso-Forn, D.; Ferrio, J.P.; et al. Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments. New Phytol. 2021, 230, 521–534. [Google Scholar] [CrossRef]
- Dolžeal, J.; Lehečková, E.; Sohar, K.; Altman, J. Oak decline induced by mistletoe, competition and climate change: A case study from central Europe. Preslia 2016, 88, 323–346. [Google Scholar]
- Guo, X.; Klisz, M.; Puchałka, R.; Silvestro, R.; Faubert, P.; Belien, E.; Huang, J.; Rossi, S. Common-garden experiment reveals clinal trends of bud phenology in black spruce populations from a latitudinal gradient in the boreal forest. J. Ecol. 2022, 110, 1043–1053. [Google Scholar] [CrossRef]
- Puchałka, R.; Koprowski, M.; Gričar, J.; Przybylak, R. Does tree-ring formation follow leaf phenology in Pedunculate oak (Quercus robur L.)? Eur. J. For. Res. 2017, 136, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Sohar, K.; Helama, S.; LääNelaid, A.; Raisio, J.; Tuomenvirta, H. Oak decline in a southern Finnish forest as affected by a drought sequence. Geochronometria 2014, 41, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Čehulić, I.; Sever, K.; Katičić Bogdan, I.; Jazbec, A.; Škvorc, Ž.; Bogdan, S. Drought impact on leaf phenology and spring frost susceptibility in a Quercus robur L. Provenance Trial. Forests 2019, 10, 50. [Google Scholar] [CrossRef] [Green Version]
- Puchałka, R.; Koprowski, M.; Przybylak, J.; Przybylak, R.; Dąbrowski, H.P. Did the late spring frost in 2007 and 2011 affect tree-ring width and earlywood vessel size in Pedunculate oak (Quercus robur) in northern Poland? Int. J. Biometeorol. 2016, 60, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Dirks, I.; Köhler, J.; Rachmilevitch, S.; Meier, I.C. The phosphorus economy of Mediterranean oak saplings under global change. Front. Plant Sci. 2019, 10, 405. [Google Scholar] [CrossRef] [Green Version]
- Ai, W.; Liu, Y.; Mei, M.; Zhang, X.; Tan, E.; Liu, H.; Han, X.; Zhan, H.; Lu, X. A chromosome-scale genome assembly of the Mongolian oak (Quercus mongolica). Mol. Ecol. Resour. 2022, 22, 2396–2410. [Google Scholar] [CrossRef]
- Rellstab, C.; Gugerli, F.; Eckert, A.J.; Hancock, A.M.; Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 2015, 24, 4348–4370. [Google Scholar] [CrossRef] [Green Version]
- Sork, V.L.; Squire, K.; Gugger, P.F.; Steele, S.E.; Levy, E.D.; Eckert, A.J. Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, Quercus lobata. Am. J. Bot. 2016, 103, 33–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyu, J.; Song, J.; Liu, Y.; Wang, Y.Y.; Li, J.Q.; Du, F.K. Species boundaries between three sympatric oak species: Quercus aliena, Q. dentata, and Q. variabilis at the northern edge of their distribution in China. Front. Plant Sci. 2018, 9, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.M.; Guoo, P.P.; Liu, S.L.; Zhao, X.P.; Fang, L. Review of advances in progress and utilization of mongolian oak. For. Eng. 2014, 30, 58–60. [Google Scholar]
- Xie, B.X.; Xie, T. Exploitation study of acorn resources in China. Jounarl Cent. South For. Univ. 2002, 22, 37–41. [Google Scholar]
- Iqbal, J.; Dutt, V.; Ahmad, H.; Bhat, G.M.; Ganie, M.A.; Wagay, S.A.; Mir, R.A.; Parray, P.A.; Ahmad, S. Status, Distribution and utilization of oak (Quercus spp.) in western Himalayan (Kashmir Valley). Indian For. 2017, 143, 1–5. [Google Scholar]
- Yu, J.B. Development actualities of and strategies for firewood forests of Quercus acutissima in nanqiao district of Chuzhou city. Anhui For. Sci. Technol. 2016, 42, 109–110. [Google Scholar]
- Liu, Y.Q.; Li, Y.P.; Li, X.S.; Qin, L. The origin and dispersal of the domesticated Chinese oak silkworm, Antheraea pernyi, in China: A reconstruction based on ancient texts. J. Insect Sci. 2010, 10, 180. [Google Scholar] [CrossRef]
- Wang, Q.; Zhong, L.; Wang, Y.; Zheng, S.; Bian, Y.; Du, J.; Yang, R.; Liu, W.; Qin, L. Tyrosine hydroxylase and dopa decarboxylase are associated with pupal melanization during larval-pupal transformation in Antheraea pernyi. Front. Physiol. 2022, 13, 832730. [Google Scholar] [CrossRef]
- State Forestry Administration of China. China Forest Resources Report; China Forestry Publishing House: Beijing, China, 2014.
- Teng, G.B.; Wang, Q.C.; Cao, Y.; Yang, H.; Feng, J. Research Progress of oak Introduction in China. Liaoning For. Sci. Technol. 2016, 5, 52–55. [Google Scholar]
- Su, H.L.; Yang, Y.C.; Ju, M.M.; Li, H.M.; Zhao, G.F. Characterization of the complete plastid genome of Quercus sichourensis. Conserv. Genet. Resour. 2019, 11, 129–131. [Google Scholar] [CrossRef]
- Li, Q.; Li, R.P.; Ambühl, D.; Liu, Y.Q.; Li, M.W.; Qin, L. Nutrient composition of chinese oak silkworm, Antheraea pernyi, a traditional edible insect in China: A review. J. Insects Food Feed 2020, 6, 355–369. [Google Scholar] [CrossRef]
- Liu, C.L.; Cao, J.W.; Wu, Y.; Peng, C.H.; Li, B.H. Introduction and seedling raising experiment of several foreign Quercus species. For. Sci. Technol. Dev. 2008, 22, 78–80. [Google Scholar]
- Huang, L.B.; Li, X.C.; Zhu, X.C.; Yan, J.F. Studies on Introduction of North American Oaks. J. For. Eng. 2005, 19, 30–34. [Google Scholar]
- Chen, Y.T.; Chen, Y.C.; Huang, Y.Q.; Sun, H.J.; Chen, D.F. Preliminary study on Quercus virginiana introduction in eastern China. For. Res. 2007, 20, 542–546. [Google Scholar]
- Shuang, D.L.; Sun, L.S.; Kong, F.G.; He, Y.; Du, T.N.; An, L.H.; Wang, F. Analysis of Taizishan area waterlogging resistance introduced colired leaf oak. Hubei For. Sci. Technol. 2017, 46, 20–22. [Google Scholar]
- Chen, Y.T.; Sun, H.J.; Wang, S.F.; Shi, X. Growth performances of five north american oak species. For. Res. 2013, 26, 344–351. [Google Scholar]
- Huang, L.B.; Li, X.C.; Wang, Q.M. Preliminary report on seeding trials for introduction of seven exotic Quercus spp. J. Jiangsu For. Sci. Technol. 2003, 30, 1–4. [Google Scholar]
- Yang, Z.Y.; Li, T.; Zheng, X.; Zhao, Q.Z.; Qiu, Y.B. Study on the introduction adaptability of seven oak species. Shandong For. Sci. Technol. 2015, 3, 57–85. [Google Scholar]
- Tang, Y.D.; Zheng, H.J. The studies on the introduction of the Quercus genus. Beijing Landsc. Archit. 2003, 19, 31–36. [Google Scholar]
- Yang, J.; Guo, Y.F.; Chen, X.D.; Zhang, X.; Ju, M.M.; Bai, G.Q.; Liu, Z.L.; Zhao, G.F. Framework phylogeny, evolution and complex diversification of Chinese oaks. Plants 2020, 9, 1024. [Google Scholar] [CrossRef]
- Xu, H.; Su, T.; Zhang, S.T.; Deng, M.; Zhou, Z.K. The first fossil record of ring-cupped oak (Quercus L. Subgenus Cyclobalanopsis (Oersted) Schneider) in Tibet and its paleoenvironmental implications. Palaeogeogr. Palaeocl. 2016, 442, 61–71. [Google Scholar] [CrossRef]
- Pu, C.X.; Zhou, Z.K.; Luo, Y. A cladistics analysis of Quercus (Fagaceae) in China based on leaf epidermis and architecture. Acta Bot. Yunnanica 2002, 24, 689–698. [Google Scholar]
- Xing, Y.W.; Hu, J.J.; Jacques, F.M.B.; Wang, L.; Su, T.; Huang, Y.J.; Liu, Y.S.; Zhou, Z.K. A new Quercus species from the upper miocene of southwestern China and its ecological significance. Rev. Palaeobot. Palynol. 2013, 193, 99–109. [Google Scholar] [CrossRef]
- Huang, H.; Hu, J.J.; Su, T.; Zhou, Z.K. The occurrence of Quercus heqingensis n.Sp. and its application to palaeo-CO2 estimates. Chin. Sci. Bull. 2016, 61, 1354–1364. [Google Scholar]
- Wang, Y.Q.; Wu, W.W.; Xin, Y.; Jin, G.Y.; Wang, H.Y. Research on the carbonized plant in Chahai site, Fuxin, Liaoning. North. Cult. Relics 2012, 4, 13–18. [Google Scholar]
- Wang, S.Z.; Wang, Z.L.; Xu, H. The ecological and climatic environments of lower Xiajiadian culture reflected from the first locality of Dashanqian in Chifeng city, Inner Mongolia. Huaxia Archaeol. 2004, 3, 44–51. [Google Scholar]
- Liu, M.S.; Hong, B.G. The anlaysis of distribution pattern of Fagaceae in China. J. Nanjing For. Univ. 1999, 23, 18–22. [Google Scholar]
- Zhang, J.X.; Wang, H.X.; Yang, H.F. Utility value and resource cultivation of oak trees. J. Hebei For. Sci. Technol. 2014, 3, 76–77. [Google Scholar]
- Li, Y.J.; Zhang, Y.Y.; Liao, P.C.; Wang, T.R.; Wang, X.Y.; Ueno, S.; Du, F.K. Genetic, geographic, and climatic factors jointly shape leaf morphology of an alpine oak, Quercus aquifolioides Rehder & E.H. Wilson. Ann. Forest Sci. 2021, 78, 64. [Google Scholar]
- Liu, Y.; Li, Y.; Song, J.; Zhang, R.; Yan, Y.; Wang, Y.; Du, F.K. Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: Quercus dentata Thunberg and Quercus aliena Blume (Fagaceae). Ann. Forest Sci. 2018, 75, 90. [Google Scholar] [CrossRef] [Green Version]
- Maya-García, R.; Torres-Miranda, A.; Cuevas-Reyes, P.; Oyama, K. Morphological differentiation among populations of Quercus elliptica Neé (Fagaceae) along an environmental gradient in Mexico and Central America. Bot. Sci. 2020, 98, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Cavender-Bares, J. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytol. 2018, 221, 669–692. [Google Scholar] [CrossRef] [Green Version]
- Suseela, V.; Tharayil, N.; Orr, G.; Hu, D. Chemical plasticity in the fine root construct of Quercus spp. Varies with root order and drought. New Phytol. 2020, 228, 1835–1851. [Google Scholar] [CrossRef]
- Yamamoto, S.; Sato, H.; Tanabe, A.S.; Hidaka, A.; Kadowaki, K.; Toju, H. Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercus species. PLoS ONE 2014, 9, e96363. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.F.; Wang, Q. Effects of co-inoculation with two ectomycorrhizal fungi on Quercus liaotungensis seedlings. Chin. J. Plan Ecol. 2004, 28, 17–23. [Google Scholar]
- Peter, R.B.; John, H.M.; Marla, S.M.; Edward, H. Effects of nitrogen fertilization on growth and ectomycorrhizal formation of Quercus alba, Q. rubra, Q. falcata, and Q. falcata var. pagodifolia. Can. J. Bot. 1983, 61, 2507–2514. [Google Scholar]
- Toju, H.; Yamamoto, S.; Sato, H.; Tanabe, A.S.; Gilbert, G.S.; Kadowaki, K. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “Codominance” of mycorrhizal and root-endophytic fungi. Ecol. Evol. 2013, 3, 1281–1293. [Google Scholar] [CrossRef]
- Xia, K.; Daws, M.I.; Peng, L.L. Climate drives patterns of seed traits in Quercus species across China. New Phytol. 2022, 234, 1628–1638. [Google Scholar] [CrossRef]
- Catry, F.X.; Francisco, M.; Pausas, J.G.; Fernandes, P.M.; Francisco, R.; Enrique, C.; Thomas, C. Cork oak vulnerability to fire: The role of bark harvesting, tree characteristics and abiotic factors. PLoS ONE 2012, 7, e39810. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Z.; Yang, X.L.; Xu, Y.S.; Feng, Z.Z. Response of key parameters of leaf photosynthetic models to increased ozone concentration in four common trees. Chin. J. Plan Ecol. 2022, 46, 321–329. [Google Scholar] [CrossRef]
- Mcleod, K.W.; Mccarron, J.K.; Conner, W.H. Photosynthesis and water relations of four oak species: Impact of flooding and salinity. Trees 1999, 13, 178–187. [Google Scholar] [CrossRef]
- Zhao, X.; Zheng, L.; Xia, X.; Yin, W.; Lei, J.; Shi, S.; Shi, X.; Li, H.; Li, Q.; Wei, Y.; et al. Responses and acclimation of Chinese cork oak (Quercus variabilis Bl.) to metal stress: The inducible antimony tolerance in oak trees. Environ. Sci. Pollut. Res. Int. 2015, 22, 11456–11466. [Google Scholar] [CrossRef] [PubMed]
- Du, F.K.; Wang, T.; Wang, Y.; Ueno, S.; de Lafontaine, G. Contrasted patterns of local adaptation to climate change across the range of an evergreen oak, Quercus aquifolioides. Evol. Appl. 2020, 13, 2377–2391. [Google Scholar] [CrossRef] [PubMed]
- Kremer, A. Microevolution of European temperate oaks in response to environmental changes. CR Biol. 2016, 339, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bielory, L.; Georgopoulos, P.G. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States. Int. J. Biometeorol. 2014, 58, 909–919. [Google Scholar] [CrossRef]
- Holland, V.; Koller, S.; Lukas, S.; Brüggemann, W. Drought- and frost-induced accumulation of soluble carbohydrates during accelerated senescence in Quercus pubescens. Trees 2016, 30, 215–226. [Google Scholar] [CrossRef]
- Mevy, J.P.; Loriod, B.; Liu, X.; Corre, E.; Torres, M.; Büttner, M.; Haguenauer, A.; Reiter, I.M.; Fernandez, C.; Gauquelin, T. Response of Downy Oak (Quercus pubescens Willd.) to Climate Change: Transcriptome assembly, differential gene analysis and targeted metabolomics. Plants 2020, 9, 1149. [Google Scholar] [CrossRef]
- De Wergifosse, L.; André, F.; Goosse, H.; Boczon, A.; Cecchini, S.; Ciceu, A.; Collalti, A.; Cools, N.; D’Andrea, E.; De Vos, B.; et al. Simulating tree growth response to climate change in structurally diverse oak and beech forests. Sci. Total Environ. 2022, 806, 150422. [Google Scholar] [CrossRef]
- Leite, C.; Oliveira, V.; Miranda, I.; Pereira, H. Cork oak and climate change: Disentangling drought effects on cork chemical composition. Sci. Rep. 2020, 10, 7800. [Google Scholar] [CrossRef]
- Dorado-Liñán, I.; Valbuena-Carabaña, M.; Cañellas, I.; Gil, L.; Gea-Izquierdo, G. Climate change synchronizes growth and iWUE across species in a temperate-submediterranean mixed oak forest. Front. Plant Sci. 2020, 11, 706. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.; Huang, D.; Wang, H.; Cao, Q.; Fan, P.; Yang, N.; Zheng, P.; Wang, R. The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Sci. Total Environ. 2020, 744, 140786. [Google Scholar] [CrossRef]
- Kasprzyk, W.; Baranowska, M.; Korzeniewicz, R.; Behnke-Borowczyk, J.; Kowalkowski, W. Effect of irrigation dose on powdery mildew incidence and root biomass of sessile oaks (Quercus petraea (Matt.) Liebl.). Plants 2022, 11, 1248. [Google Scholar] [CrossRef]
- Wang, G.B.; Liu, W.; Zhang, B.R.; Qin, L. Analysis of Flora structure and diversity of Quercus wutaishanica Leaves Infected with Powdery Mildew. Sci. Seric. 2021, 47, 310–315. [Google Scholar]
- Li, X.S.; Wu, Y.; Dong, X.G.; Zhao, S.W.; Mu, X.Q.; Cheng, Z.L.; Zhao, N.; Teng, X.Y.; Shi, S.P.; Yang, R.S.; et al. Checklist of major oak pests in China (Ⅰ). Sinece Seric. 2010, 36, 330–336. [Google Scholar]
- Yang, R.S.; Ni, M.Y.; Gu, Y.J.; Xu, S.J.; Jin, Y.; Zhang, J.H.; Wang, Y.; Qin, L. Newly Emerging Pest in China, Rhynchaenus maculosus (Coleoptera: Curculionidae): Morphology and molecular identification with DNA barcoding. Insects 2021, 12, 568. [Google Scholar] [CrossRef]
- Yang, R.S.; Qiu, P.C.; Gu, Y.J.; Ni, M.Y.; Xue, Z.H.; Han, J.H.; Jiang, Y.R.; Jin, Y.; Wang, Y.; Zhou, X.F.; et al. Biology of Rhynchaenus maculosus provides insights and implications for integrated management of this emerging pest. Sci. Rep. 2022, 12, 14650. [Google Scholar] [CrossRef]
- Wang, S.Z.; Wang, Z.L.; Xu, H. A study of the wood charcoal unearthed in Erlitou site. Cult. Relics Cent. China 2007, 3, 93–100. [Google Scholar]
- Zang, Y.H.; Weng, Y.; Yao, L.; Zhang, J.Z.; Zhou, Y.J.; Fang, F.; Cui, W. Identification and analysis of starch granules on the surface of the slabs from Peiligang site. Quat. Sci. 2011, 31, 891–899. [Google Scholar]
- Wang, S.Z.; Wang, Z.L.; Wu, Y.L.; Huang, W.D.; Wang, J. A study of the charcoal samples from house-foundations on the Diaolongbei site in Zaoyang city, Hubei. Archaeology 2002, 11, 85–87. [Google Scholar]
- Qin, L.; Li, S.Y. Sericulture of Chinese Oak Silkworm; China Agricultural Press: Beijing, China, 2016; pp. 19–23. (In Chinese) [Google Scholar]
- Wang, X.Y.; Wang, Y.R.; Gong, Y.C.; Ren, H.Q. Review of properties and processing technology of native oak timber in China. China Wood Ind. 2019, 33, 30–33. [Google Scholar]
- Wang, S.M.; Xia, M.J. Structures and some physical-mechanical properties of three Chinese oaks (Ⅰ). J. Beijing For. Coll. 1983, 3, 63–72. [Google Scholar]
- Wang, S.M.; Xia, M.J. Structures and some physical-mechanical properties of three Chinese oaks (II). J. Beijing For. Coll. 1984, 1, 21–33. [Google Scholar]
- Wang, S.M.; Xia, M.J. Structures and some physical-mechanical properties of three Chinese oaks (Ⅲ). J. Beijing For. Coll. 1986, 1, 53–60. [Google Scholar]
- Yang, X.Y.; Yu, J.C.; Lü, H.Y.; Cui, T.X.; Guo, J.N.; Diao, X.M.; Kong, Z.C.; Liu, C.J.; Ge, Q.S. Starch grain analysis reveals function of grinding stone tools at Shangzhai site, Beijing. Sci. China Ser. D-Earth Sci. 2009, 52, 1164–1171. [Google Scholar] [CrossRef]
- Wang, B.H.; Jiang, Y.R.; Liu, W.; Li, H.J.; Shi, S.L.; Yang, R.S.; Qin, L. Content determination of main mineral elements and heavy metal elements in oak tree leaf and Antheraea pernyi pupae. Sinece Seric. 2016, 42, 322–330. [Google Scholar]
- Li, W.; Zhang, Z.; Lin, L.; Terenius, O. Antheraea pernyi (lepidoptera: Saturniidae) and its importance in sericulture, food consumption, and traditional chinese medicine. J. Econ. Entomol. 2017, 110, 1404–1411. [Google Scholar] [CrossRef]
- Kelly-Hunt, A.E.; Mehan, A.; Brooks, S.; Leanca, M.A.; McKay, J.E.D.; Mahamed, N.; Lambert, D.; Dempster, N.M.; Allen, R.J.; Evans, A.R.; et al. Synthesis and analytical characterization of purpurogallin: A pharmacologically active constituent of oak galls. J. Chem. Educ. 2022, 99, 983–993. [Google Scholar] [CrossRef]
- Wang, L.M.; Yue, D.M.; Geng, C.Y.; Li, S.Y.; Li, Q.J. Therapeutic effect of aqueous extracts from Quercus mongolica leaf on type ⅱ diabetic model mice. Sci. Seric. 2017, 43, 677–683. [Google Scholar]
- Burlacu, E.; Nisca, A.; Tanase, C. A Comprehensive Review of Phytochemistry and Biological Activities of Quercus Species. Forests 2020, 11, 904. [Google Scholar] [CrossRef]
- Li, J.G.; Zheng, Y.L.; Zhang, J.; Liu, Y.C.; Zhao, R.; Ren, Z.Y. HPLC method to analyze chemical composition of taxane in Quercus mongolica Fisch. Ginseng Res. 2007, 43, 18–20. [Google Scholar]
- Zhou, J.L.; Wang, B.H.; Wang, G.B.; Jiang, Y.R.; Yang, R.S.; Shi, S.L.; Qin, L. Identification of volatile chemical components in leaves and barks of two types of oak trees. Sci. Seric. 2017, 43, 459–466. [Google Scholar]
- Zhang, S.J.; Song, X.; Yao, J.; Zhang, Z.W.; Wang, J.L.; Zhao, M. Chemical constituents in leaves of Quercus mongolica. Chin. Tradit. Herb. Drugs 2013, 44, 665–670. [Google Scholar]
- Wang, L.M.; Yue, D.M.; Xia, X.H.; Li, S.Y. In vitro bacteriostatic test of Quercus mongolica Fisch leaf extract. Sci. Seric. 2016, 42, 331–335. [Google Scholar]
- Wang, H.Y.; Yang, G.T.; Liu, Z.M. Constituent analysis of phenols in wood vinegar from Mongolian oak (Quercus mongolica). Chem. Ind. For. Prod. 2005, 25, 143–145. [Google Scholar]
- Wang, H.Y.; Yang, G.T.; Ren, G.Y.; Meng, W.; Bi, X.X. Antibacterial activity constituents analysis of refined Quercus mongolica and miscellaneous wood vinegar. Guangdong Chem. Ind. 2012, 39, 14–15, 19. [Google Scholar]
- Lu, M.G.; Jiang, Q.L.; Cai, D.R.; Zheng, Y.Y. Genetic toxicity of bristletoothoak extract. Chin. J. Pharmacol. Toxicol. 2011, 25, 576–580. [Google Scholar]
- Yin, Y.N.; Zhang, W.H.; Zhen, X.Y.; Zhao, H. Research on extraction technology of tannins from Quercus variabilis. J. Northwest For. Univ. 2014, 29, 182–187. [Google Scholar]
- Costa, R.; Lourenco, A.; Oliveira, V.; Pereira, H. Chemical characterization of cork, phloem and wood from different Quercus suber provenances and trees. Heliyon 2019, 5, e02910. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.X.; Hao, H.X.; Xue, A.P. Resources of oak-developing strategic research on biomass energy of high-quality forest. Biomass Chem. Eng. 2006, 40, 147–152. [Google Scholar]
- Del Alamo-Sanza, M.; Nevares, I. Oak wine barrel as an active vessel: A critical review of past and current knowledge. Crit. Rev. Food Sci. Nutr. 2018, 58, 2711–2726. [Google Scholar]
- Ji, X.; Jiang, W.B.; Wei, J.X.; Han, J. Comprehensive value of oak family and the application ways in landscape greening. Heilongjiang Agric. Sci. 2015, 12, 96–101. [Google Scholar]
- Rindy, J.E.; Ponette-González, A.G.; Barrett, T.E.; Sheesley, R.J.; Weathers, K.C. Urban trees are sinks for soot: Elemental carbon accumulation by two widespread oak species. Environ. Sci. Technol. 2019, 53, 10092–10101. [Google Scholar] [CrossRef]
- Seddaiu, S.; Brandano, A.; Ruiu, P.A.; Sechi, C.; Scanu, B. An overview of phytophthora species inhabiting declining Quercus suber stands in Sardinia (Italy). Forests 2020, 11, 971. [Google Scholar] [CrossRef]
- Ramos, A.M.; Usié, A.; Barbosa, P.; Barros, P.M.; Capote, T.; Chaves, I.; Simões, F.; Abreu, I.; Carrasquinho, I.; Faro, C.; et al. The draft genome sequence of cork oak. Sci. Data 2018, 5, 180069. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Wang, L.; Xian, Y.; Xie, X.M.; Li, W.Q.; Zhao, Y.; Zhang, R.G.; Qin, X.; Li, D.Z.; Jia, K.H. A chromosome-level genome assembly of the Chinese cork oak (Quercus variabilis). Front. Plant Sci. 2022, 13, 1001583. [Google Scholar] [CrossRef]
- Asbeck, T.; Gromann, J.; Paillet, Y.; Winiger, N.; Bauhus, J. The use of tree-related microhabitats as forest biodiversity indicators and to guide integrated forest management. Curr. For. Rep. 2021, 7, 59–68. [Google Scholar] [CrossRef]
- Sork, V.L.; Fitz-Gibbon, S.T.; Puiu, D.; Crepeau, M.; Salzberg, S.L. First draft assembly and annotation of the genome of a California endemic oak Quercus lobata Née (Fagaceae). G3-Genes Genomes Genet. 2016, 6, 3485–3495. [Google Scholar] [CrossRef]
- Hu, H.L.; Yang, J.; Li, P.; Liu, Y.Q.; Qin, L. Advances in genomics of oak Quercus L. Sci. Seric. 2019, 45, 431–440. [Google Scholar]
- Wu, L. Nutritive effects of oak and willow leaves on the growth, disease resistance, and the yield and quality of cocoons and silk of Chinese tussah silkworm, Antheraea pernyi Guer. Acta Entomol. Sin. 1975, 18, 281–288. [Google Scholar]
- Bose, A.K.; Scherrer, D.; Camarero, J.J.; Ziche, D.; Babst, F.; Bigler, C.; Bolte, A.; Dorado-Liñán, I.; Etzold, S.; Fonti, P.; et al. Climate sensitivity and drought seasonality determine post-drought growth recovery of Quercus petraea and Quercus robur in Europe. Sci. Total Environ. 2021, 784, 147222. [Google Scholar] [CrossRef]
- Chaparro, D.; Vayreda, J.; Vall-Llossera, M.; Banqué, M.; Piles, M.; Camps, A.; Martínez-Vilalta, J. The Role of Climatic Anomalies and Soil Moisture in the Decline of Drought-Prone Forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 503–514. [Google Scholar] [CrossRef]
- Alvarez, R.; Alvarez, J.M.; Humara, J.M.; Revilla, A.; Ordás, R.J. Genetic transformation of cork oak (Quercus suber L.) for herbicide resistance. Biotechnol. Lett. 2009, 31, 1477–1483. [Google Scholar] [CrossRef]
- Cano, V.; Martínez, M.T.; Couselo, J.L.; Varas, E.; Vieitez, F.J.; Corredoira, E. Efficient transformation of somatic embryos and regeneration of cork oak plantlets with a gene (CsTL1) encoding a chestnut thaumatin-like protein. Int. J. Mol. Sci. 2021, 22, 1757. [Google Scholar] [CrossRef]
- Shi, X.; Wang, S.; Sun, H.; Chen, Y.; Wang, D.; Pan, H.; Zou, Y.; Liu, J.; Zheng, L.; Zhao, X.; et al. Comparative of Quercus spp. and Salix spp. for phytoremediation of Pb/Zn mine tailings. Environ. Sci. Pollut. Res. Int. 2017, 24, 3400–3411. [Google Scholar] [CrossRef]
- Dadkhah-Aghdash, H.; Heydari, M.; Zare-Maivan, H.; Sharifi, M.; Miralles, I.; Lucas-Borja, M.E. Variation in Brant’s oak (Quercus brantii Lindl.) leaf traits in response to pollution from a gas refinery in semiarid forests of western Iran. Environ. Sci. Pollut. Res. Int. 2022, 29, 10366–10379. [Google Scholar] [CrossRef]
- Kinoshita, A.; Obase, K.; Yamanaka, T. Ectomycorrhizae formed by three Japanese truffle species (Tuber japonicum, T. longispinosum, and T. himalayense) on indigenous oak and pine species. Mycorrhiza 2018, 28, 679–690. [Google Scholar] [CrossRef]
- Bajaj, S.R.; Marathe, S.J.; Grebenc, T.; Zambonelli, A.; Shamekh, S. First report of European truffle ectomycorrhiza in the semi-arid climate of Saudi Arabia. 3 Biotech 2021, 11, 24. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, C.; Wang, Q.; Jiang, Y.; Qin, L. Germplasm Resources of Oaks (Quercus L.) in China: Utilization and Prospects. Biology 2023, 12, 76. https://doi.org/10.3390/biology12010076
Wang Y, Xu C, Wang Q, Jiang Y, Qin L. Germplasm Resources of Oaks (Quercus L.) in China: Utilization and Prospects. Biology. 2023; 12(1):76. https://doi.org/10.3390/biology12010076
Chicago/Turabian StyleWang, Yong, Chenyu Xu, Qi Wang, Yiren Jiang, and Li Qin. 2023. "Germplasm Resources of Oaks (Quercus L.) in China: Utilization and Prospects" Biology 12, no. 1: 76. https://doi.org/10.3390/biology12010076
APA StyleWang, Y., Xu, C., Wang, Q., Jiang, Y., & Qin, L. (2023). Germplasm Resources of Oaks (Quercus L.) in China: Utilization and Prospects. Biology, 12(1), 76. https://doi.org/10.3390/biology12010076