Reaping the Potential of Wild Cajanus Species through Pre-Breeding for Improving Resistance to Pod Borer, Helicoverpa armigera, in Cultivated Pigeonpea (Cajanus cajan (L.) Millsp.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Population Development
2.2. Evaluation of Pre-Breeding Populations for Pod Borer Complex
Pest Susceptibility (%) | Pest Susceptibility Rating (PSR) | Category |
100% | 1 | Highly resistant |
75% | 2 | Resistant |
50% to 75% | 3 | Resistant |
25% to 50% | 4 | Moderately resistant |
10% to 25% | 5 | Moderately resistant |
−10% to 10% | 6 | Moderately susceptible |
−25% to −10% | 7 | Susceptible |
−50% to −25% | 8 | Susceptible |
−50% or less | 9 | Highly susceptible |
2.3. Criteria for Examination of Pod Borer Damage
- Healthy or clear pods having no external damage symptoms;
- Pods damaged by pod borer, H. armigera (big circular holes without larval exuviae on the pods);
- Pods damaged by pod fly (minute holes on pods);
- Pods damaged by pod wasp (minute holes at upper side of pod tip, empty pods, and pod length drastically shortened);
- Pods damaged by plume moth (two to three medium-sized circular holes on pods);
- The Maruca (spotted pod borer) damaged pods have small, darkened entry holes with frass-fecal matter and chewed remains of the pods around the entry holes. It also has a typical symptom with holes in pods at one end [15].
2.4. Procedure for Recording the Larval Count
2.5. Helicoverpa Armigera Culture
2.6. Detached Pod Assay to Assess Antibiosis Mechanism of Resistance in Pigeonpea ILs Using Third-Instar Larvae of Pod Borer, H. armigera
2.7. Biochemical Profiling of Seeds
2.7.1. Estimation of Total Phenols
2.7.2. Estimation of Total Flavonoids
2.8. Morphological Parameters
2.9. Statistical Analysis
3. Results
3.1. Field Evaluations of Pod Borer Complex Damage in Four Populations during the 2018 Rainy Season
3.1.1. PP 1501
3.1.2. PP 1503
3.1.3. PP 1504
3.1.4. PP 1505
3.2. Evaluation of Selected ILs during the 2019 Rainy Season at Patancheru
3.2.1. Phenotyping under Unprotected Field Conditions
3.2.2. Estimated Concentrations of Major Biochemical Compounds in Seeds
3.2.3. Detached Pod Bioassay under Laboratory Conditions during 2019 Rainy Season
3.3. Evaluation of 136 Selected ILs during the 2019 Rainy Season at Warangal, India
3.3.1. Phenotyping for Pod Borer Complex Damage under Unprotected Field Conditions
3.3.2. Growth Phenotypes of Selected ILs under Unprotected Field Conditions
3.4. Confirming Pod Borer Resistance in 39 Selected ILs during the 2020 Rainy Season
3.5. Morphological Traits in the Selected ILs Conferring Resistance to Pod Borer
3.5.1. Trichome Density on Adaxial Leaf Surface
3.5.2. Trichome Density on Abaxial Leaf Surface
3.6. Identification of Promising Pod Borer Resistant ILs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 22 February 2022).
- Sharma, H.C.; Pampapathy, G.; Dhillon, M.K.; Ridsdill-Smith, T.J. Detached leaf assay to screen for host plant resistance to Helicoverpa armigera. J. Econ. Entomol. 2005, 98, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S. Prebreeding using wild species for genetic enhancement of grain legumes at ICRISAT. Crop Sci. 2017, 57, 1132–1144. [Google Scholar] [CrossRef] [Green Version]
- Ambidi, V.; Bantewad, S.; Prasad Mishra, S.; Hingane, A.; Jaba, J. Morpho-biochemical parameters associated with resistance to pod borer complex of pigeonpea. Pak. J. Zool. 2022, 54, 405–411. [Google Scholar] [CrossRef]
- Patange, N.R.; Chiranjeevi, B. Bioefficacy of newer insecticides against pigeonpea (Cajanus cajan L. Millsp.) pod borers. J. Entomol. Zool. Stud. 2017, 5, 28–31. [Google Scholar]
- Pundir, R.P.S.; Singh, R.B. Possibility of genetic improvement in pigeonpea utilizing the wild genetic resources. Euphytica 1987, 36, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Shanower, T.G.; Yoshida, M.; Peter, A.J. Survival, growth, fecundity and behaviour of Helicoverpa armigera (Lepidoptera: Noctuidae) on pigeonpea and two wild Cajanus species. J. Econ. Entomol. 1997, 90, 837–841. [Google Scholar] [CrossRef]
- Mallikarjuna, N.; Senthilvel, S.; Jadhav, D.R.; Saxena, K.B.; Sharma, H.C.; Upadhyaya, H.D.; Rathore, A.; Varshney, R. Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breed. 2011, 130, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Sujana, G.; Sharma, H.C.; Rao, D.M. Antixenosis and antibiosis components of resistance to pod borer Helicoverpa armigera in wild relatives of pigeonpea. Int. J. Trop. Insect Sci. 2008, 28, 191–200. [Google Scholar] [CrossRef]
- Jain, K.C.; Reddy, M.V.; Ariyanayagam, R.P.; Singh, L.; Faris, D.G.; Sharma, D.; Reddy, M.C.; Kannaiyan, J.; Nene, Y.L. Registration of ‘ICPL 87119’ pigeonpea. Crop Sci. 1995, 35, 589–590. [Google Scholar] [CrossRef]
- ICRISAT. Pigeonpea variety ICP 8863. In Plant Material Description No. 44; International Crops Research Institute for the Semi-Arid Tropics (ICRISAT): Patancheru, India, 1993. [Google Scholar]
- Sharma, H.C.; Stevenson, P.C.; Gowda, C.L.L. Heliothis/Helicoverpa Management: Emerging Trends and Prospects for Future Research. In Heliothis/Helicoverpa Management Emerging Trends and Strategies for Future Research; Oxford & IBH Publishing Co. Pvt. Ltd.: New Delhi, India, 2005; pp. 453–461. ISBN 81-204-1650-3. [Google Scholar]
- Abott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Lateef, S.S.; Reed, W. A suggested system of rating pigeonpea and chickpea entries for field resistance to Heliothis armigera. In National Seminar on Breeding Crop Plants for Resistance to Pests and Diseases; Tamilnadu Agricultural University: Coimbatore, India, 1983. [Google Scholar]
- Sharma, O.P.; Gopali, J.B.; Yelshetty, S.; Bambawale, O.M.; Garg, D.K.; Bhosle, B.B. Pests of Pigeonpea and Their Management, NCIPM, LBS Building; IARI Campus: New Delhi, India, 2010. [Google Scholar]
- Sharma, H.C.; Madhumati, T.; Raghavaiah, G.; Rao, V.S. A semi-synthetic chickpea flour based diet for long-term maintenance of laboratory culture of Helicoverpa armigera. Indian J. Entomol. 2014, 76, 336–340. Available online: http://oar.icrisat.org/id/eprint/8458 (accessed on 22 February 2022).
- Bray, H.G.; Thorpe, W.V. Analysis of phenolic compounds of interest in metabolism. Methods Biochem. Anal. 1954, 1, 27–52. [Google Scholar] [PubMed]
- Swain, T.; Hillis, W.E. Phenolic constituents of Prunus domestica I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Sharma, H.C.; Sujana, G.; Rao, D.M. Morphological and chemical components of resistance to pod borer, Helicoverpa armigera in wild relatives of pigeonpea. Arthropod-Plant Interact. 2009, 3, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Reed, W.; Lateef, S.S. Pest Management. In Pigeonpea; Nene, Y.L., Sheila, V.K., Hall, S., Eds.; CAB International: Wallingford, UK, 1990; pp. 349–374. [Google Scholar]
- Sharma, S.; Paul, P.J.; Kumar, C.V.S.; Rao, P.J.; Prashanti, L.; Muniswamy, S.; Sharma, M. Evaluation and Identification of promising introgression lines derived from wild Cajanus species for broadening the genetic base of cultivated pigeonpea [Cajanus cajan (L.) Millsp.]. Front. Plant Sci. 2019, 10, 1269. [Google Scholar] [CrossRef]
- Sharma, S.; Jaba, J.; Prashad, S.; Hussain, E.; Paul, P.J.; Nammi, T.; Sharma, H.C. Improving Pod Borer Complex Tolerance in Cultivated Pigeonpea (Cajanus cajan) by Using Wild Cajanus Species; Monograph; International Crops Research Institute for the Semi-Arid Tropics (ICRISAT): Patancheru, India, 2020. [Google Scholar]
- Green, P.W.C.; Sharma, H.C.; Stevenson, P.C.; Simmonds, M.S.J. Susceptibility of pigeonpea and some of its wild relatives to predation by Helicoverpa armigera: Implications for breeding resistant cultivars. Aust. J. Agric. Res. 2006, 57, 831–836. [Google Scholar] [CrossRef]
- Romeis, J.; Shanower, T.G.; Peter, A.J. Trichomes on pigeonpea (Cajanus cajan) and two wild Cajanus spp. Crop Sci. 1999, 39, 564–569. [Google Scholar] [CrossRef]
- Valverde, P.L.; Fomoni, J.; Nunez-Farfan, J. Defensive role of leaf trichomes in resistance to herbivorous insects in Datura shamonium. J. Evol. Biol. 2001, 14, 424–432. [Google Scholar] [CrossRef]
- Gurr, G.M.; McGrath, D. Effect of plant variety, plant age and photoperiod on glandular pubescence and host-plant resistance to potato moth (Phrhorimaea operculella) in Lycopersicon spp. Ann. Appl. Biol. 2001, 138, 221–230. [Google Scholar] [CrossRef]
- Peter, J.A. Pigeonpea trichomes a promising source for pod borer resistance. IPM IRM News Lett. Legume Crop. Asia 1995, 2, 4–5. [Google Scholar]
- Jadhav, D.R.; Mallikarjuna, N.; Sharma, H.C.; Saxena, K.B. Introgression of Helicoverpa armigera resistance from Cajanus acutifolius—A wild relative from secondary gene pool of pigeonpea (Cajanus cajan). Asian J. Agric. Sci. 2012, 4, 242–248. [Google Scholar]
- Moudgal, R.K.; Lakra, R.K.; Dahiya, B.; Dhillon, M.K. Physico-chemical traits of Cajanus cajan (L.) Millsp. pod wall affecting Melanagromyza obtusa (Malloch) damage. Euphytica 2008, 161, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, S.; Bera, T.; Agnihotri, M.; Jaba, J. Screening of short duration pigeonpea [Cajanus cajan (L.) Millsp.] genotypes against major insect pests. J. Pure Appl. Microbiol. 2016, 10, 3009–3016. [Google Scholar] [CrossRef]
- Sunitha, V.; Ranga Rao, G.V.; Lakshmi, V.V.; Saxena, K.B.; Rameshwar Rao, V.; Reddy, Y.V.R. Morphological and biochemical factors associated with resistance to Maruca vitrata (Lepidoptera: Pyralidae) in short-duration pigeonpea. Int. J. Trop. Insect Sci. 2008, 28, 45–52. [Google Scholar] [CrossRef]
- Sai, Y.; Sreekanth, M.; Sairam, K.D.V.; Manoj, K.V. Morphological and biochemical factors associated with resistance to Helicoverpa armigera (Hubner) and Maruca vitrata (Geyer) in pigeonpea. J. Entomol. Zool. Stud. 2018, 6, 3073–3078. [Google Scholar]
- Jat, B.L.; Dahiya, K.K.; Harish, K.; Mandana, S. Study of biophysical and structural mechanism of resistance in pigeonpea against pod borer complex. Bioscan 2018, 13, 521–528. [Google Scholar]
- Cheboi, J.J.; Kimurto, P.K.; Kinyua, M.G. Variability in morpho-biochemical traits associated with pod borer (Helicoverpa armigera) resistance in pigeonpea pods. J. Exp. Agric. Int. 2019, 31, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Green, P.; Stevenson, P.; Simmonds, M.; Sharma, H. Can larvae of the pod-borer, Helicoverpa armigera (Lepidoptera: Noctuidae), select between wild and cultivated pigeonpea Cajanus sp. (Fabaceae)? Bull. Entomol. Res. 2002, 92, 45–52. [Google Scholar] [CrossRef]
- Ngugi-Dawit, A.; Hoang, T.M.L.; Williams, B.; Higgins, T.J.V.; Mundree, S.G. A wild Cajanus scarabaeoides (L.), Thouars, IBS 3471, for improved insect-resistance in cultivated pigeonpea. Agronomy 2020, 10, 517. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.C.; Pampapathy, G.; Lanka, S.K.; Ridsdill-Smith, T.J. Antibiosis mechanism of resistance to pod borer, Helicoverpa armigera in wild relatives of chickpea. Euphytica 2005, 142, 107–117. [Google Scholar] [CrossRef] [Green Version]
Populations | Wild Species Donor | Cross | Generation | No. of ILs |
---|---|---|---|---|
Simple cross approach | ||||
PP 1501 | C. acutifolius | ICP 8863 × (ICP 8863 × (ICP 8863 × ICPW 1)) | BC2F3 | 1108 |
PP 1505 | C. scarabaeoides | ICPL 87119 × (ICPL 87119 × (ICPL 87119 × ICPW 281)) | BC2F3 | 288 |
Complex cross approach | ||||
PP 1503 | C. acutifolius and C. scarabaeoides | ICPL 87119 × ((ICPL 87119 × ICPW 1) × (ICPL 87119 × ICPW 281)) | 4-BC1F3 | 533 |
PP 1504 | C. acutifolius and C. scarabaeoides | ICP 8863 × ((ICP 8863 × ICPW 1)× (ICP 8863 × ICPW 281)) | 4-BC1F3 | 392 |
S. No. | Populations | No. of ILs | Damage Rating | Recovery Resistance Score | Pod Borer Damage (%) | Pod Fly Damage (%) | Pod Wasp Damage (%) | Plume Moth Damage (%) | Pod Borer Complex Damage (%) | No. of Pod Borer Resistant ILs Identified |
---|---|---|---|---|---|---|---|---|---|---|
1 | PP1501 | 1108 | 6–9 | 4–7 | 7–48 | 3–55 | 0–20 | 7–55 | 33–85 | 79 |
ICP 8863 (Parent) | 8 | 6 | 16 | 38 | 0 | 10 | 60 | - | ||
ENT 11 | 7 | 6 | 29 | 30 | 5 | 7 | 65 | - | ||
ICPL 332WR | 6 | 6 | 20 | 34 | 4 | 3 | 62 | - | ||
ICPL 87119 | 6 | 6 | 20 | 40 | 3 | 7 | 70 | |||
ICPL 87 | 9 | 7.0 | 33 | 44 | 3 | 9 | 75 | - | ||
2 | PP1503 | 533 | 4–9 | 5–8 | 6–40 | 10–44 | 0–12 | 0–9 | 37–80 | 41 |
ICPL 87119 (Parent) | 6 | 7 | 30 | 41 | 2 | 2 | 75 | - | ||
ENT 11 | 6 | 6 | 25 | 30 | 4 | 1 | 60 | - | ||
ICPL 332WR | 8 | 6 | 26 | 36 | 3 | 1 | 67 | - | ||
ICPL 87 | 9 | 7 | 30 | 42 | 3 | 2 | 77 | - | ||
3 | PP1504 | 392 | 6–9 | 5–9 | 9–43 | 22–44 | 0–8 | 0–10 | 46–87 | 8 |
ICP 8863 (Parent) | 7 | 6 | 25 | 39 | 2 | 1 | 67 | |||
ENT 11 | 7 | 6 | 36 | 44 | 0 | 0 | 67 | - | ||
ICPL 332WR | 7 | 6 | 25 | 35 | 3 | 2 | 65 | - | ||
ICPL 87119 | 7 | 6 | 31 | 39 | 3 | 2 | 74 | |||
ICPL 87 | 89 | 9 | 45 | 40 | 1 | 1 | 87 | - | ||
4 | PP1505 | 288 | 6–9 | 5–8 | 5–35 | 7–57 | 0–8 | 0–7 | 23–80 | 28 |
ICPL 87119 (Parent) | 7 | 6 | 25 | 37 | 1 | 2 | 63 | |||
ENT 11 | 7 | 6 | 22 | 31 | 2 | 3 | 58 | - | ||
ICPL 332WR | 7 | 5 | 21 | 30 | 2 | 1 | 54 | - | ||
ICPL 87 | 9 | 8 | 35 | 33 | 5 | 7 | 80 | - |
Populations | No. of ILs | Damage Rating | Recovery Resistance Score | Pod Borer Damage (%) | Pod Fly Damage (%) | Pod Wasp Damage (%) | Plume Moth Damage (%) | Pod Borer Complex Damage (%) | No. of Larvae at Podding Stage | No. of Pod Borer Resistant ILs Identified |
---|---|---|---|---|---|---|---|---|---|---|
PP1501 | 79 | 6.3 (5–7) * | 6.0 (5–7) | 20.4 (18–23) | 26.9 (11–41) | 0.2 (0–1) | 2.23 (1–5) | 49.73 (32–67) | 1.11 (0–2) | 22 |
PP1504 | 8 | 6.2 (5–7) | 6.1 (5–7) | 20.8 (19–25) | 29.6 (27–53) | 0.26 (0–1) | 2.32 (0–4) | 52.94 (55–73) | 1.12 (1–2) | 0 |
ICP 8863 (Parent) | - | 5.0 | 5. 7 | 21.0 | 18.30 | 0.3 | 2.30 | 42.0 | 0.33 | |
PP1503 | 41 | 6.2 (5–7) | 6.1 (5–7) | 20.6 (17–25) | 27.8 (9–51) | 0.25 (0–1) | 2.38 (0–7) | 51.11 (37–78) | 1.14 (0–2) | 6 |
PP1505 | 28 | 6.2 (5–7) | 6.0 (5–7) | 21.3 (16–34) | 29.7 (15–46) | 0.42 (0–2) | 2.41 (1–7) | 53.89 (35–72) | 1.04 (0–2) | 11 |
ICPL 87119 (Parent) | - | 6.3 | 6.3 | 21.7 | 20.0 | 0.0 | 4.3 | 46.0 | 0.78 | |
Checks | - | |||||||||
ENT 11 | 6.33 | 5.33 | 18.67 | 29.00 | 1.67 | 1.00 | 50.33 | 0.89 | ||
ICPL 332WR | 5.33 | 5.00 | 18.33 | 21.67 | 0.00 | 4.00 | 44.00 | 0.44 | ||
ICPL 87 | 7.33 | 7.67 | 34.33 | 35.33 | 0.00 | 0.67 | 70.33 | 2.44 | - |
Populations | No. of ILs | Days to First Flowering | Days to 50% Flowering | Days to Maturity | Recovery Resistance Score | Pod Borer Damage (%) | Spotted Borer Damage (%) | Pod Fly Damage (%) | Pod Wasp Damage (%) | Plume Moth Damage (%) | Pod Borer Complex Damage (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
PP1501 | 78 | 84–131 | 92–139 | 135–180 | 4–8 | 4–24 | 2–17 | 4–32 | 0–1 | 0 | 16–54 |
PP1504 | 2 | 99–108 | 107–116 | 145–157 | 5–7 | 8–13 | 6–8 | 15–24 | 0 | 0 | 34–40 |
ICP 8863 (Parent) | - | 97 | 105 | 145 | 8 | 9.87 | 5.4 | 14.27 | 0 | 0 | 29.53 |
PP1503 | 34 | 96–129 | 104–137 | 144–179 | 4–8 | 4–25 | 4–22 | 3–23 | 0 | 0 | 14–58 |
PP1505 | 22 | 89–131 | 97–139 | 140–181 | 5–7 | 5–16 | 3–29 | 5–24 | 0 | 0 | 22–52 |
ICPL 87119 (Parent) | - | 102 | 110 | 161 | 7 | 6.3 | 8.97 | 19.03 | 0 | 0 | 34.30 |
Checks | |||||||||||
ENT 11 | 101 | 109 | 155 | 5.66 | 8.13 | 8.93 | 13.07 | 0 | 0 | 30.13 | |
ICPL 332WR | 98 | 106 | 146 | 5.66 | 4.43 | 12.07 | 21.10 | 0 | 0 | 37.60 | |
ICPL 87 | 73 | 81 | 122 | 7.33 | 17.60 | 5.43 | 5.63 | 0 | 0 | 28.67 |
Traits | ILs Better than ICP 8863 | ILs Better than ICPL 87119 |
---|---|---|
Low pod borer damage (in both 2019 & 2020) | PP1501-10-17-2, PP1501-12-1-6, PP1501-1-23-3, PP1501-20-6-2, PP1501-4-17-3, PP1501-4-21-6, PP1501-4-17-7, PP1501-14-7-7, PP1501-3-17-3, PP1501-1-10-8 and PP1501-14-1-5 | PP1503-6-1-4, PP1503-5-2-4, PP1505-63-2-4, PP1505-20-5-2 PP1505-36-4-1, PP1505-36-4-2, PP1505-34-3-6, PP1505-11-2-6, PP1505-13-6-3 and PP1505-11-2-5 |
Low pod fly damage (in both 2019 & 2020) | PP1501-1-23-3, PP1501-4-17-3, PP1501-3-17-3 | PP1505-13-6-3 |
Low pod borer complex damage (in both 2019 & 2020) | PP1501-12-1-6, PP1501-1-23-3, PP1501-4-17-3 PP1501-3-17-3 | PP1505-34-3-6, PP1505-13-6-3 and PP1505-11-2-5 |
High phenol content | PP1501-4-17-7 (6.14 mg/g) | PP1503-5-2-4 (4.58 mg/g) PP1505-63-2-4 (3.98 mg/g) PP1505-11-2-5 (6.99 mg/g) |
High flavonoid content | PP1501-12-1-6, PP1501-1-23-3, PP1501-20-6-2, PP1501-4-17-3, PP1501-4-21-6, PP1501-4-17-7, PP1501-14-7-7, PP1501-3-17-3, PP1501-1-10-8 (2.02–6.75 mg/g) | PP1505-11-2-5 (7.94 mg/g) |
Antibiosis | PP1501-10-17-2, PP1501-12-1-6, PP1501-20-6-2, PP1501-4-17-7, PP1501-14-7-7, PP1501-3-17-3, PP1501-1-10-8 and PP1501-14-1-5 (45.1–609.9% larval weight gain) | PP1503-6-1-4, PP1505-11-2-5, PP1503-5-2-4, PP1505-20-5-2, PP1505-36-4-1, PP1505-36-4-2, PP1505-34-3-6, PP1505-11-2-6 and PP1505-13-6-3 (163.5–367.9% larval weight gain) |
Low density of type A trichomes on adaxial leaf surface | PP1501-1-23-3, PP1501-20-6-2, PP1501-1-10-8 PP1501-14-1-5 | PP1503-6-1-4, PP1505-63-2-4, PP1505-36-4-1, PP1505-36-4-2, PP1505-34-3-6, PP1505-11-2-6 and PP1505-13-6-3 |
Low density of type B trichomes on adaxial leaf surface | - | PP1503-6-1-4, PP1503-5-2-4, PP1505-63-2-4, PP1505-20-5-2, PP1505-36-4-1, PP1505-36-4-2, PP1505-34-3-6, PP1505-11-2-6, PP1505-11-2-5 and PP1505-13-6-3 |
High density of type C trichomes on adaxial leaf surface | PP1501-20-6-2, PP1501-1-10-8 | PP1503-6-1-4, PP1503-5-2-4, PP1505-63-2-4, PP1505-20-5-2, PP1505-36-4-1, PP1505-36-4-2, PP1505-34-3-6, PP1505-11-2-6, PP1505-11-2-5 and PP1505-13-6-3 |
High density of type D trichomes on adaxial leaf surface | PP1501-20-6-2, PP1501-1-10-8, PP1501-10-17-2 PP1501-12-1-6 | PP1505-63-2-4, PP1505-11-2-6 and PP1505-11-2-5 |
Low density of type A trichomes on abaxial leaf surface | PP1501-4-17-3, PP1501-1-10-8 | PP1503-6-1-4, PP1503-5-2-4, PP1505-63-2-4, PP1505-20-5-2, PP1505-36-4-1, PP1505-36-4-2, PP1505-34-3-6, PP1505-11-2-6, PP1505-11-2-5 and PP1505-13-6-3 |
Low density of type B trichomes on abaxial leaf surface | PP1501-1-23-3 | PP1503-6-1-4, PP1503-5-2-4, PP1505-63-2-4, PP1505-20-5-2, PP1505-36-4-1, PP1505-36-4-2, PP1505-34-3-6, PP1505-11-2-6, PP1505-11-2-5 and PP1505-13-6-3 |
High density of type C trichomes on abaxial leaf surface | PP1501-10-17-2, PP1501-12-1-6, PP1501-20-6-2 PP1501-14-1-5 | PP1505-63-2-4, PP1505-36-4-1, PP1505-11-2-6 and PP1505-11-2-5 |
High density of type D trichomes on abaxial leaf surface | PP1501-14-7-7 | PP1505-63-2-4, PP1505-20-5-2, PP1505-36-4-1, PP1505-36-4-2, PP1505-34-3-6 and PP1505-11-2-5 |
Introgression Line | Key Traits |
---|---|
PP1505-63-2-4 | Low pod borer (~14%) and pod borer complex damage (~44%), high phenols (3.98 mg/g) and flavonoids (3.46 mg/g) content, low density of trichomes A and B, and high density of trichomes C and D on leaves |
PP1505-13-6-3 | Low pod borer (~17%), pod fly (~14%), and pod borer complex (~35%) damage, low density of trichomes A and B and high density of trichome C on leaves, phenols (1.97 mg/g) and flavonoids (2.76 mg/g), and resistant to pod borer and pod borer complex (based on PSR 3.0) |
PP1505-11-2-5 | Low pod borer (~18%), pod fly (~16%), and pod borer complex (~38%) damage, high phenols (6.99 mg/g) and flavonoids (7.94 mg/g) conten, low density of trichomes A and B and high density of trichomes C and D on leaves, and resistant to pod borer and pod borer complex (based on PSR 3.0) |
PP1503-6-1-4 | Low pod borer (19%) and pod borer complex damage (~45%), high antibiosis (163.5% larval weight gain), low density of trichomes A and B and high density of trichome C on leaves, phenols (1.34 mg/g), and flavonoids (2.33 mg/g) |
PP1503-5-2-4 | Low pod borer damage (18.5%), low density of trichomes A and B and high density of trichome C on leaves, high phenols (4.58 mg/g), and flavonoids (2.29 mg/g) |
PP1501-1-10-8 | Low pod borer (~18%) and pod borer complex damage (~47%), high antibiosis (45% larval weight gain), low density of trichome A and high density of trichomes C and D on leaves, phenols (2.01 mg/g), and high flavonoids (2.63 mg/g) |
PP1501-4-17-7 | Low pod borer damage (18%), high phenols (6.14 mg/g), and high flavonoids (6.75 mg/g) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Jaba, J.; Rao, P.J.; Prasad, S.; Gopal, N.T.V.V.; Sharma, H.C.; Kilian, B. Reaping the Potential of Wild Cajanus Species through Pre-Breeding for Improving Resistance to Pod Borer, Helicoverpa armigera, in Cultivated Pigeonpea (Cajanus cajan (L.) Millsp.). Biology 2022, 11, 485. https://doi.org/10.3390/biology11040485
Sharma S, Jaba J, Rao PJ, Prasad S, Gopal NTVV, Sharma HC, Kilian B. Reaping the Potential of Wild Cajanus Species through Pre-Breeding for Improving Resistance to Pod Borer, Helicoverpa armigera, in Cultivated Pigeonpea (Cajanus cajan (L.) Millsp.). Biology. 2022; 11(4):485. https://doi.org/10.3390/biology11040485
Chicago/Turabian StyleSharma, Shivali, Jagdish Jaba, Polneni Jaganmohan Rao, Suraj Prasad, Nammi Tripura Venkata Venu Gopal, Hari Chand Sharma, and Benjamin Kilian. 2022. "Reaping the Potential of Wild Cajanus Species through Pre-Breeding for Improving Resistance to Pod Borer, Helicoverpa armigera, in Cultivated Pigeonpea (Cajanus cajan (L.) Millsp.)" Biology 11, no. 4: 485. https://doi.org/10.3390/biology11040485
APA StyleSharma, S., Jaba, J., Rao, P. J., Prasad, S., Gopal, N. T. V. V., Sharma, H. C., & Kilian, B. (2022). Reaping the Potential of Wild Cajanus Species through Pre-Breeding for Improving Resistance to Pod Borer, Helicoverpa armigera, in Cultivated Pigeonpea (Cajanus cajan (L.) Millsp.). Biology, 11(4), 485. https://doi.org/10.3390/biology11040485