Optimization of Process of Dyeing Alpaca Yarn Using Indigo Carmine (C.I. Natural Blue 2)
Abstract
:Highlights
- A dyeing process for alpaca fiber using indigo carmine (C.I. Natural Blue 2) was optimized through a central composite design (CCD) based on response surface methodology (RSM), considering mordant concentration, temperature, and time as variables.
- The process exhibited a strong fit to a quadratic model, with a high coefficient of determination (R2 and adjusted R2 values exceeding 95%), despite some limitations in specific response regions.
- The fastness properties of the dyed fiber were acceptable according to the ISO gray scale, indicating a stable interaction between indigo carmine (C.I. Natural Blue 2) and alpaca fiber, which may be attributed to lasting chemical bonding facilitated by the process conditions.
- The optimized dyeing process offers a more sustainable alternative for protein-based fibers such as alpaca by utilizing food-grade dyes like indigo carmine (C.I. Natural Blue 2) under controlled conditions.
- The resulting dyed fibers demonstrate consistent color intensity and acceptable durability, supporting the viability of this approach for Peruvian textile coloration.
- These findings may promote further investigation into compatible food-grade dyes and encourage their industrial application in dyeing technologies.
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Alpaca Fiber Sample Preparation
2.3. Alpaca Yarn Mordanting Process
2.4. Dyeing Process with Indigo Carmine
2.5. Color Analysis and Color Strength of the Alpaca Yarn Samples
2.6. Fastness Testing
3. Results and Discussions
3.1. Color Analysis of Alpaca Yarns Dyed Using Indigo Carmine
3.2. Model Fitting and Regression Analysis
3.3. Effect of Dyeing Conditions on Color Strength (K/S)
3.4. Process Optimization Results and Analysis
3.5. Color Fastness Properties of Alpaca Yarn Dyed Using Indigo Carmine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atav, R.; Türkmen, F. Investigation of the Dyeing Characteristics of Alpaca Fibers (Huacaya and Suri) in Comparison with Wool. Text. Res. J. 2015, 85, 1331–1339. [Google Scholar] [CrossRef]
- Hunter, L. Mohair, Cashmere and Other Animal Hair Fibres. In Handbook of Natural Fibres, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 1, pp. 279–383. ISBN 9780128206669. [Google Scholar]
- NTP 231301:2022; CLASSIFIED ALPACA FIBRE. Definitions, Classifications by Quality Requirements and Labelling Groups. Instituto Nacional de Calidad (INACAL): San Isidro, Peru, 2022.
- Jara-Morante, E.; Luízar Obregón, C.; Bueno Lazo, A.; Castillo-Quispehuanca, Á. Alpaca Fiber Impregnated with Alizarine and Indigo Dyes in a Process Using Supercritical Carbon Dioxide. J. Supercrit. Fluids 2023, 200, 105978. [Google Scholar] [CrossRef]
- Fobiri, G.K. Synthetic Dye Application in Textiles: A Review on the Efficacies and Toxicities Involved. Text. Leather Rev. 2022, 5, 180–198. [Google Scholar] [CrossRef]
- Khodary, M. The Printability of Wool Fabric with Synthetic Food Dyes. Int. Des. J. 2024, 14, 241–247. [Google Scholar] [CrossRef]
- Rather, L.J.; Shabbir, M.; Ganie, S.A.; Zhou, Q.; Singh, K.P.; Li, Q. Natural Dyes: Green and Sustainable Alternative for Textile Colouration. In Sustainable Textile Chemical Processing; CRC Press: London, UK, 2023; pp. 41–69. [Google Scholar]
- Yadav, S.; Tiwari, K.S.; Gupta, C.; Tiwari, M.K.; Khan, A.; Sonkar, S.P. A Brief Review on Natural Dyes, Pigments: Recent Advances and Future Perspectives. Results Chem. 2023, 5, 100733. [Google Scholar] [CrossRef]
- Siva, R. Status of Natural Dyes and Dye-Yielding Plants in India. Curr. Sci. 2007, 92, 916–925. [Google Scholar]
- Rather, L.J.; Mir, S.S.; Ganie, S.A.; Shahid-ul-Islam; Li, Q. Research Progress, Challenges, and Perspectives in Microbial Pigment Production for Industrial Applications—A Review. Dye. Pigment. 2023, 210, 110989. [Google Scholar] [CrossRef]
- Zahra, N.; Fatima, Z.; Kalim, I.; Saeed, K. Identification of Synthetic Food Dyes in Beverages by Thin Layer Chromatography. Pak. J. Food Sci. 2015, 25, 178–181. [Google Scholar]
- Danila, A.; Muresan, E.I.; Chirila, L.; Coroblea, M. Natural Dyes Used in Textiles: A Review. In International Symposium “Technical Textiles—Present and Future”; Sciendo: Iasi, Romania, 2022; pp. 52–59. [Google Scholar]
- Komboonchoo, S.; Bechtold, T. Natural Dyeing of Wool and Hair with Indigo Carmine (C.I. Natural Blue 2), a Renewable Resource Based Blue Dye. J. Clean. Prod. 2009, 17, 1487–1493. [Google Scholar] [CrossRef]
- de Keijzer, M.; van Bommel, M.R.; Keijzer, R.H.; Knaller, R.; Oberhumer, E. Indigo Carmine: Understanding a Problematic Blue Dye. Stud. Conserv. 2012, 57, S87–S95. [Google Scholar] [CrossRef]
- Ristea, M.E.; Zarnescu, O. Indigo Carmine: Between Necessity and Concern. J. Xenobiot. 2023, 13, 509–528. [Google Scholar] [CrossRef] [PubMed]
- Genázio Pereira, P.C.; Reimão, R.V.; Pavesi, T.; Saggioro, E.M.; Moreira, J.C.; Veríssimo Correia, F. Lethal and Sub-Lethal Evaluation of Indigo Carmine Dye and Byproducts after TiO2 Photocatalysis in the Immune System of Eisenia Andrei Earthworms. Ecotoxicol. Env. Saf. 2017, 143, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Olas, B.; Białecki, J.; Urbańska, K.; Bryś, M. The Effects of Natural and Synthetic Blue Dyes on Human Health: A Review of Current Knowledge and Therapeutic Perspectives. Adv. Nutr. 2021, 12, 2301–2311. [Google Scholar] [CrossRef] [PubMed]
- Caprarescu, S.; Miron, A.R.; Purcar, V.; Radu, A.L.; Sarbu, A.; Ion-Ebrasu, D.; Atanase, L.I.; Ghiurea, M. Efficient Removal of Indigo Carmine Dye by a Separation Process. Water Sci. Technol. 2016, 74, 2462–2473. [Google Scholar] [CrossRef]
- Saleemi, S.; Mannan, H.A.; Riaz, T.; Hai, A.M.; Zeb, H.; Khan, A.K. Optimizing Synergistic Silica–Zinc Oxide Coating for Enhanced Flammability Resistance in Cotton Protective Clothing. Fibers 2024, 12, 44. [Google Scholar] [CrossRef]
- Barani, H.; Rezaee, K. Optimization of Dyeing Process Using Achillea Pachycephala as a Natural Dye for Wool Fibers. Chiang Mai J. Sci. 2017, 44, 1548–1561. [Google Scholar]
- Moiz, A.; Aleem Ahmed, M.; Kausar, N.; Ahmed, K.; Sohail, M. Study the Effect of Metal Ion on Wool Fabric Dyeing with Tea as Natural Dye. J. Saudi Chem. Soc. 2010, 14, 69–76. [Google Scholar] [CrossRef]
- İşmal, Ö.E.; Yildirim, L. Metal Mordants and Biomordants. In The Impact and Prospects of Green Chemistry for Textile Technology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 57–82. ISBN 9780081024911. [Google Scholar]
- Deo, H.T.; Paul, R. Dyeing of Ecru Denim with Onion Extract Using Natural Mordant Combinations. Available online: https://www.researchgate.net/publication/283611507_Dyeing_of_ecru_denim_with_onion_extract_using_natural_mordant_combinations (accessed on 1 January 2025).
- Deo, H.T.; Paul, R. Dyeing of Ecru Denim with Onion Extract as a Natural Dye Using Potassium Alum in Combination with Harda and Tartaric Acid. Available online: https://www.researchgate.net/publication/296239994_Dyeing_of_ecru_denim_with_onion_extract_as_a_natural_dye_using_potassium_alum_in_combination_with_harda_and_tartaric_acid (accessed on 15 April 2025).
- Quispe-Quispe, A.; Lozano, F.; Pinche-Gonzales, L.M.; Vilcanqui-Perez, F. Evaluation of Alpaca Yarns Dyed with Buddleja Coriaceous Dye and Metallic Mordants. Fibers 2025, 13, 2. [Google Scholar] [CrossRef]
- Carrasco Bocangel, J.; Sucasaca, A.; Sanchez-Gonzales, G.; Morán Flores, G.; Barriga-Sánchez, M. Estudio Preliminar de Teñido de Fibra de Alpaca Utilizando Extracto Acuoso de Molle (Schinus Molle) Como Pigmento Natural. Rev. De Innovación Y Transf. Product. 2022, 2, e003. [Google Scholar] [CrossRef]
- Samanta, P. Basic Principles of Colour Measurement and Colour Matching of Textiles and Apparels. In Colorimetry; IntechOpen: London, UK, 2022; ISBN 978-1-83962-941-9. [Google Scholar]
- AATCC TM 8-2005; Colorfastness to Crocking (Wet & Dry). AATCC Technical Manual: Durham, NC, USA, 2007; pp. 17–19.
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; Wiley: New York, NY, USA, 2020; ISBN 978-1-119-63842-1. [Google Scholar]
- Steinberg, D.M.; Bursztyn, D. Dispersion Effects in Robust-Design Experiments with Noise Factors. J. Qual. Technol. 1994, 26, 12–20. [Google Scholar] [CrossRef]
- Becze, A.; Babalau-Fuss, V.L.; Varaticeanu, C.; Roman, C. Optimization of High-Pressure Extraction Process of Antioxidant Compounds from Feteasca Regala Leaves Using Response Surface Methodology. Molecules 2020, 25, 4209. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wu, Y.; Xing, Z.; Zhang, J.; Xue, Y. Optimization of Magnetic Biochar Preparation Process, Based on Methylene Blue Adsorption. Molecules 2024, 29, 5213. [Google Scholar] [CrossRef] [PubMed]
- Straume, M.; Johnson, M.L. [5] Analysis of Residuals: Criteria for Determining Goodness-of-Fit. Methods Enzymol. 1992, 210, 87–105. [Google Scholar] [PubMed]
- Mamani, E. Efecto Del Teñido Natural Con Cúrcuma (Cúrcuma Longa) En La Solidez Del Color Del Hilado de Alpaca Para La Artesanía Textil, Puno 2020. Bachelor’s Thesis, Universidad Nacional de Juliaca, Juliaca, Peru, 2021. [Google Scholar]
- Ferus-Comelo, M. Thermodynamics and Kinetics of Dyeing and Dyebath Monitoring Systems. In Handbook of Textile and Industrial Dyeing; Woodhead Publishing: Sawston, UK, 2011; Volume 1, pp. 184–206. [Google Scholar]
- Clark, M. Fundamental Principles of Dyeing. In Handbook of Textile and Industrial Dyeing: Principles, Processes and Types of Dyes; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 1, pp. 3–27. ISBN 9780857093974. [Google Scholar]
Description | Data |
---|---|
Fabric | 100% Baby Alpaca |
Diameter | ~20.1–23 µm |
Count N/M 2 | 2/28 |
Color | SFN10 1 |
Design | Independent Variables | Factor Levels | Response | |||
---|---|---|---|---|---|---|
Factor | Symbol | Low (−1) | Center (0) | High (+1) | ||
Central Composite Design (CCD) | Mordant concentration (g/L) | 2 | 3 | 4 | Color strength (K/S) | |
Dyeing temperature (°C) | 85 | 90 | 95 | |||
Exhaust time (min) | 30 | 45 | 60 |
Source Model | Sequential p-Value | Lack of Fit (p-Value) | |||
---|---|---|---|---|---|
Linear | 0.0401 | 0.0019 | 0.2828 | −0.1122 | |
2Fl | <0.0001 | 0.1155 | 0.8854 | 0.8629 | |
Quadratic | 0.0050 | 0.6293 | 0.9564 | 0.9072 | Suggested |
Cubic | 0.8740 | 0.1933 | 0.9391 | −0.3367 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 11.14 | 9 | 1.24 | 47.32 | <0.0001 | Significant |
A: mordant concentration | 0.2779 | 1 | 0.2779 | 10.62 | 0.0086 | |
B: dyeing temperature | 1.48 | 1 | 1.48 | 56.55 | <0.0001 | |
C: exhaust time | 2.76 | 1 | 2.76 | 105.48 | <0.0001 | |
AB | 0.9555 | 1 | 0.9555 | 36.52 | 0.0001 | |
AC | 0.0208 | 1 | 0.0208 | 0.7937 | 0.3939 | |
BC | 5.02 | 1 | 5.02 | 191.75 | <0.0001 | |
A2 | 0.0306 | 1 | 0.0306 | 1.17 | 0.3051 | |
B2 | 0.5680 | 1 | 0.5680 | 21.71 | 0.0009 | |
C2 | 0.0093 | 1 | 0.0093 | 0.3572 | 0.5633 | |
Residual | 0.2616 | 10 | 0.0262 | |||
Lack of fit | 0.1106 | 5 | 0.0221 | 0.7328 | 0.6293 | Not significant |
Pure error | 0.1510 | 5 | 0.0302 | |||
Cor total | 11.40 | 19 |
Mordant Concentration (g/L) | Dyeing Temperature (°C) | Exhaust Time (min) | Expected Value for K/S | Desirability |
---|---|---|---|---|
3.98873 | 95.000 | 30.0019 | 6.65839 | 0.995 |
Predicted Mean | Predicted Median | Std Dev | n | SE Pred 1 | 95% PI Low | Data Mean | 95% PI High |
---|---|---|---|---|---|---|---|
6.65839 | 6.65839 | 0.158383 | 3 | 0.146482 | 6.34193 | 6.63824 | 6.97484 |
Fabric | Rubbing Fastness | Washing Fastness | Color Change | ||||||
---|---|---|---|---|---|---|---|---|---|
Dry | Wet | CA | CO | PA | PES | PAN | WO | ||
Alpaca fiber | 3 | 3/4 | 5 | 4/5 | 5 | 5 | 4/5 | 5 | 4/5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luque-Jacobo, C.M.; Medrano de Jara, E.; Carrasco Bocangel, J.; García-Hernández, E. Optimization of Process of Dyeing Alpaca Yarn Using Indigo Carmine (C.I. Natural Blue 2). Fibers 2025, 13, 82. https://doi.org/10.3390/fib13060082
Luque-Jacobo CM, Medrano de Jara E, Carrasco Bocangel J, García-Hernández E. Optimization of Process of Dyeing Alpaca Yarn Using Indigo Carmine (C.I. Natural Blue 2). Fibers. 2025; 13(6):82. https://doi.org/10.3390/fib13060082
Chicago/Turabian StyleLuque-Jacobo, Cristina M., Elizabeth Medrano de Jara, Jose Carrasco Bocangel, and Edgar García-Hernández. 2025. "Optimization of Process of Dyeing Alpaca Yarn Using Indigo Carmine (C.I. Natural Blue 2)" Fibers 13, no. 6: 82. https://doi.org/10.3390/fib13060082
APA StyleLuque-Jacobo, C. M., Medrano de Jara, E., Carrasco Bocangel, J., & García-Hernández, E. (2025). Optimization of Process of Dyeing Alpaca Yarn Using Indigo Carmine (C.I. Natural Blue 2). Fibers, 13(6), 82. https://doi.org/10.3390/fib13060082