Influence of Hygrothermal Aging on Poisson’s Ratio of Thin Injection-Molded Short Glass Fiber-Reinforced PA6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Manufacturing of Test Specimens
2.2. Hygrothermal Aging
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- O’Gara, J.F.; Novak, G.E.; Wyzgoski, M.G. Predicting the tensile strength of short glass fiber reinforced injection molded plastics. In Proceedings of the 10th-Annual SPE® Automotive Composites Conference & Exhibition (ACCE), Troy, MI, USA, 15–16 September 2010.
- Thomason, J.L. Structure-property relationships in glass-reinforced polyamide, part 1: The effects of fiber content. Polym. Compos. 2006, 27, 552–562. [Google Scholar] [CrossRef] [Green Version]
- Thomason, J. The influence of fibre properties of the performance of glass-fibre-reinforced polyamide 6,6. Compos. Sci. Technol. 1999, 59, 2315–2328. [Google Scholar] [CrossRef]
- Bernasconi, A.; Cosmi, F.; Dreossi, D. Local anisotropy analysis of injection moulded fibre reinforced polymer composites. Compos. Sci. Technol. 2008, 68, 2574–2581. [Google Scholar] [CrossRef]
- Reinhart, C. Direkte CT-Datenanalyse mit VGStudio Max 2.0. In Industrielle Computertomografie Tagung 2008; Kastner, J., Ed.; Shaker Verlag: Aachen, Germany, 2008. [Google Scholar]
- Bay, R.S.; Tucker, C.L. Fiber orientation in simple injection moldings. Part I: Theory and numerical methods. Polym. Compos. 1992, 13, 317–331. [Google Scholar] [CrossRef]
- Bay, R.S.; Tucker, C.L. Fiber orientation in simple injection moldings. Part II: Experimental results. Polym. Compos. 1992, 13, 332–341. [Google Scholar] [CrossRef]
- Advani, S.G.; Tucker, C.L. The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 1987, 31. [Google Scholar] [CrossRef]
- Domininghaus, H.; Elsner, P.; Eyerer, P.; Hirth, T. Domininghaus—Kunststoffe: Eigenschaften und Anwendungen; Springer Verlag: Heidelberg, Germany, 2008. (In German) [Google Scholar]
- Hellerich, W.; Harsch, G.; Baur, E. Werkstoff-Führer Kunststoffe: Eigenschaften, Prüfungen, Kennwerte; Carl Hanser Verlag: München, Germany, 2010. (In German) [Google Scholar]
- Kunz, J. Die Querkontraktionszahl in der Konstruktionspraxis. KunststoffXtra 2011, 6, 27–30. (In German) [Google Scholar]
- Saechtling Kunststoff-Taschenbuch; Carl Hanser Verlag: München, Germany; Wien, Austria, 2001. (In German)
- Bierögel, C.; Grellmann, W. Tensile loading. In Landolt-Börnstein, Mechanical and Thermomechanical Properties of Polymers; Grellmann, W., Seidler, S., Eds.; Springer Verlag: Berlin; Heidelberg, Germany, 2014; Volume VIII/6A3, pp. 136–142. [Google Scholar]
- Rösler, J.; Harders, H.; Bäker, M. Mechanisches Verhalten der Werkstoffe; Springer Verlag: Wiesbaden, Germany, 2008. [Google Scholar]
- Kohan, M.I. Nylon Plastics Handbook; Carl Hanser Verlag: Munich, Germany; Vienna, Austria; New York, NY, USA, 1995. [Google Scholar]
- Becker, G.W.; Braun, D. Kunststoff-Handbuch. 3. Thermoplaste, 4. Polyamide; Carl Hanser Verlag: München, Germany; Wien, Austria, 1998; Volume 3. [Google Scholar]
- BASF. Ultramid (PA) Product Brochure. BASF SE Ludwigshafen; BASF: Florham Park, NJ, USA, 2010. [Google Scholar]
- Plastics—Multipurpose Test Specimens; ISO 3167; ISO Copyright Office: Geneva, Switzerland, 2014.
- Environmental Testing—Part 2–2: Tests—Test B: Dry Heat; IEC 60068-2-2; IEC: Genevy, Switzerland, 2007.
- Environmental Testing—Part 2–78: Tests—Test Cab: Damp Heat, Steady State; IEC 60068-2-78; IEC: Geneva, Switzerland, 2012.
- Plastics—Polyamide—Determination of Viscosity Number; ISO 307; ISO Copyright Office: Geneva, Switzerland, 2007.
- Plastics—Determination of Tensile Properties—Part 1: General Principles; ISO 527-1; ISO Copyright Office: Geneva, Switzerland, 2012.
- Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics; ISO 527-2; ISO Copyright Office: Geneva, Switzerland, 2012.
- Plastics—Differential Scanning Calorimetry (DSC)—Part 1: General Principles; ISO 11357-1; ISO Copyright Office: Geneva, Switzerland, 2009.
- Ehrenstein, G.W.; Riedel, G.; Trawiel, P. Praxis der Thermischen Analyse von Kunststoffen; Carl Hanser Verlag: München, Germany, 2003. (In German) [Google Scholar]
- Johannaber, F.; Michaeli, W. Handbuch Spritzgießen; Carl Hanser Verlag: München, Germany, 2004. [Google Scholar]
- Laun, H. Orientation effects and rheology of short glass fiber-reinforced thermoplastics. Colloid Polym. Sci. 1984, 262, 257–269. [Google Scholar] [CrossRef]
- Altan, M.C. A review of fiber-reinforced injection molding: Flow kinematics and particle orientation. J. Thermoplast. Compos. Mat. 1990, 3, 275–313. [Google Scholar] [CrossRef]
- McNally, D. Short fiber orientation and its effects on the properties of thermoplastic composite materials. Polym. Plast. Technol. Eng. 1977, 8, 101–154. [Google Scholar] [CrossRef]
- Toll, S.; Andersson, P.O. Microstructure of long- and short-fiber reinforced injection molded polyamide. Polym. Compos. 1993, 14, 116–125. [Google Scholar] [CrossRef]
- Vlasveld, D.; Groenewold, J.; Bersee, H.; Picken, S. Moisture absorption in polyamide-6 silicate nanocomposites and its influence on the mechanical properties. Polymer 2005, 46, 12567–12576. [Google Scholar] [CrossRef]
- Low, H.; Liu, T.; Loh, W. Moisture sorption and permeation in polyamide 6/clay nanocomposite films. Polym. Int. 2004, 53, 1973–1978. [Google Scholar] [CrossRef]
- Illing, T. Bewertung von Mechanischen und Thermischen Eigenschaften Glasfaserverstärkter Polyamid-Werkstoffe unter Besonderer Berücksichtigung des Alterungsverhaltens von Bauteilen in der Automobilindustrie; Martin-Luther-University Halle-Wittenberg: Merseburg, Germany, 2015. (In German) [Google Scholar]
Matrix material | Glass fiber weight content Ψ (−) | Glass fiber volume content ϕV (−) | Material name |
---|---|---|---|
PA6 | 0 | 0 | BASF Ultramid B3K |
PA6 | 0.15 | 0.067 | BASF Ultramid B3EG3 |
PA6 | 0.30 | 0.159 | BASF Ultramid B3EG6 |
PA6 | 0.40 | 0.243 | BASF Ultramid B3G8 |
Temperature ϑ (°C) | Relative humidity ϕRH (% RH) | Referenced standard |
---|---|---|
85 | 10 | IEC 60068-2-2: Environmental testing—Part 2–2: Tests—Test B: Dry heat [19] |
85 | 85 | IEC 60068-2-78: Environmental testing—Part 2–78: Tests—Test Cab: Damp heat, steady state [20] |
No. | Climate conditions | Crystallization | Moisture absorption | Viscosity number | Average molar mass |
---|---|---|---|---|---|
1 | 85 °C, 10% RH | +5.7% | +0.1% | +2.1% | ±0% |
2 | 85 °C, 85% RH | +0.8% | +3.1% | −7.6% | −8.2% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Illing, T.; Gotzig, H.; Schoßig, M.; Bierögel, C.; Grellmann, W. Influence of Hygrothermal Aging on Poisson’s Ratio of Thin Injection-Molded Short Glass Fiber-Reinforced PA6. Fibers 2016, 4, 17. https://doi.org/10.3390/fib4020017
Illing T, Gotzig H, Schoßig M, Bierögel C, Grellmann W. Influence of Hygrothermal Aging on Poisson’s Ratio of Thin Injection-Molded Short Glass Fiber-Reinforced PA6. Fibers. 2016; 4(2):17. https://doi.org/10.3390/fib4020017
Chicago/Turabian StyleIlling, Thomas, Heinrich Gotzig, Marcus Schoßig, Christian Bierögel, and Wolfgang Grellmann. 2016. "Influence of Hygrothermal Aging on Poisson’s Ratio of Thin Injection-Molded Short Glass Fiber-Reinforced PA6" Fibers 4, no. 2: 17. https://doi.org/10.3390/fib4020017
APA StyleIlling, T., Gotzig, H., Schoßig, M., Bierögel, C., & Grellmann, W. (2016). Influence of Hygrothermal Aging on Poisson’s Ratio of Thin Injection-Molded Short Glass Fiber-Reinforced PA6. Fibers, 4(2), 17. https://doi.org/10.3390/fib4020017