The Antibacterial Properties of Plant-Derived Natural Colorants: A Review
Abstract
:1. Introduction
2. Natural Colorants
2.1. Curcumin (Turmeric)
2.2. Lawsone (Henna)
2.3. Emodin
2.4. Flavonoids
2.5. Carotenoids
2.5.1. Crocus (Saffron)
2.5.2. Lycopene (Tomato)
2.5.3. Capsanthin and Capsorubin (Paprika)
2.5.4. Lutein (Marigold)
2.5.5. Bixin and Norbixin (Annatto)
2.6. Indigo
2.7. Neem
2.8. Pomegranate
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, Y.; Jiang, Q.; Zhang, F.; Yang, Y. Small Molecular Fluorescent Probes: Application Progress of Specific Bacteria Detection and Antibacterial Phototherapy. Chem. Asian J. 2023, 18, e202300178. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.W.; Miao, L.; Li, X.L.; Xu, Z. Development of fluorescent probes targeting the cell wall of pathogenic bacteria. Coord. Chem. Rev. 2021, 429, 213646. [Google Scholar] [CrossRef]
- Deusenbery, C.; Wang, Y.; Shukla, A.A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect. Dis. 2021, 7, 695–720. [Google Scholar] [CrossRef]
- Shen, S.; Huang, Y.; Yuan, A.; Lv, F.; Liu, L.; Wang, S. Electrochemical Regulation of Antibacterial Activity Using Ferrocene-Containing Antibiotics. CCS Chem. 2021, 3, 129–135. [Google Scholar] [CrossRef]
- Raja Lakshmi, P.; Nanjan, P.; Kannan, S.; Shanmugaraju, S. Recent advances in luminescent metal–organic frameworks (LMOFs) based fluorescent sensors for antibiotics. Coord. Chem. Rev. 2021, 435, 213793. [Google Scholar] [CrossRef]
- Tan, L.; Zhou, Z.; Liu, X.; Li, J.; Zheng, Y.; Cui, Z.; Yang, X.; Liang, Y.; Li, Z.; Feng, X.; et al. Overcoming Multidrug-Resistant MRSA Using Conventional Aminoglycoside Antibiotics. Adv. Sci. 2020, 7, 1902070. [Google Scholar] [CrossRef]
- Ndieyira, J.W.; Watari, M.; Barrera, A.D.; Zhou, D.; Vogtli, M.; Batchelor, M.; Cooper, M.A.; Strunz, T.; Horton, M.A.; Abell, C.; et al. Nanomechanical detection of antibiotic-mucopeptide binding in a model for superbug drug resistance. Nat. Nanotechnol. 2008, 3, 691–696. [Google Scholar] [CrossRef]
- Li, W.; Separovic, F.; O’Brien-Simpson, N.M.; Wade, J.D. Chemically modified and conjugated antimicrobial peptides against superbugs. Chem. Soc. Rev. 2021, 50, 4932–4973. [Google Scholar] [CrossRef] [PubMed]
- Fowoyo, P.T. Phage Therapy: Clinical Applications, Efficacy, and Implementation Hurdles Microbiol. Open 2024, 18, 18742858281566. [Google Scholar] [CrossRef]
- Sawa1, T.; Moriyama, K.; Kinoshita, M. Current status of bacteriophage therapy for severe bacterial infections. J. Intensive Care Med. 2024, 12, 44. [Google Scholar] [CrossRef]
- Nayab, S.; Aslam, M.A.; Rahman, S.; Sindhu, Z.D.; Sajid, S.; Zafar, N.; Razaq, M.; Kanwar, R. Amanullah Review of Antimicrobial Peptides: Its Function, Mode of Action and Therapeutic Potential. Int. J. Pept. Res. Ther. 2022, 28, 46. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, Y.; Li, J.; Lu, A.; Liang, C. CRISPR/Cas systems: Delivery and application in gene therapy. Front. Bioeng. Biotechnol. 2022, 10, 942325. [Google Scholar] [CrossRef]
- Azeez, S.S.; Hamad, R.S.; Hamad, B.K.; Shekha, M.S.; Bergsten, P. Advances in CRISPR-Cas technology and its applications: Revolutionising precision medicin. Front. Genome Ed. 2022, 6, 1509924. [Google Scholar] [CrossRef] [PubMed]
- Shmakov, S.A.; Barth, Z.K.; Makarova, K.S.; Wolf, Y.I.; Brover, V.; Peters, J.E.; Koonin, E.V. Widespread CRISPR-derived RNA regulatory elements in CRISPR-Cas systems. Nucleic Acids Res. 2023, 51, 8150–8168. [Google Scholar] [CrossRef] [PubMed]
- Moradialv, M.; Asri, N.; Jahdkaran, M.; Beladi, M.; Houri, H. Advancements in Nanoparticle-Based Strategies for Enhanced Antibacterial Interventions. Cell Biochem. Biophys. 2024, 82, 3071–3090. [Google Scholar] [CrossRef]
- Tsai, Y.L.; Lin, T.L.; Chang, C.J.; Wu, T.R.; Lai, W.F.; Lu, C.C.; Lai, H.C. Probiotics, prebiotics and amelioration of diseases. J. Biomed. Sci. 2019, 26, 3. [Google Scholar] [CrossRef]
- Martinez, R.C.R.; Bedani, R.; Saad, S.M.I. Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: An update for current perspectives and future challenges. Br. J. Nutr. 2015, 114, 1993. [Google Scholar] [CrossRef]
- Bedair, H.M.; Hamed, M.; Mansour, F.R. Antibacterial and antifungal activities of natural deep eutectic solvents. Appl. Microbiol. Biotechnol. 2024, 108, 515. [Google Scholar] [CrossRef]
- Li, J.; Jin, X.; Jiao, Z.; Gao, L.; Dai, X.; Cheng, L.; Wang, Y.; Yan, L.T. Designing antibacterial materials through simulation and theory. J. Mater. Chem. B 2024, 12, 9155. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, D.; Duan, H. Recent advances in responsive antibacterial materials: Design and application scenarios. Biomater. Sci. 2023, 11, 356. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, X.; Li, Z.; Zheng, Y.; Nie, J.J.; Cui, Z.; Liang, Y.; Zhu, S.; Chen, D.; Wu, S. Recent progress of photo-excited antibacterial materials via chemical vapor deposition. Chem. Eng. J. 2022, 437, 135401. [Google Scholar] [CrossRef]
- Silveira, E.; Marques, P.P.; Silva, S.S.; Lima-Filho, J.L.; Porto, A.; Tambourgi, E. Selection of Pseudomonas for Industrial Textile Dyes Decolourization. Intern. Biodeter. Biodegrad. 2009, 63, 230–235. [Google Scholar] [CrossRef]
- Kadolph, S. Natural Dyes: A Traditional Craft Experiencing New Attention. Delta Kappa Gamma Bull. 2008, 75, 14. [Google Scholar]
- Chengaiah, B.; Rao, K.M.; Kumar, K.M.; Alagusundaram, M.; Chetty, C. Medicinal importance of natural dyes—A review. Int. J. PharmTech Res. 2010, 2, 144–154. [Google Scholar]
- Hussein, S.A.M.; Barakat, H.H.; Merfort, I.; Nawwar, M.A.M. Tannins from the leaves of Punica granatum. Phytochemistry 1997, 45, 819–823. [Google Scholar] [CrossRef]
- Novais, C.; Molina, A.K.; Abreu, R.M.V.; Santo-Beulega, C.; Ferreira, I.C.F.R.; Pereira, C.; Barros, L. Natural Colrants and Preservatives: A Review, a Demand and a Challenge. J. Agric. Food Chem. 2022, 70, 2789–2805. [Google Scholar] [CrossRef] [PubMed]
- Fobiri, G.K. Synthetic Dye Application in Textiles: A Review on the Efficacies and Toxicities Involved. Tex. Leath. Rev. 2022, 5, 180–198. [Google Scholar] [CrossRef]
- Soni, I.; Kumar, P.; Sharma, S.; Jayaprakash, G.K. A Short Review on Electrochemical Sensing of Commercial Dyes in Real Samples Using Carbon Paste Electrodes. Electrochem 2021, 2, 274–294. [Google Scholar] [CrossRef]
- Munagapati, V.S.; Wen, H.Y.; Wen, J.C.; Gollakota, A.R.K.; Shu, C.M.; Lin, K.Y.A. Adsorption of Reactive Red 195 from aqueous medium using Lotus (Nelumbo nucifera) leaf powder chemically modified with dimethylamine: Characterization, isotherms, kinetics, thermodynamics, and mechanism assessment. Int. J. Phytoremediat. 2022, 24, 131–144. [Google Scholar] [CrossRef]
- Manzoor, J.; Sharma, M. Impact of Textile Dyes on Public Health and the Environment; IGI Global: Hershey, PA, USA, 2020; pp. 162–169. [Google Scholar] [CrossRef]
- Khan, S.A.; Hussain, D.; Khan, T.A. Recent Advances in Synthetic Dyes. In Innovative and Emerging Technologies for Textile Dyeing and Finishing; Scrivener Publishing LCC: Beverly, MA, USA, 2021; pp. 91–111. [Google Scholar]
- Russell, C. Understanding Antibacterial Action and Resistance; Ellis Horwood: London, UK; New York, NY, USA, 1996. [Google Scholar]
- Cooper, R. A Review of the Evidence for the Use of Topical Antimicrobial Agents in Wound Care. World Wide Wounds 2004, 1, 1–11. [Google Scholar]
- Wainwright, M. Acridine-a neglected antibacterial chromophore. J. Antimicrob. Chemother. 2001, 47, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Michielsen, S.; Churchward, G.; Bozia, J.; Stojilokivic, I.; Anic, S. Light Activated Antiviral Materials and Devices and Methods for Decontaminating Virus Infected Environments. U.S. Patent Application No. 11/598,549, 11 October 2007. [Google Scholar]
- Ratna; Padhi, B.S. Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. Int. J. Environ. Sci. 2012, 3, 940–945. [Google Scholar] [CrossRef]
- Miller, M.D.; Steinmaus, C.; Golub, M.S. Potential impacts of synthetic food dyes on activity and attention in children: A review of the human and animal evidence. Environ. Health 2022, 21, 45. [Google Scholar] [CrossRef]
- Novotny, C.; Dias, N.; Kapanen, A.; Malachova, K.; Vandrovcova, M.; Itavarra, M.; Lima, N. Comparative use of bacterial, algal and protozoan tests to study toxicity of azo- and anthraquinone dyes. Chemosphere 2006, 63, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Mathur, N.; Bhatnagar, P. Mutagenicity assessment of textile dyes from Sanganer (Rajasthan). J. Environ. Biol. 2007, 28, 123–126. [Google Scholar]
- Hernandez-Ceruelos, A.; Madrigal-Bujaidar, E.; de La cruz, C. Inhibitory effect of chamomile essential oil on the sister chromatid exchanges induced by daunorubicin and methyl methanesulfonate in mouse bone marrow. Toxicol. Lett. 2002, 135, 103. [Google Scholar] [CrossRef]
- Ali, S.; Hussain, T.; Nawaz, R. Optimization of alkaline extraction of natural dye from Henna leaves and its dyeing on cotton by exhaust method. J. Clean. Prod. 2009, 17, 61–66. [Google Scholar] [CrossRef]
- Che, J.; Yang, X. A recent (2009–2021) perspective on sustainable color and textile coloration using natural plant resources. Heliyon 2022, 8, e10979. [Google Scholar] [CrossRef] [PubMed]
- Mirjalili, M.; Nazarpoor, K.; Karimi, L. Eco-friendly dyeing of wool using natural dye from weld as co-partner with synthetic dye. J. Clean. Prod. 2011, 19, 1045–1051. [Google Scholar] [CrossRef]
- Nateri, A.S. Reusing wastewater of madder natural dye for wool dyeing. J. Clean. Prod. 2011, 19, 775–781. [Google Scholar] [CrossRef]
- Kole, P.L.; Jadhav, H.R.; Thakurdesai, P.; Nagappa, A.N. Cosmetics Potential of Herbal Extracts. Nat. Prod. Rad. 2005, 4, 315–321. [Google Scholar]
- MacDougall, D.B. Color in Food Improving Quality; Woodhead Publishing Ltd.: Cambridge, UK, 2002. [Google Scholar]
- Santezi, C.; Reina, B.D.; Dovigo, L.N. Curcumin-mediated Photodynamic Therapy for the treatment of oral infections—A review. Photodiagn. Photodyn. Ther. 2018, 21, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Lawande, S.A. Antimicrobial Activity of Turmeric Extracts Against Oral Pathogens. J. Pharm. Biomed. Sci. 2013, 27, 586–591. [Google Scholar]
- Aggarwal, B.B.; Bhatt, I.D.; Ichikawa, H.; Ahn, K.S.; Sethi, G.; Sandur, S.K. Curcumin—Biological and Medicinal Properties; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Dai, C.; Lin, J.; Li, H.; Shen, Z.; Wang, Y.; Velkov, T.; Shen, J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants 2022, 11, 459. [Google Scholar] [CrossRef] [PubMed]
- Lampe, V.; Milobedzka, J. Studien über curcumin. Berichte Dtsch. Chem. Ges. 1913, 46, 2235–2240. [Google Scholar] [CrossRef]
- Srinivasan, K.R. A chromatographic study of the curcuminoids in Curcuma longa L. J. Pharm. Pharmacol. 1953, 5, 448–457. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, N.; He, H.; Tang, X. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. J. Control Release 2019, 316, 359–380. [Google Scholar] [CrossRef]
- Damyeh, M.S.; Mereddy, R.; Netzel, M.E.; Sultanbawa, Y. An insight into curcumin-based photosensitization as a promising and green food preservation technology. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1727–1759. [Google Scholar] [CrossRef]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol. Adv. 2014, 32, 1053–1064. [Google Scholar] [CrossRef]
- Orteca, G.; Sinnes, J.P.; Rubagotti, S.; Iori, M.; Capponi, P.; Piel, M.; Rosch, F.; Ferrari, E.; Asti, M. Gallium-68 and scandium-44 labelled radiotracers based on curcumin structure linked to bifunctional chelators: Synthesis and characterization of potential PET radiotracers. J. Inorg. Biochem. 2019, 204, 110954–110963. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M.R.U.; Zhao, H.; Huanga, L. Antibacterial Mechanism of Curcumin: A Review. Chem. Biodivers. 2020, 17, 2000171. [Google Scholar] [CrossRef] [PubMed]
- Nagpal, M.; Sood, S. Role of curcumin in systemic and oral health: An overview. J. Nat. Sci. Biol. Med. 2013, 4, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, S.D.; Neelakantan, P. Curcumin- Pharmacological actions and its role in dentistry. Asian J. Pharmaceut. Res. Health Care 2014, 6, 19–22. [Google Scholar]
- Khan, A.M.; Abid, O.U.R.; Mir, S. Assessment of biological activities of chitosan Schiff base tagged with medicinal plants. Biopolymers 2019, 111, 23338. [Google Scholar] [CrossRef]
- de Oliveira, E.F.; Tosati, J.V.; Tikekar, R.V.; Monteiro, A.R.; Nitin, N. Antimicrobial activity of curcumin in combination with light against Escherichia coli O157:H7 and Listeria innocua: Applications for fresh produce sanitation. Postharvest Biol. Technol. 2018, 137, 86–94. [Google Scholar] [CrossRef]
- Tortik, N.; Steinbacher, P.; Maisch, T.; Spaeth, A.; Plaetzer, K. A comparative study on the antibacterial photodynamic efficiency of a curcumin derivative and a formulation on a porcine skin model. Photochem. Photobiol. Sci. 2016, 15, 187–195. [Google Scholar] [CrossRef]
- Hsieh, Y.H.; Zhang, J.H.; Chuang, W.C.; Yu, K.H.; Huang, X.B.; Lee, Y.C. An in Vitro Study on the Effect of Combined Treatment with Photodynamic and Chemical Therapies on Candida albicans. Int. J. Mol. Sci. 2018, 19, 337. [Google Scholar] [CrossRef]
- Najafi, S.; Khayamzadeh, M.; Paknejad, M.; Poursepanj, G.; Fard, M.J.K.; Bahador, A. An In Vitro Comparison of Antimicrobial Effects of Curcumin-Based Photodynamic Therapy and Chlorhexidine, on Aggregatibacter actinomycetemcomitans. J. Lasers Med. Sci. 2016, 7, 21–25. [Google Scholar] [CrossRef]
- Saitawee, D.; Teerakapong, A.; Morales, N.P.; Jitprasertwong, P.; Hormdee, D. Photodynamic therapy of Curcuma longa extract stimulated with blue light against Aggregatibacter actinomycetemcomitans. Photodiagn. Photodyn. Ther. 2018, 22, 101–105. [Google Scholar] [CrossRef]
- Wu, J.; Mou, H.; Xue, C.; Leung, A.W.; Xu, C.; Tang, Q.J. Photodynamic effect of curcumin on Vibrio parahaemolyticus. Photodiagnosis Photodyn. Ther. 2016, 15, 34–39. [Google Scholar] [CrossRef]
- Panhoca, V.H.; Florez, F.; Junior de Faria, N.B.; Rastelli, A.N.; Tanomaru, J.; Kurachi, C. Evaluation of Antimicrobial Photodynamic Therapy against Streptococcus mutans Biofilm in situ. J. Contemp. Dent. Pract. 2016, 17, 184–191. [Google Scholar] [CrossRef]
- Paschoal, M.A.; Lin, M.; Santos-Pinto, L.; Duarte, S. Photodynamic antimicrobial chemotherapy on Streptococcus mutans using curcumin and toluidine blue activated by a novel LED device. Lasers Med. Sci. 2015, 30, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Paschoal, M.A.; Santos-Pinto, L.; Lin, M.; Duarte, S. Steptococcus Mutans Photoinactivation by Combination of Short Exposure of a Broad Spectrum Visible Light and Low Concentrations of Photosenstizers Photomed. Laser Surg. 2014, 32, 175–180. [Google Scholar] [CrossRef]
- Paschoal, M.A.; Tonon, C.C.; Spolidorio, D.M.P.; Bagnato, V.S.; Giusti, J.S.M.; Santos-Pinto, L. Photodynamic potential of curcumin and blue LED against Streptococcus mutans in a planktonic culture. Photodiagn. Photodyn. Ther. 2013, 10, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Manoil, D.; Filieri, A.; Gameiro, C.; Lange, N.; Schrenzel, J.; Wataha, J.C. Flow cytometric assessment of Streptococcus mutans viability after exposure to blue light-activated curcumin. Photodiagn. Photodyn. Ther. 2014, 11, 372–379. [Google Scholar] [CrossRef]
- Lee, H.J.; Kang, S.M.; Jeong, S.H.; Chung, K.H.; Kim, B.I. Antibacterial photodynamic therapy with curcumin and Curcuma xanthorrhiza extract against Streptococcus mutans. Photodiagn. Photodyn. Ther. 2017, 20, 116–119. [Google Scholar] [CrossRef] [PubMed]
- Tosati, J.V.; de Oliveira, E.F.; Oliveira, J.V.; Nitin, N.; Monteiro, A.R. Light-activated antimicrobial activity of turmeric residue edible coatings against cross-contamination of Listeria innocua on sausages. Food Control 2018, 84, 177–185. [Google Scholar] [CrossRef]
- Bonifacio, D.; Martins, C.; David, B.; Lemos, C.; Neves, M.; Almeida, A. Photodynamic inactivation of Listeria innocua biofilms with food-grade photosensitizers: A curcumin-rich extract of Curcuma longa vs. commercial curcumin. J. Appl. Microbiol. 2018, 125, 282–294. [Google Scholar] [CrossRef]
- Gayani, B.; Dilhari, A.; Wijesinghe, G.K.; Kumarage, S.; Abayaweera, G.; Samarakoon, S.R.; Perera, I.C.; Kottegoda, N.; Weerasekera, M.M. Effect of natural curcuminoids-intercalated layered double hydroxide nanohybrid against Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis: A bactericidal, antibiofilm, and mechanistic study. Microbiol. Open 2019, 8, 00723. [Google Scholar] [CrossRef]
- Packiavathy, I.A.S.V.; Priya, S.; Pandian, S.K.; Ravi, A.V. Inhibition of biofilm development of uropathogens by curcumin—An anti-quorum sensing agent from Curcuma longa. Food Chem. 2014, 148, 453–460. [Google Scholar] [CrossRef]
- Oda, Y. Inhibitory effect of curcumin on SOS functions induced by UV irradiation. Mutat. Res. 1995, 348, 67–73. [Google Scholar] [CrossRef]
- Tonon, C.C.; Paschoal, M.A.; Correia, M.; Spolidorio, D.M.P.; Bagnato, V.S.; Giusti, J.S.M.; Santos-Pinto, L. Comparative effects of photodynamic therapy mediated by curcumin on standard and clinical isolate of Streptococcus mutans. J. Contemp. Dent. Pract. 2015, 16, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.H.; Kim, S.B.; Kong, R.; Choi, J.G.; Kim, Y.C.; Shin, D.W.; Kang, O.H.; Kwon, D.Y. Curcumin Reverse Methicillin Resistance in Staphylococcus aureus. Molecules 2014, 19, 18283–18295. [Google Scholar] [CrossRef] [PubMed]
- Penha, C.B.; Bonin, E.; da Silva, A.F.; Hioka, N.; Zanqueta, E.B.; Nakamura, T.U.; de Abreu Filho, B.A.; Zanetti Campanerut-Sa, P.A.; Graton Mikcha, J.M. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin. Food Sci. Technol. 2017, 73, 198–202. [Google Scholar] [CrossRef]
- Jiang, Y.; Leung, A.W.; Hua, H.; Rao, X.; Xu, C. Photodynamic Action of LED-Activated Curcumin against Staphylococcus aureus Involving Intracellular ROS Increase and Membrane Damage. Int. J. Photoenergy 2014, 2014, 637601. [Google Scholar] [CrossRef]
- Rai, D.; Singh, J.K.; Roy, N.; Panda, D. Curcumin inhibits FtsZ assembly: An attractive mechanism for its antibacterial activity. Biochem. J. 2008, 410, 147–155. [Google Scholar] [CrossRef]
- Gordon, O.N.; Luis, P.B.; Sintim, H.O.; Schneider, C. Unraveling curcumin degradation: Autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione. J. Biol. Chem. 2015, 290, 4817–4828. [Google Scholar] [CrossRef]
- Chattopadhyay, I.; Biswas, K.; Bandhopadhyay, U.; Banerjee, R. Turmeric and curcumin: Biological actions and medicinal applications. Curr. Sci. 2004, 87, 44–53. [Google Scholar]
- Waghmare, P.F.; Chaudhary, A.U.; Karhadkar, V.M.; Jamkhande, A.S. Comparative evaluation of turmeric and chlorhexidine gluconate mouthwash in prevention of plaque formation and gingivitis: A clinical and microbiological study. J. Contemp. Dent. Pract. 2011, 12, 221–222. [Google Scholar] [CrossRef]
- Suhag, A.; Dixit, J.; Dhan, P. Role of Curcumin as a Subgingival Irrigant: A Pilot Study. Periodontal Pract. Today 2007, 4, 115–121. [Google Scholar]
- Deepika, M.S.; Thangam, R.; Vijayakumar, T.S.; Sasirekha, R.; Vimala, R.T.V.; Sivasubramanian, S.; Arun, S.; Babu, M.D.; Thirumurugan, R. Antibacterial synergy between rutin and florfenicol enhances therapeutic spectrum against drug resistant Aeromonas hydrophila. Microb. Pathog. 2019, 135, 103612–103625. [Google Scholar] [CrossRef]
- Kumbar, V.M.; Peram, M.R.; Kugaji, M.S.; Shah, T.; Patil, S.P.; Muddapur, U.M.; Bhat, K.G. Effect of curcumin on growth, biofilm formation and virulence factor gene expression of Porphyromonas gingivalis. Odontology 2021, 109, 18–28. [Google Scholar] [CrossRef]
- Izui, S.; Sekine, S.; Maeda, K.; Kuboniwa, M.; Takada, A.; Amano, A.; Nagata, H. Antibacterial Activity of Curcumin Against Periodontopathic Bacteria. J. Periodontol. 2016, 87, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Sui, Z.; Salto, R.; Li, J.; Craik, C.; Montellano, P.R.O. Inhibition of the HIV-1 and HIV-2 proteases by curcumin and curcumin boron complexes. Bioorg. Med. Chem. 1993, 1, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Shete, M.; Sonune, S.; Singh, P.; Shete, A.; Karande, P.; Chougule, Y. Curcumin: A Wonder Therapy for Oral Diseases. Eur. J. Biomed. Pharm. Sci. 2016, 6, 622–626. [Google Scholar]
- Imran, M.; Ullah, A.; Saeed, F.; Nadeem, M.; Arshad, M.U.; Suleria, H.A.R. Cucurmin, anticancer, & antitumor perspectives: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1271–1293. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Prasad, P.; Hussain, A.; Khan, I.; Kondaiah, P.; Chakravarty, A.R. Remarkable photocytotoxicity of curcumin in HeLa cells in visible light and arresting its degradation on oxovanadium(IV) complex formation. Chem. Commun. 2012, 48, 7702–7704. [Google Scholar] [CrossRef]
- Dweck, A.C. Natural ingredients for colouring and styling. Int. J. Cosmet. Sci. 2002, 24, 287–302. [Google Scholar] [CrossRef]
- Rao, Y.M.; Shayeda; Sujatha, P. Formulation and Evaluation of Commonly used Natural Hair Colorants. Nat. Prod. Rad. 2008, 7, 45–48. [Google Scholar]
- Xavier, M.R.; Santos, M.M.S.; Queiroz, M.G.; De Lima Silva, M.S.; Goes, A.J.S.; De Morais, M.A. Lawsone, a 2-hydroxy-1,4-naphthoquinone from Lawsonia inermis (henna), produces mitrochondrial dysfunctions and triggers mitophagy in Saccharomyces cerevisiae. Mol. Biol. Rep. 2020, 47, 1173–1185. [Google Scholar] [CrossRef]
- Mahkam, M.; Nabati, M.; Kafshboran, H.R. Isolation, identification and characterization of lawsone from henna leaves. Iran Chem. Commun. 2014, 2, 34–38. [Google Scholar]
- Color Index, 3rd ed.; Society of Dyers and Colourists: Bradford, UK, 1971; Volume 4, p. 4632.
- Bechtold, T. Natural colorants e quinoid, naphthoquinoid and anthraquinoid dyes. In Handbook of Natural Colorants; Bechtold, T., Mussak, R., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2009; pp. 153–156. [Google Scholar]
- Gulrajani, M.L.; Gupta, D.B.; Agarwal, V.; Jain, M. Some studies on natural yellow dyes, Part III: Quinones: Henna, Dolu. Indian Text. J. 1992, 102, 76–83. [Google Scholar]
- Mayer, F.; Cook, A.H. The Chemistry of Natural Colouring Matters; Reinhold Publishing Corporation: New York, NY, USA, 1943; p. 105. [Google Scholar]
- Mondal, M.I.H.; Sayeed, M.A.; Newaz, M.O.; Salam, M.A. Isolation of a natural dye isolated from the leaves of Lawsonia inermis Linn and its dyeing characteristics onto silk. Colourage 2009, 57, 52–56. [Google Scholar]
- Yusuf, M.; Ahmad, A.; Shahid, M.; Khan, M.I.; Khan, S.A.; Manzoor, N.; Mohammada, F. Assessment of colorimetric, antibacterial and antifungal properties of woollen yarn dyed with the extract of the leaves of henna (Lawsonia inermis). J. Clean. Prod. 2012, 27, 42–50. [Google Scholar] [CrossRef]
- Zibanejad, S.; Miraj, S.; Rafieian Kopaei, M.M. Healing effect of Quercus persica and Lawsonia inermis ointment on episiotomy wounds in primiparous women. J. Res. Med. Sci. 2020, 25, 11. [Google Scholar] [CrossRef]
- Dahake, P.R.; Kamble, S.I. Study on Antimicrobial Potential and Preliminary Phytochemical Screening of Lawsonia inermis Linn. Int. J. Pharm. Sci. Res. 2015, 6, 3344–3350. [Google Scholar]
- Ali, K.S.; Al-hood, F.A.; Obad, K.; Alshakka, M. Phytochemical Screening And Antibacterial Activity of Yemeni Henna (Lawsonia inermis) Against Some Bacterial Pathogens. IOSR J. Pharm. Biol. Sci. 2016, 11, 24–27. [Google Scholar]
- Ozaslan, M.; Zumutdal, M.E.; Daglioglu, K.; Kilic, I.H.; Karagoz, I.D.; Kalender, M.E.; Tuzcu, M.; Colak, O.; Cengiz, B. Antitumoral Effect of L. inermis in Mice with EAC. Int. J. Pharmacol. 2009, 4, 263–267. [Google Scholar] [CrossRef]
- Bairagi, G.B.; Kabra, A.O.; Mandade, R.J. Anthelmintic Activity of Citrus medica L. leaves in Indian Adult Earthworm. Int. J. Res. Pharmaceut. Biomed. Sci. 2011, 2, 237–240. [Google Scholar]
- Mikhaeil, B.R.; Badria, F.A.; Matooq, G.T.; Amer, M.A.A. Antioxidant and immunomodulatory constituents of henna leaves. Natureforsch 2004, 59, 468–476. [Google Scholar] [CrossRef]
- Muhammad, H.S.; Muhammad, S. The use of Lawsonia inermis linn. (henna) in the management of burn wound infections. Afr. J. Biotechnol. 2005, 4, 934–937. [Google Scholar]
- Saadabi, M.A.A. Evaluation of Lawsonia inermis L. (Sudanese Henna) Leaf extracts as an antimicrobial agent. Res. J. Biol. Sci. 2007, 2, 419–423. [Google Scholar]
- Kirkland, D.; Marzin, D. An assessment of the genotoxicity of 2-hydroxy-1,4-naphthoquinone, the natural dye ingredient of Henna. Mutat. Res. 2003, 537, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Kirkland, D.; Marzin, D. 2-Hydroxy-1,4-naphthoquinone, the natural dye of Henna, is non-genotoxic in the mouse bone marrow micronucleus test and does not produce oxidative DNA damage in Chinese hamster ovary cells. Mutat. Res. 2004, 560, 41–47. [Google Scholar] [CrossRef]
- Kirkland, D.J.; Henderson, L.; Marzin, D.; Muller, L.; Parry, J.M.; Speit, G.; Tweats, D.J.; Williams, G.M. Testing strategies in mutagenicity and genetic toxicology: An appraisal of the guidelines of the European Scientific Committee for Cosmetics and Non-Food Products for the evaluation of hair dyes. Mutat. Res. 2005, 588, 88–105. [Google Scholar] [CrossRef]
- Stompor-Goracy, M. The Health Benefits of Emodin, a Natural Anthraquinone Derived from Rhubarb-A Summary Update. Int. J. Mol. Sci. 2021, 22, 9522. [Google Scholar] [CrossRef]
- Chimi Fotso, S.; Tadjong, A.T.; Tsopgni, W.D.T.; Lenta, B.N.; Nkenfou, C.N.; Wansi, J.D.; Toze, F.A.A. Chemical constituents and antimicrobial activities of some isolated compounds from the Cameroonian species of Senna alata (Cassia alata L. Roxb synonym, The plant list 2013). (Leguminosae). Trends Phytochem. Res. 2021, 5, 37–43. [Google Scholar]
- Kengne, I.C.; Feugap, L.D.T.; Njouendou, A.J.; Ngnokam, C.D.J.; Djamalladine, M.D.; Ngnokam, C.D.J.; Djamalladine, M.D.; Ngnokam, D.; Voutquenne-Nazabadioko, L.; Tamokou, J.D.D. Antibacterial, antifungal and antioxidant activities of whole plant chemical constituents of Rumex abyssinicus. BMC Complement. Med. Ther. 2021, 21, 164. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, L.; Wang, H.; Chang, X.; Ren, S.; Lai, H.; Liu, L. Phytochemical profiles and antioxidant, anticholinergic, and antidiabetic activities of Odontites serotina (Lam.) Dum. Eur. J. Integr. Med. 2021, 44, 101340. [Google Scholar] [CrossRef]
- Stefanowicz, A.M.; Kapusta, P.; Stanek, M.; Frac, M.; Oszust, K.; Woch, M.W.; Zubek, S. Invasive plant Reynoutria japonica produces large amounts of phenolic compounds and reduces the biomass but not activity of soil microbial communities. Sci. Total Environ. 2021, 767, 145439. [Google Scholar] [CrossRef]
- Yu, M.; Chen, T.T.; Zhang, T.; Jia, H.M.; Li, J.J.; Zhang, H.W.; Zou, Z.M. Anti-inflammatory constituents in the root and rhizome of Polygonum cuspidatum by UPLC-PDA-QTOF/MS and lipopolysaccharide-activated RAW264.7 macrophages. J. Pharm. Biomed. Anal. 2021, 195, 113839. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.Y.; Huang, S.Q.; Zou, X.Q.; Zhong, X.B.; Yang, Y.F.; Zhang, Y.T.; Mi, Z.C.; Zhang, Y.S.; Huang, Z.G. Drug-containing serum of rhubarb-astragalus capsule inhibits the epithelial-mesenchymal transformation of HK-2 by downregulating TGF-β1/p38MAPK/Smad2/3 pathway. J. Ethnopharmacol. 2021, 280, 114414. [Google Scholar] [CrossRef]
- Shifa, M.; Abdissa, D.; Asere, T.G. Chemical Constituents of Rumex abyssinicus Roots and Evaluation of its Antibacterial Activities. J. Turk. Chem. Soc. A 2021, 8, 21–46. [Google Scholar] [CrossRef]
- Promgool, T.; Pancharoen, O.; Deachathai, S. Antibacterial and antioxidative compounds from Cassia alata Linn. J. Sci. Technol. 2014, 36, 459–463. [Google Scholar]
- Li, L.; Song, X.; Yin, Z.; JIa, R.; Li, Z.; Zhou, X.; Zou, Y.; Li, L.; Yin, L.; Yue, G. The antibacterial activity and action mechanism of emodin from Polygonum cuspidatum against Haemophilus parasuis in vitro. Microb. Res. 2016, 186–187, 139–145. [Google Scholar] [CrossRef]
- Chukwujekwu, J.C.; Coombes, P.H.; Mulholland, D.A.; Staden, J.S. Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis. Afr. J. Bot. 2006, 72, 295–297. [Google Scholar] [CrossRef]
- Sougiannis, A.T.; Enos, R.T.; VanderVeen, B.N.; Velazquez, K.T.; Kelly, B.; McDonald, S.; Cotham, W.; Chatzistamou, I.; Nagarkatti, M.; Fan, D. Safety of natural anthraquinone emodin: An assessment in mice. BMC Pharmacol. Toxicol. 2021, 22, 9. [Google Scholar] [CrossRef] [PubMed]
- Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Hendrich, A.B. Flavonoid-membrane interactions: Possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sin. 2006, 27, 27–40. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Ikigai, H.; Nakae, T.; Hara, Y.; Shimamura, T. Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta 1993, 1147, 132–136. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Iinuma, M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine 2000, 7, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Mori, A.; Nishino, C.; Enoki, N.; Tawata, S. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry 1987, 26, 2231–2234. [Google Scholar] [CrossRef]
- Bernard, F.X.; Sable, S.; Cameron, B.; Provost, J.; Desnottes, J.F.; Crouzet, J. Glycosylated flavones as selective inhibitors of topoisomerase IV. Antimicrob. Agents Chemother. 1997, 41, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Plaper, A.; Golob, M.; Hafner, I.; Oblak, M.; Solmajer, T.; Jerala, R. Characterization of quercetin binding site on DNA gyrase. Biochem. Biophys. Res. Commun. 2003, 306, 530–536. [Google Scholar] [CrossRef]
- Haraguchi, H.; Tanimoto, K.; Tamura, Y.; Mizutani, K.; Kinoshita, T. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry 1998, 48, 125–129. [Google Scholar] [CrossRef]
- Stapleton, P.D.; Shah, S.; Anderson, J.C.; Hara, Y.; Hamilton-Miller, J.M.T.; Taylor, P.W. Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. Int. J. Antimicrob. Agents 2004, 23, 462–467. [Google Scholar] [CrossRef]
- Xiao, Z.P.; Shi, D.H.; Li, H.Q.; Zhang, L.N.; Xu, C.; Zhu, H.L. Polyphenols based on isoflavones as inhibitors of Helicobacter pylori urease. Bioorg. Med. Chem. 2007, 15, 3703–3710. [Google Scholar] [CrossRef]
- Ansari, F.L.; Umbreen, S.; Hussain, L.; Makhmoor, T.; Nawaz, S.A.; Lodhi, M.A. Syntheses and biological activities of chalcone and 1,5-benzothiazepine derivatives: Promising new free-radical scavengers, and esterase, urease, and alpha-glucosidase inhibitors. Chem. Biodivers. 2005, 2, 487–496. [Google Scholar] [CrossRef]
- Garrett, D.O.; McDonald, L.A.C.; Wanderley, A.; Wanderley, C.; Miller, P.; Carr, J. An Outbreak of Neonatal Deaths in Brazil Associated with Contaminated Intravenous Fluids. J. Infect. Dis. 2002, 186, 81–86. [Google Scholar] [CrossRef]
- Choi, O.; Yahiro, K.; Morinaga, N.; Miyazaki, M.; Noda, M. Inhibitory effects of various plant polyphenols on the toxicity of Staphylococcal α-toxin. Microb. Pathog. 2007, 42, 215–224. [Google Scholar] [CrossRef]
- Oh, D.R.; Kim, J.R.; Kim, Y.R. Genistein inhibits Vibrio vulnificus adhesion and cytotoxicity to HeLa cells. Arch. Pharm. Res. 2010, 33, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Stapleton, P.D.; Taylor, P.W. The polyphenol (−)-epicatechin gallate disrupts the secretion of virulence-related proteins by Staphylococcus aureus. Lett. Appl. Microbiol. 2008, 46, 181–185. [Google Scholar] [CrossRef]
- Bhatt, T.; Patel, K. Carotenoids: Potent to Prevent Diseases Review. Nat. Prod. Bioprospect. 2020, 10, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Rios, J.L.; Recio, M.C.; Ginger, R.M.; Manz, S. An Update Review of Saffron and its Active Constituents. Phytother. Res. 1996, 10, 189–193. [Google Scholar] [CrossRef]
- Licón, C.C.; Carmona, M.; Rubio, R.; Molina, A.; Berruga, M.I. Preliminary study of saffron (Crocus sativus L. stigmas) color extraction in a dairy matrix. Dyes Pigments 2012, 92, 1355–1360. [Google Scholar] [CrossRef]
- Hatta, M.; Othman, R.; Mat Ali, Q.A.; Mohd Hassan, N.; Ramya, R.; Wan Sulaiman, W.S.; Mohd Latiff, N.H.; Mohd Kashim, M.I.A. Carotenoids composition, antioxidant and antimicrobial capacities of Crocus sativus L. stigma. Food Res. 2023, 7, 337–343. [Google Scholar] [CrossRef]
- Licón, C.; Carmona, M.; Llorens, S.; Berruga, M.I.; Alonso, G.L. Potential healthy effects of saffron spice (Crocus sativus L. stigmas) consumption. Funct. Plant Sci. Biotech. 2010, 4, 64–73. [Google Scholar]
- Vahidi, H.; Kamalinejad, M.; Sedaghati, N. Antimicrobial Properties of Croccus sativus L. Iran. J. Pharm. Sci. 2002, 1, 33–35. [Google Scholar]
- Jinous, A.; Elahe, D.M.; Arash, M.; Rezvan, M.; Mojdeh, H. In-Vitro Evaluation of Crocus sativus L. Petals and Stamens as Natural Antibacterial Agents Against Food-Borne Bacterial Strains. Iran. J. Pharm. Sci. 2013, 9, 69–82. [Google Scholar]
- Okmen, G.; Kardas, S.; Bayrak, D.; Arslan, A.; Cakar, H. The Antibacterial Activities of Crocus Sativus against Mastitis Pathogens and its Antioxidant Activities. World J. Pharm. Pharm. Sci. 2016, 5, 146–156. [Google Scholar]
- Escribano, J.; Alonso, G.L.; Coca-Prados, M.; Fernandez, J.A. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett. 1996, 100, 23–30. [Google Scholar] [CrossRef]
- Xuan, B.J. Effects of crocin analogs on ocular blood flow and retinal function. Ocul. Pharmacol. Ther. 1999, 15, 143–152. [Google Scholar] [CrossRef]
- Khan, U.M.; Sevindik, M.; Zarrabi, A.; Nami, M.; Ozdemir, B.; Kaplan, D.N.; Selamoglu, Z.; Hasan, M.; Kumar, M.; Alshehri, M.M. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxid. Med. Cell. Longev. 2021, 2021, 2713511. [Google Scholar] [CrossRef] [PubMed]
- Ilahy, R.; Tlili, I.; Siddiqui, M.W.; Hdider, C.; Lenucci, M.S. Inside and Beyond Color: Comparitive Overview of Functional Qulaity of Tomato and Watermelon Fuits. Front. Plant Sci. 2019, 10, 769. [Google Scholar] [CrossRef]
- Martí, R.; Roselló, S.; Cebolla-Cornejo, J. Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Preventin. Cancers 2016, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Le Maguer, M. Lycopene in tomatoes: Chemical and physical properties affected by food processing. Crit. Rev. Biotechnol. 2000, 20, 293–334. [Google Scholar] [CrossRef]
- Binsuwaidan, R.; El-Masry, T.A.; El-Nagar, M.M.F.; El Zahaby, E.I.; Gaballa, M.M.S.; El-Bouseary, M.M. Investigating the Antibacterial, Antioxidant, and Anti-Inflammatory Properties of a Lycopene Selenium Nano-Formulation: An In Vitro and In Vivo Study. Pharmaceuticals 2024, 17, 1600. [Google Scholar] [CrossRef]
- Divyadharsini, V.; Uma Maheswari, T.S.R. Assessment of Antimicrobial Activity of Lycopene, Vitamin E, and Lycopene-Vitamin E Combination Against Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis, and Candida albicans: An In Vitro Study. Cureus 2023, 15, 42419. [Google Scholar] [CrossRef]
- Sung, W.S.; Lee, I.S.; Lee, D.G. Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans. J. Microbiol. Biotechnol. 2007, 17, 1797–1804. [Google Scholar] [PubMed]
- Al-Oqaili, R.M.; Mohammed, B.B.; Salman, I.M.; Asaad, D.A. Antibacterial Activity of Hibiscus rosa-sinensis Extract and Synergistic Effect with Amoxicillin against some Human Pathogens. Food Sci. Qual. Manag. 2014, 27, 12–17. [Google Scholar]
- Lee, W.; Lee, D.G. Lycopene-induced hydroxyl radical causes oxidative DNA damage in Escherichia coli. J. Microbiol. Biotechnol. 2014, 24, 1232–1237. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef]
- Cantrill, R. Paprika extract. Chem. Tech. Assess. CTA 2008, 11, 2. [Google Scholar]
- Molina, R.D.I.; Campos-Silva, R.; Díaz, M.A.; Macedo, A.J.; Blázquez, M.A.; Alberto, M.R.; Arena, M.E. Inhibition of bacterial virulence factors of foodborne pathogens by paprika (Capsicum annuum L.) extracts. Food Control 2022, 133, 108568. [Google Scholar] [CrossRef]
- Singh, Y.; Gupta, A.; Kannojia, P. Tagetes erecta (Marigold)—A review on its phytochemical and medicinal properties. Curr. Med. Drug Res. 2020, 4, 201. [Google Scholar] [CrossRef]
- Mekvimol, T.; Poonthona, G.; Chaipunna, C.; Pumipuntu, N. Antimicrobial activity of marigold (Tagetes erecta), mulberry (Morus indica), and red shallot (Allium ascalonicum) extracts against Streptococcus agalactiae. Int. J. One Health 2020, 6, 56–60. [Google Scholar] [CrossRef]
- Pramitha, D.A.I.; Sibarani, J.; Suaniti, M. Sifat fisikokimia hand and body cream dengan pemanfaatan ekstrak etanol bunga gemitir (Tagetes erecta L.) dan bunga pacar air merah (Impatiens balsamina L.) dari limbah canang. Indones E-J. Appl. Chem. 2017, 5, 1–11. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; Zhang, H.; Chen, X.; Liang, F.; Qin, H.; Zhang, Y.; Cong, R.; Xin, H.; Zhang, Z. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L.). Sci. Rep. 2020, 10, 1. [Google Scholar] [CrossRef]
- Philip, T.; Berry, J.W. A Process for the Purification of Lutein-Fatty Acid Esters from Marigold Petals. J. Food Sci. 1976, 41, 163–164. [Google Scholar] [CrossRef]
- Dixit, P.; Tripathi, S.; Verma, N.K. A Brief Study on Marigold (Tagetes Species): A review. Int. Res. J. Pharm. 2013, 4, 43–48. [Google Scholar]
- Vasudevan, P.; Kashyap, S.; Sharma, S. Tagetes: A multipurpose plant. Bioresour. Technol. 1997, 62, 29–35. [Google Scholar] [CrossRef]
- Dasgupta, N.; Ranjan, S.; Saha, P.; Jain, R.; Malhotra, S.; Saleh, M.A. Antibacterial Activity of Leaf Extract of Mexican Marigold against Different Gram Positive and Gram Negative Bacterial Strains. J. Pharm. Res. 2012, 5, 4201–4203. [Google Scholar]
- Rhama, S.; Madhavan, S. Antibacterial Activity of the Flavonoid, patulitrin isolated from the flowers of Tagetes erecta L. Int. J. PharmTech Res. 2011, 3, 1407–1409. [Google Scholar]
- Jafari, B.; Ahmadizadeh, C. Antibacterial Effects of Marigold (Tagetes patula) Extracts on Postharvest Diseases. Electron. J. Biol. 2017, 13, 348–352. [Google Scholar]
- Mandias, I.I.; Yamlean, P.; Abdullah, S.S. Formulation and Test of Antibacterial Activity Mask Peel-Off Gel Fraction of Cocoa Fruit Skin (Theobroma cacao L.) Against Staphylococcus aureus as an anti-acne. Pharmacon 2022, 11, 1813–1824. [Google Scholar]
- Verma, V.; Joshi, C.P.; Agarwal, A.; Soni, S.; Kataria, U. A Review on Pharmacological Aspects of Pyrimidine Derivatives. J. Drug Deliv. Ther. 2020, 10, 358–361. [Google Scholar] [CrossRef]
- Cahyaningrum, P.L.; Yuliari, S.A.M.; Mediastari, A.P.A. Effectiveness of Marigold Flower (Tagetes erecta L.) Soap Preparation Against Staphylococcus aureus and Escherichia coli. J. Muhammadiyah Med. Lab. Technol. 2020, 3, 11–24. [Google Scholar] [CrossRef]
- Patrick, R.S.; Marijo, C.; Sandra, R. Antimicrobial activity of flavonoids from Piper lanceaefolium and other Colombian medicinal plants against antibiotic susceptible and resistant strains of Neisseria gonorrhoeae. Sex. Transm. Dis. 2011, 38, 81–88. [Google Scholar] [CrossRef]
- Padalia, H.; Chand, S. Antimicrobial Efficacy of Different Solvent Extracts of Tagetes erecta L. Flower, Alone and in Combination with Antibiotics. Appl. Microbiol. 2015, 1, 1000106. [Google Scholar] [CrossRef]
- Edy, H.J.; Parwanto, M.L.E. Pemanfaatan tanaman Tagetes erecta Linn. dalam kesehatan. J. Biomed. Dan Kesehat. 2019, 2, 77–80. [Google Scholar] [CrossRef]
- Kresnapati, I.N.B.A.; Khaerunnisa, S.; Safitri, I. Ethanol Extract of Marigold Flower (Tagetes erecta L.) Decreases The Total Cholesterol, Low Density Lypoprotein (LDL), Malondialdehyde (MDA), and Apoliprotein B (APOB) on Hyperlipidemia Rat Models. Folia Med. Indones. 2021, 57, 245–249. [Google Scholar] [CrossRef]
- Selvam, S.I.; Joicesky, S.M.B.; Dashli, A.A.; Vinothini, A.; Premkumar, K. Assessment of anti bacterial, anti inflammation and wound healing activity in Wistar albino rats using green silver nanoparticles synthesized from Tagetes erecta leaves. J. Appl. Nat. Sci. 2021, 13, 343–351. [Google Scholar] [CrossRef]
- Collins, P. Natural Colours—A Question of Stability. Food Ingred. Eur. Conf. Proc. 1992, 60. [Google Scholar]
- Islam, S.; Rather, L.J.; Mohammad, F. Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications—A review. J. Adv. Res. 2016, 7, 499–514. [Google Scholar] [CrossRef]
- Kang, E.J.; Campbell, R.E.; Bastian, E.; Drake, M.A. Invited review: Annatto usage and bleaching in dairy foods. J. Dairy Sci. 2010, 93, 3891–3901. [Google Scholar] [CrossRef]
- Venugopalan, A.; Giridhar, P.; Ravishankar, G.A. Food, Ethanobotancal and Diversified Applications of Bixa orellana L.: A Scope for its Improvemnet Through Biotechnological Mediation. Ind. J. Fundament. Appl. Life Sci. 2011, 1, 9–31. [Google Scholar]
- Scotter, M. The chemistry and analysis of annatto food colouring: A review. Food Addit. Contam. 2009, 26, 1123–1145. [Google Scholar] [CrossRef]
- Alonso, J. Tratado de Fitofarmacosy Nutraceuticos; Corpus: Rosario, Argentina, 2004; ISBN 9789871860630. [Google Scholar]
- Mercadante, A.Z.; Steck, A.; Pfander, H. Isolation and structure elucidation of minor carotenoids from annatto (Bixa orellana L.) seeds. Phytochemistry 1997, 46, 1379–1383. [Google Scholar] [CrossRef]
- Rao, P.G.P.; Jyothirmayi, T.; Balaswamy, K.; Satyanarayana, A.; Rao, D.G. Effect of processing conditions on the stability of annatto (Bixa orellana L.) dye incorporated into some foods. LWT-Food Sci. Technol. 2005, 38, 779–784. [Google Scholar] [CrossRef]
- Tirimanna, A.S.L. Study of the Carotenoid Pigments of Bixa orellana L. Seeds by, Thin layer Chromatography. Mikrochim. Acta 1981, 1–2, 11. [Google Scholar] [CrossRef]
- Fleischera, T.C.; Ameadea, E.P.K.; Mensaha, M.L.K.; Sawerb, I.K. Antimicrobial activity of the leaves and seeds of Bixa orellana. Fitoterapia 2003, 74, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Selvi, A.T.; Dinesh, M.G.; Satyan, R.S.; Chandrasekaran, B.; Rose, C. Leaf and Seed extracts of Bixa orellana L. exert anti-microbial activity against bacterial pathogens. J. Appl. Pharm. Sci. 2011, 1, 116–120. [Google Scholar]
- Viuda-martos, M.; Ciro-go’mez, G.L.; Ruiz-navajas, Y.; Zapatamontoya, J.E.; Sendra, E.; Pérez-Álvarez, J.A. In vitro Antioxidant and Antibacterial Activities of Extracts from Annatto (Bixa orellana L.) Leaves and Seeds. J. Food Saf. 2012, 32, 399–406. [Google Scholar] [CrossRef]
- Braga, F.G.; Bouzada, M.L.M.; Fabri, R.L.; Matos, M.; Moreira, F.O.; Scio, E. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J. Ethnopharmacol. 2007, 111, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Castello, M.; Phatak, A.; Chandra, N.; Sharon, M. Antimicrobial activity of crude extracts from plant parts and corresponding calli of Bixa orellana L. Ind. J. Exp. Bio. 2002, 40, 1378–1381. [Google Scholar]
- Solkar, L.V.; Kakkar, K.K.; Chakre, O.J. Second Supplement to Glossary of Indian Medicinal Plants with Active Principles, Part-1 (A-K); CSIR, Orient Longmann: New Delhi, India, 1992. [Google Scholar]
- Galindo-Cuspinera, V.; Lubran, M.B.; Rankin, S.A. Comparison of volatile compounds in water- and oil-soluble annatto (Bixa orellana L.) extracts. J. Agric. Food Chem. 2002, 50, 2010–2015. [Google Scholar] [CrossRef]
- Stohs, S.J. Safety and efficacy of shilajit (mumie, moomiyo). Phytother. Res. 2014, 28, 956–960. [Google Scholar] [CrossRef]
- Naganuma, M. Treatment with indigo naturalis for inflammatory bowel disease and other immune diseases. Immunol. Med. 2019, 42, 16–21. [Google Scholar] [CrossRef]
- Yu, H.; Li, T.N.; Ran, Q. Strobilanthes cusia (Nees) Kuntze, a multifunctional traditional Chinese medicinal plant, and its herbal medicines: A comprehensive review. J. Ethnopharmacol. 2020, 265, 113325. [Google Scholar] [CrossRef] [PubMed]
- Chiang, Y.R.; Li, A.; Leu, Y.L. An in vitro study of the antimicrobial effects of indigo naturalis prepared from Strobilanthes formosanus Moore. Molecules 2013, 18, 14381–14396. [Google Scholar] [CrossRef]
- Andreazza, N.L.; de Lourenço, C.C.; Stefanello, M. Photodynamic antimicrobial effects of bis-indole alkaloid indigo from Indigofera truxillensis Kunth (Leguminosae). Lasers Med. Sci. 2015, 30, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, K.; Ramasamy, M.; Savarimuthu, I.; Paulraj, M.G. Indirubin potentiates ciprofloxacin activity in the NorA efflux pump of Staphylococcus aureus. Scand. J. Infect. Dis. 2010, 42, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Brawley, D.N.; Sauer, D.B.; Li, J.; Zheng, X.; Koide, A.; Jedhe, G.S.; Suwatthee, T.; Song, J.; Liu, Z.; Arora, P.S.; et al. Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus. Nat. Chem. Biol. 2022, 18, 706–712. [Google Scholar] [CrossRef]
- Bhat, S.A.; Zargar, M.I.; Wani, S.D.; Mohiuddin, I.; Masoodi, M.H.; Shakeel, F.; Ali, M.; Mehdi, S. In-vitro evaluation of Indigofera heterantha extracts for antibacterial, antifungal and anthelmintic activities. J. Pharm. Health Care Sci. 2024, 10, 7. [Google Scholar] [CrossRef]
- Leite, S.P.; Vieira, J.R.C.; de Medeiros, P.L.; Leite, R.M.P.; Lima, V.L.M.; Xavier, H.S.; Lima, E.O. Characterization of Morinda citrifolia L. (noni) fruit. Adv. Access Publ. CAM 2006, 3, 261–265. [Google Scholar]
- Dahot, M.U. Antibacterial and antifungal activity of small protein of Indigofera oblongifolia leaves. J. Ethnopharmacol. 1999, 64, 277–282. [Google Scholar] [CrossRef]
- Ali, A.N.; Attif, O.A.; Mohammed, M.I. Herbal medicine in two Yemeni provinces. Yemen Med. J. 1999, 3, 13–20. [Google Scholar]
- Esimone, C.O.; Adikwu, M.U.; Muko, K.N. Antimicrobial properties of Indigofera dendroides leaves. Fitoterapia 1999, 70, 517–520. [Google Scholar] [CrossRef]
- El–Khatib, E.M.; Ali, N.F.; El–Mohamedy, R.S.R. Influence of Neen Oil Pretreatment on the Dyeing and Antimicrobial Properties of Wool and Silk Fibers with Some Natural Dyes. Arab. J. Chem. 2020, 13, 1094–1104. [Google Scholar] [CrossRef]
- Reshma, A.; Priyadarisini, V.; Amutha, K. Sustainable Antimicrobial finishing of fabrics using Natural Bioactive Agents—A Review. Int. J. Life Sci. Pharm. Res. 2018, 8, 10–20. [Google Scholar] [CrossRef]
- Rani, J.; Singh, S. Antimicrobial Properties of Herbal Dyes of Indian Medicinal Plants. Tex. Leather Rev. 2022, 5, 199–222. [Google Scholar] [CrossRef]
- Reddy, Y.R.R.; Kumari, C.K.; Lokanatha, O.; Mamatha, S.; Reddy, C.D. Antimicrobial activity of Azadirachta indica (neem) leaf, bark and seed extracts. Int. J. Res. Phytochem. Pharmacol. 2013, 3, 1–4. [Google Scholar]
- Pennington, T.D. Sapotaceae. In Flora Neotropica; New York Botanical Garden Press: New York, NY, USA, 1990. [Google Scholar]
- Rojanapo, W.; Suwanno, S.; Somaree, R.; Glinsukon, T.; Thebtaranonth, Y. Mutagenic and AntibacterialActivity Testing of Nimbolide and Nimbic Acid. J. Sci. Soc. Thailand 1985, 11, 177–181. [Google Scholar] [CrossRef]
- Khalid, S.A.; Duddect, H.; Gonzalez-Sierra, M.J. Isolation and characterization of an antimalarial agent of the neem tree Azadirachta indica. J. Nat. Prod. 1989, 52, 922–927. [Google Scholar] [CrossRef]
- Subapriya, R.; Nagini, S. Medicinal properties of neem leaves: A review. Curr. Med. Chem. Anticancer Agents 2005, 5, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Sharma, D.; Kumar, D.; Singh, G.; Swami, G.; Rathore, M.S. Formulation, Development, and Evaluation of Herbal Effervescent Mouthwash Tablet Containing Azadirachta Indica (Neem) and Curcumin for the Maintenance of Oral Hygiene. Recent Pat. Drug Deliv. Formul. 2020, 14, 145–161. [Google Scholar] [CrossRef]
- Mistry, K.S.; Sanghvi, Z.; Parmar, G.; Shah, S.; Pushpalatha, K. Antibacterial efficacy of Azadirachta indica, Mimusops elengi and 2% CHX on multispecies dentinal biofilm. J. Conserv. Dent. 2015, 18, 461–466. [Google Scholar] [CrossRef]
- Subramaniam, S.K.; Siswomihardjo, W.; Sunarintyas, S. The effect of different concentrations of Neem (Azadiractha indica) leaves extract on the inhibition of Streptococcus mutans (In vitro). Dent. J. 2005, 38, 176–179. [Google Scholar] [CrossRef]
- Christy, S.; Nivedhitha, M.S. Antimicrobial Efficacy of Azadirachta indica against Streptococcus mutans—An In vitro Study. Asian J. Pharm. Technol. 2019, 9, 149–153. [Google Scholar] [CrossRef]
- Witebsky, F.G.; Maclowry, J.D.; French, S.S. Broth dilution minimum inhibitory concentrations: Rationale for use of selected antimicrobial concentrations. J. Clin Microbiol. 1979, 9, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, J.; Makwana, P.; Suresh Kumar, R.S.; Sundaramoorthy, R.; Mukherjee, A.; Chandrasekaran, N. Antibacterial activity of neem nanoemulsion and its toxicity assessment on human lymphocytes in vitro. Int. J. Nanomed. 2015, 10, 77–86. [Google Scholar] [CrossRef]
- Harikrishnan, R.; Kim, M.; Kim, J.; Balasundaram, C.; Jawahar, S.; Heo, M. Identification and Antimicrobial Activity of Combined Extract from Azidirachta Indica and Ocimum sanctum. Isr. J. Aquac. 2010, 62, 85–95. [Google Scholar]
- Tutak, M.; Acar, G.; Akman, O. Natural Dyeing Properties of Wool fabrics by Pomegranate (Punica granatum) Peel. Tekst. Ve Konfeksiyon 2014, 24, 81–85. [Google Scholar]
- Seeram, N.P.; Zhang, Y.; Reed, J.D.; Krueger, C.G.; Vaya, J. Pomegranate phytochemicals. In Pomegranates: Ancient Roots to Modern Medicine; CRC Press: Boca Raton, FL, USA; Taylor and Francis Book: Abingdon, UK, 2006; pp. 3–29. [Google Scholar]
- Tzulker, R.; Glazer, I.; Bar-Ilan, I.; Holland, D.; Aviram, M.; Amir, R. Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. J. Agric. Food Chem. 2007, 55, 9559–9570. [Google Scholar] [CrossRef]
- Farmahan, H.L. Pomegranate. In Recent Trends in Horticulture in the Himalayas; Jindal, K.K., Sharma, R.C., Eds.; Indus: New Dehli, India, 2004; p. 139. [Google Scholar]
- Jayaprakasha, G.K.; Negi, P.S.; Jena, B.S. Antimicrobial activities of pomegranate. In Pomegranates: Ancient Roots to Modern Medicine; Seeram, N.P., Schulman, R.N., Heber, D., Eds.; CRC Press: New York, NY, USA, 2006; p. 168. [Google Scholar]
- Khare, C.P. Indian Herbal Remedies, Rational Western Therapy, Ayurvedic and Other Traditional Usage; Springer: Berlin/Heidelberg, Germany, 2004; pp. 390–392. [Google Scholar]
- Nair, R.; Chanda, S. Antimicrobial activity of Terminalia catappa, Manilkara zapota and Piper betel leaf extract. Indian J. Pharm. Sci. 2008, 70, 390–393. [Google Scholar]
- Shahid, M.; ul-Islam, S.; Rather, L.J.; Manzoor, N.; Mohammad, F. Simultaneous shade development, antibacterial, and antifungal functionalization of wool using Punica granatum L. Peel extract as a source of textile dye. J. Nat. Fibers 2019, 16, 555–566. [Google Scholar] [CrossRef]
- Lee, Y.H.; Hwang, E.K.; Baek, Y.M.; Lee, M.S.; Lee, D.J.; Jung, Y.J.; Kim, H. Deodorizing and Antibacterial Performance of Cotton, Silk and Wool Fabrics Dyed with Punica granatum L. Extracts. Fibers Polym. 2013, 14, 1445–1453. [Google Scholar] [CrossRef]
- Voravuthikunchai, S.; Lortheeranuwat, A.; Jeeju, W.; Sririrak, T.; Phongpaichit, S.; Supawita, T. Effective medicinal plants against enterohaemorrhagic Escherichia coli O157:H7. J. Ethnopharm. 2004, 94, 49–54. [Google Scholar] [CrossRef]
- Voravuthikunchai, S.P.; Limsuwan, S. Medicinal plant extracts as anti-Escherichia coli O157:H7 agents and their effects on bacterial cell aggregation. J. Food Prot. 2006, 69, 2336–2341. [Google Scholar] [CrossRef]
- P’erez, C.; Anesini, C. In vitro antibacterial activity of Argentine folk medicinal plants against Salmonella typhi. J. Ethnopharm. 1994, 44, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Rani, P.; Khullar, N. Antimicrobial evaluation of some medicinal plants for their anti-enteric potential against multi-drug resistant Salmonella typhi. Phytother. Res. 2004, 18, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Mathabe, M.C.; Nikolova, R.V.; Lall, N.; Nyazema, N.Z. Antibacterial activities of medicinal plants used for the treatment of diarrhoea in Limpopo Province, South Africa. J. Ethnopharm. 2006, 105, 286–293. [Google Scholar] [CrossRef]
- Guevara, J.M.; Chumpitaz, J.; Valencia, E. The in vitro action of plants on Vibrio cholerae. Rev. Gastroenterol. Peru 1994, 14, 27–31. [Google Scholar]
- Al-Zoreky, N.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 2009, 134, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Alan’ıs, A.D.; Calzada, F.; Cervantes, J.A.; Torres, J.; Ceballos, G.M. Antibacterial properties of some plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. J. Ethnopharm. 2005, 100, 153–157. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. Potential application of spice and herb extracts as natural preservatives in cheese. J. Med. Food 2011, 14, 284–290. [Google Scholar] [CrossRef]
- Lucas, D.L.; Were, L.M. Antimicrobial activity of chitosan against Campylobacter spp. and other microorganisms and its mechanism of action. J. Food Prot. 2009, 72, 2508–2516. [Google Scholar] [CrossRef]
- Tayel, A.; El-Tras, W.; Moussa, S.; El-Sabbagh, S. Surface decontamination and quality enhancement in meat steaks using plant extracts as natural biopreservatives. Foodborne Pathog. Dis. 2012, 9, 755–761. [Google Scholar] [CrossRef]
- Vaithiyanathan, S.; Naveena, B.M.; Muthukumar, M.; Girish, P.S.; Kondaiah, N. Effect of dipping in pomegranate (Punica granatum) fruit juice phenolic solution on the shelf life of chicken meat under refrigerated storage (4 °C). Meat Sci. 2011, 88, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Karabiyikli, S.; Kisla, D. Inhibitory effect of sour pomegranate sauces on some green vegetables and kisir. Int. J. Food Microbiol. 2012, 155, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Bialonska, D.; Ramnani, P.; Kasimsetty, S.G.; Muntha, K.R.; Gibson, G.R.; Ferreira, D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int. J. Food Microbiol. 2010, 140, 175–182. [Google Scholar] [CrossRef]
- Bialonska, D.; Kasimsetty, S.G.; Schrader, K.K.; Ferreira, D. The effect of pomegranate (Punica granatum L.) byproducts and ellagitannins on the growth of human gut bacteria. J. Agric. Food Chem. 2009, 57, 8344–8349. [Google Scholar] [CrossRef]
- Jami, E.; Shabtay, A.; Nikbachat, M. Effects of adding a concentrated pomegranate-residue extract to the ration of lactating cows on in vivo digestibility and profile of rumen bacterial population. J. Dairy Sci. 2012, 95, 5996–6005. [Google Scholar] [CrossRef]
- Kulkarni, S.S.; Gokhale, A.V.; Bodake, U.M.; Pathade, G.R. Cotton Dyeing with Natural Dye Extracted from Pomegranate (Punica granatum) Peel. Univ. J. Environ. Res. Technol. 2011, 1, 135–139. [Google Scholar]
- Luan, F.; Xu, X.; Liu, H.; Cordeiro, M.N. Review of quantitative structure-activity/property relationship studies of dyes: Recent advances and perspectives. Color. Technol. 2013, 129, 173–186. [Google Scholar] [CrossRef]
- Swamy, V.N.; Gowda, K.N.; Sudhakar, R. Extraction and dyeing conditions of natural dye from flowers of Plumeria rubra L. on textiles and fastness properties. Indian J. Trad. Knowl. 2016, 15, 278–284. [Google Scholar]
- Wang, H.; Tang, Z.; Zhou, W. A method for dyeing cotton fabric with anthocyanin dyes extracted from mulberry (Morus rubra) fruits. Color. Technol. 2016, 132, 222–231. [Google Scholar] [CrossRef]
- Shahid, M.; Ahmad, A.; Yusuf, M.; Khan, M.I.; Khan, S.A.; Manzoor, N. Dyeing, fastness and antimicrobial properties of woolen yarns dyed with gallnut (Quercus infectoria Oliv.) extract. Dyes Pigments 2012, 95, 53–61. [Google Scholar] [CrossRef]
- Sarkar, A.K. An evaluation of UV protection imparted by cotton fabrics dyed with natural colorants. BMC Dermatol. 2004, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, M.; Mohammad, F.; Shabbir, M. Natural Colorants: Historical, Processing and SustainableProspects. Nat. Prod. Bioprospect. 2017, 7, 123–145. [Google Scholar] [CrossRef] [PubMed]
Section | Natural Colorants | Color Index | Source/s (Plant-Derived) | Common Names for Major Active Chemical Components | IUPAC Names for Major Active Chemical Components |
---|---|---|---|---|---|
Section 2.1 | Curcumin | CI 75300 | Turmeric, a plant in Zingiberacea family. Mainly the bulbs are used. | Curcumin, demethoxy curcumin, bis-demethoxy curcumin. | (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl) hepta-1,6-diene-3,5-dione; (1E, 6E)-1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl) hepta-1,6-diene-3,5-dione; (1E, 6E)-1,7-bis(4-hydroxyphenyl) hepta-1,6-diene-3,5-dione |
Section 2.2 | Lawsone | CI 75480 | Commonly known as Henna, from the plant Lawsonia inermis; mostly the dried and powdered leaves are used to impart color. | Lawsone | 2-hdroxy-1,4-naphthoquinone |
Section 2.3 | Emodin | CI 75410 | Most commonly found in Rhubarb, plant name Rheum rhabarbarum. Different parts of the plant are used. | Emodin | 1,3,6,8-tetrahydroxy-4a,9a-dihydroanthracene-9,10-dione |
Section 2.4 | Flavonoids | Quercetin: CI 75670 Rutin: CI 75730 | Strawberries, blueberries, raspberries, orange, grapefruit, red cabbage, onion, and many other colored fruits and vegetables. | Flavone, Flavanone, Flavan-3-ol (catechin), Chalcone, Flavanol, and Flavolan. | 2-phenyl-4H-chromen-4-one; 3-hydroxy-2-phenyl-4H-chromen-4-one; S-2-phenylchroman-4-one; (2R, 3S)-2-phenylchroman-3-ol; E-chalcone |
Section 2.5.1 | Crocus | CI 75100 | Plant Crocus sativus Linn. Mainly the stigma and style of the flower is used. | Crocin and Picrocrocin | Bis-(3,4,5-trihydroxy-6-(((3,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2h-pyran-2-yl) oxy) methyl) tetrahydro-2H-pyran-2-yl) (2E, 4E, 6E, 8E, 10E, 12E, 14E)-2,6,11,15-tetramethylhexadeca-2,4,6,8,10,12,14-heptaenedioate; 2,6,6-trimethyl-4-((3,4,5-trihydroxy-6-(hydroxymethyl) tetrahydro-2H-pyran-2-yl) oxy) cyclohex-1-ene-1-carbaldehyde |
Section 2.5.2 | Lycopene | CI 75125 | From the plant Solanum lycopersicum. The fruits, tomatoes, are used. | Lycopene | (6E, 8E, 10E, 12E, 14E, 16E, 18E, 20E, 22E, 24E, 26E)-2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,8,10,12,14,16,18,20,22,24,26,30-tridecaene |
Section 2.5.3 | Capsanthin & Capsorubin | Capsanthin: CI 75120 Capsorubin: CI 75125 | From the plant Capsicum annuum. The fruit, paprika, is used. | Capsanthin and Capsorubin | (2E, 4E, 6E, 8E, 10E, 12E, 14E, 16E, 18E)-1-((1R,4S)-4hydroxy-1,2,2-trimethylcyclopentyl)-19(®-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-4,8,13,17-tetrameylnonadeca-2,4,6,8,10,12,14,16,18-nonaen-1-one; (2E, 4E, 6E, 8E, 10E, 12E, 14E, 16E, 18E)-1,20-bis((1R,4S)-4-hydroxy-1,2,2-trimethylcyclopentyl)-4,8,13,17-tetramethylcosa-2,4,6,8,10,12,14,16,18-nonaene-1,20-dione |
Section 2.5.4 | Lutein | CI 75135 | From the plant Tagetes. The flower, called marigold, is used. | Lutein | 4-((1E,3 E, 5E, 7E, 9E, 11E, 13E, 15E, 17E)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl)-3,5,5-trimethylcyclohex-2-en-1-ol |
Section 2.5.5 | Bixin & Norbixin | Bixin: CI 75120 Norbixin: CI 75125 | From the plant Bixa orellana. Mainly the seeds of the plant are used. | Bixin and Norbixin | (2E, 4E, 6E, 8E, 10E, 12E, 14E, 16E, 18E)-20-methoxy-4,8,13,17-tetramethyl-20-oxoicosa-2,4,6,8,10,12,14,16,18-nonaenoic acid; (2E, 4E, 6E, 8E, 10E, 12E, 14E, 16E, 18E)-4,8,13,17-tetramethylcosa-2,4,6,8,10,12,14,16,18-nonaenedioic acid |
Section 2.6 | Indigo | CI 73000 | From the plant Indigofera tinctorial. Dried and powdered leaves are used. | Indigo, Indirubin, and Isoindigo. | E-[2,2′-biindolinylidene]3,3′dione; Z-[2,2′-biindolinylidene]3,3′dione; 2-hydroxy-1H,2′H-[3,3′-biindol]-2′-one |
Section 2.7 | Neem | N/A | From the plant Azadirachta indica. Though all parts of the tree hold medicinal value, the bark is used to impart a brown color and the leaves are used for green colors. | Azadirachtin | Dimethyl(2aR,2a’R,3S,4S,4aR,5S,9R,10S,10aR)-10-acetyl-3,5-dihydroxy-4-((1aR,2S,3aS,6aS,7S,7aS)-6a-hydroxy-2,7,7a-trimethyl-3a,6a,7,7a-tetrahydrofuro [2,3-b]oxireno [2,3-e]oxepin-1a(2h)-yl)-4-methyl-9-((€-2-methylbut-2-enoyl)oxy)octahydro-1H,7H-naphtho [1,8-bc:4,4a-c’]difuran-5,10a(8H)-dicarboxylate |
Section 2.8 | Pomegranate | N/A | From the plant Punica granatum. The seeds acquired from the fruit are used for coloration. | Punicalgin | (61R,63R,64aR,616a R)-14,15,16,22,23,27,28,34,35,36,61,68,69,610,611,612,613-heptadecahydroxy-25,210,63,64,64a,66,615,616a-octahydro-6h-5,8-dioxa-6(4,3)-dibenzo[f.h]pyrano [3,4-b][1,4]dioxecina-2(1,6)-chromeno [5,4,3-cde)chromena-1(1,3),3(1,2)-dibenzenacyclononaphane-25,210,66,615,4,9-hexaone |
Natural Colorants | Active Chemical Component/s | Studied Antibacterial Properties in Brief | References |
---|---|---|---|
Curcumin | Curcumin, |
| [61,67,68,69,70,71] |
demethoxy curcumin, |
| [72,73] | |
bis-demethoxy curcumin. |
| [74] | |
| [76] | ||
| [77] | ||
| [78] | ||
| [79] | ||
| [84] | ||
| [85,86] | ||
Lawsone | Lawsone |
| [104] |
| [105] | ||
| [111] | ||
Emodin | Emodin |
| [123] |
| [124] | ||
| [124] | ||
| [125] | ||
Flavonoids | Flavone, Flavanone |
| [137] |
Flavan-3-ol (catechin), |
| [138,139] | |
Chalcone, |
| [141] | |
Flavanol and |
| [142] | |
Flavolan. |
| [143] | |
Crocus | Crocin and |
| [147] |
Picrocrocin |
| [150] | |
Lycopene | Lycopene |
| [159] |
| [160] | ||
Capsanthin & Capsorubin | Capsanthin, Capsorubin |
| [165] |
Lutein | Lutein |
| [173,174] |
| [167,175] | ||
| [176,177] | ||
| [179] | ||
Bixin & Norbixin | Bixin & Norbixin |
| [195] |
| [196] | ||
| [196] | ||
| [197] | ||
| [200] | ||
Indigo | Indigo, Indirubin and Isoindigo. |
| [204] |
| [205] | ||
| [206] | ||
| [207] | ||
| [207] | ||
| [208] | ||
| [210] | ||
Neem | Azadirachtin |
| [217,218] |
| [220] | ||
| [221] | ||
| [222] | ||
| [223] | ||
| [224] | ||
Pomegranate | Punicalgin |
| [234] |
| [235] | ||
| [236] | ||
| [238] | ||
| [238,239,240,241,242,243,244,245] | ||
| [241] | ||
| [246] | ||
| [248] | ||
| [249] | ||
| [250] | ||
| [251] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, S. The Antibacterial Properties of Plant-Derived Natural Colorants: A Review. Colorants 2025, 4, 16. https://doi.org/10.3390/colorants4020016
Gupta S. The Antibacterial Properties of Plant-Derived Natural Colorants: A Review. Colorants. 2025; 4(2):16. https://doi.org/10.3390/colorants4020016
Chicago/Turabian StyleGupta, Shipra. 2025. "The Antibacterial Properties of Plant-Derived Natural Colorants: A Review" Colorants 4, no. 2: 16. https://doi.org/10.3390/colorants4020016
APA StyleGupta, S. (2025). The Antibacterial Properties of Plant-Derived Natural Colorants: A Review. Colorants, 4(2), 16. https://doi.org/10.3390/colorants4020016