The increasing prevalence of microplastic (MP) pollution and the labor-intensive nature of existing identification methods necessitate improved large-scale detection approaches. Nile Red (NR) fluorescence, which varies with polarity, offers a potential classification method, but standardization of carrier solvents and fluorescence differentiation techniques remains
[...] Read more.
The increasing prevalence of microplastic (MP) pollution and the labor-intensive nature of existing identification methods necessitate improved large-scale detection approaches. Nile Red (NR) fluorescence, which varies with polarity, offers a potential classification method, but standardization of carrier solvents and fluorescence differentiation techniques remains lacking. This study evaluated eight NR-carrier solvents (n-hexane, chloroform, acetone, methanol, ethanol, acetone/hexane, acetone/ethanol, and acetone/water) across ten common MP polymers (HDPE, LDPE, PP, EPS, PS, PC, ABS, PVC, PET, and PA). Fluorescence intensity,
Stokes shift, and solvent-induced polymer degradation were analyzed. The study also assessed HSV (Hue/Saturation/Value) color spaces for
Stokes shift representation and MP differentiation. Fenton oxidation effectively quenched fluorescence in natural organic matter (e.g., eggshells, fingernails, wood, cotton) while preserving NR-stained MPs. Acetone/water [25% (
v/
v)] emerged as the optimal solvent, balancing fluorescence performance and minimal degradation.
Full article