Harnessing the Unique Nature of Evanescent Waves: Optimizing FOEW LSPR Sensors with Absorption-Focused Nanoparticle Design
Abstract
:1. Introduction
2. Modeling Methodology
2.1. Numerical Nanoparticle LSPR Absorption Model
2.2. Analytical Adsorption Kinetics Model
2.3. Optical Fiber Sensor Analytical Model
2.4. Combined Model Results
3. Fabrication Procedure
3.1. Materials
3.2. FOEW LSPR Sensor Construction
4. Results and Discussion
4.1. Combined Model Verification
4.1.1. AFM Characterization
4.1.2. UV–VIS Characterization
4.2. Studying the Effect of Higher Surface Density on FOEW LSPR Signal Enhancement
4.2.1. SEM Characterization
4.2.2. Refractive Index Sensitivity Testing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FOEW | Fiber Optic Evanescent Wave |
LSPR | Localized Surface Plasmon Resonance |
AFM | Atomic Force Microscopy |
SEM | Scanning Electron Microscopy |
RI | Refractive Index |
TIR | Total Internal Reflection |
ATR | Attenuated Total Reflection |
LOD | Limit of Detection |
RSC | Reflectance Spectral Correction |
ESD | Extinction Spectral Decomposition |
APTES | (3-Aminopropyl)-tri-ethoxy-silane |
References
- Sadeque, M.S.B.; Chowdhury, H.K.; Rafique, M.; Durmuş, M.A.; Ahmed, M.K.; Hasan, M.M.; Erbaş, A.; Sarpkaya, İ.; Inci, F.; Ordu, M. Hydrogel-Integrated Optical Fiber Sensors and Their Applications: A Comprehensive Review. J. Mater. Chem. C 2023, 11, 9383–9424. [Google Scholar] [CrossRef]
- Sharma, A.K.; Gupta, J.; Sharma, I. Fiber Optic Evanescent Wave Absorption-Based Sensors: A Detailed Review of Advancements in the Last Decade (2007–18). Optik 2019, 183, 1008–1025. [Google Scholar] [CrossRef]
- Elsherif, M.; Alam, F.; Salih, A.E.; Wang, X.; Corridon, P.R.; Ramadi, K.B.; Butt, H. Fiber-Optic Probes for Real-Time pH Monitoring. Sens. Diagn. 2024, 3, 827–838. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, X.; Li, X.; Gong, P.; Zhang, Y.; Zhao, Y. Recent Advancements of LSPR Fiber-Optic Biosensing: Combination Methods, Structure, and Prospects. Biosensors 2023, 13, 405. [Google Scholar] [CrossRef] [PubMed]
- de Fornel, F. Evanescent Waves: From Newtonian Optics to Atomic Optics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001; ISBN 978-3-540-65845-0. [Google Scholar]
- Bertolotti, M.; Sibilia, C.; Guzman, A.M. Evanescent Waves in Optics: An Introduction to Plasmonics; Springer Series in Optical Sciences; Springer International Publishing: Cham, Switzerland, 2017; Volume 206, ISBN 978-3-319-61260-7. [Google Scholar]
- Wang, P.; Brambilla, G.; Ding, M.; Semenova, Y.; Wu, Q.; Farrell, G. High-Sensitivity, Evanescent Field Refractometric Sensor Based on a Tapered, Multimode Fiber Interference. Opt. Lett. 2011, 36, 2233–2235. [Google Scholar] [CrossRef]
- Khijwania, S.K.; Gupta, B.D. Fiber Optic Evanescent Field Absorption Sensor with High Sensitivity and Linear Dynamic Range. Opt. Commun. 1998, 152, 259–262. [Google Scholar] [CrossRef]
- Satija, J.; Punjabi, N.S.; Sai, V.V.R.; Mukherji, S. Optimal Design for U-Bent Fiber-Optic LSPR Sensor Probes. Plasmonics 2014, 9, 251–260. [Google Scholar] [CrossRef]
- Ghannoum, A.; Nieva, P.; Yu, A.; Khajepour, A. Development of Embedded Fiber-Optic Evanescent Wave Sensors for Optical Characterization of Graphite Anodes in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 41284–41290. [Google Scholar] [CrossRef]
- Xin, X.; Zhong, N.; Liao, Q.; Cen, Y.; Wu, R.; Wang, Z. High-Sensitivity Four-Layer Polymer Fiber-Optic Evanescent Wave Sensor. Biosens. Bioelectron. 2017, 91, 623–628. [Google Scholar] [CrossRef]
- Zhong, N.; Zhao, M.; Zhong, L.; Liao, Q.; Zhu, X.; Luo, B.; Li, Y. A High-Sensitivity Fiber-Optic Evanescent Wave Sensor with a Three-Layer Structure Composed of Canada Balsam Doped with GeO2. Biosens. Bioelectron. 2016, 85, 876–882. [Google Scholar] [CrossRef]
- Chryssis, A.N.; Lee, S.M.; Lee, S.B.; Saini, S.S.; Dagenais, M. High Sensitivity Evanescent Field Fiber Bragg Grating Sensor. IEEE Photonics Technol. Lett. 2005, 17, 1253–1255. [Google Scholar] [CrossRef]
- Hammond, J.L.; Bhalla, N.; Rafiee, S.D.; Estrela, P. Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries. Biosensors 2014, 4, 172–188. [Google Scholar] [CrossRef]
- Altug, H.; Oh, S.-H.; Maier, S.A.; Homola, J. Advances and Applications of Nanophotonic Biosensors. Nat. Nanotechnol. 2022, 17, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors 2015, 15, 15684–15716. [Google Scholar] [CrossRef]
- Mao, Z.; Peng, X.; Zhou, Y.; Liu, Y.; Koh, K.; Chen, H. Review of Interface Modification Based on 2D Nanomaterials for Surface Plasmon Resonance Biosensors. ACS Photonics 2022, 9, 3807–3823. [Google Scholar] [CrossRef]
- Kunwar, S.; Sui, M.; Pandey, P.; Gu, Z.; Pandit, S.; Lee, J. Improved Control on the Morphology and LSPR Properties of Plasmonic Pt NPs through Enhanced Solid State Dewetting by Using a Sacrificial Indium Layer. RSC Adv. 2019, 9, 2231–2243. [Google Scholar] [CrossRef]
- Ohodnicki, P.R.; Buric, M.P.; Brown, T.D.; Matranga, C.; Wang, C.; Baltrus, J.; Andio, M. Plasmonic Nanocomposite Thin Film Enabled Fiber Optic Sensors for Simultaneous Gas and Temperature Sensing at Extreme Temperatures. Nanoscale 2013, 5, 9030–9039. [Google Scholar] [CrossRef] [PubMed]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles, 1st ed.; Wiley: Hoboken, NJ, USA, 1998; ISBN 978-0-471-29340-8. [Google Scholar]
- Ha, J.W. Strategies for Sensitivity Improvement of Localized Surface Plasmon Resonance Sensors: Experimental and Mathematical Approaches in Plasmonic Gold Nanostructures. Appl. Spectrosc. Rev. 2022, 58, 346–365. [Google Scholar] [CrossRef]
- Bin-Alam, M.S.; Reshef, O.; Mamchur, Y.; Alam, M.Z.; Carlow, G.; Upham, J.; Sullivan, B.T.; Ménard, J.-M.; Huttunen, M.J.; Boyd, R.W.; et al. Ultra-High-Q Resonances in Plasmonic Metasurfaces. Nat. Commun. 2021, 12, 974. [Google Scholar] [CrossRef]
- Stankevičius, E.; Vilkevičius, K.; Gedvilas, M.; Bužavaitė-Vertelienė, E.; Selskis, A.; Balevičius, Z. Direct Laser Writing for the Formation of Large-Scale Gold Microbumps Arrays Generating Hybrid Lattice Plasmon Polaritons in Vis–NIR Range. Adv. Opt. Mater. 2021, 9, 2100027. [Google Scholar] [CrossRef]
- Xu, T.; Geng, Z. Strategies to Improve Performances of LSPR Biosensing: Structure, Materials, and Interface Modification. Biosens. Bioelectron. 2021, 174, 112850. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Luo, Y.; Li, D.; Li, Y.; Gong, T.; Zhao, C.; Wang, C.; Duan, R.; Yue, W. Recent Advances in Localized Surface Plasmon Resonance (LSPR) Sensing Technologies. Nanotechnology 2025, 36, 202001. [Google Scholar] [CrossRef]
- Jackman, J.A.; Ferhan, A.R.; Cho, N.-J. Nanoplasmonic Sensors for Biointerfacial Science. Chem. Soc. Rev. 2017, 46, 3615–3660. [Google Scholar] [CrossRef]
- Rivero, P.J.; Goicoechea, J.; Arregui, F.J. Localized Surface Plasmon Resonance for Optical Fiber-Sensing Applications. In Nanoplasmonics—Fundamentals and Applications; Barbillon, G., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-3277-6. [Google Scholar]
- Milosevic, M. On the Nature of the Evanescent Wave. Appl. Spectrosc. 2013, 67, 126–131. [Google Scholar] [CrossRef]
- Oćwieja, M.; Adamczyk, Z.; Morga, M.; Kubiak, K. Silver Particle Monolayers—Formation, Stability, Applications. Adv. Colloid Interface Sci. 2015, 222, 530–563. [Google Scholar] [CrossRef]
- Oćwieja, M.; Adamczyk, Z.; Kubiak, K. Tuning Properties of Silver Particle Monolayers via Controlled Adsorption–Desorption Processes. J. Colloid Interface Sci. 2012, 376, 1–11. [Google Scholar] [CrossRef]
- Sai, V.V.R.; Kundu, T.; Mukherji, S. Novel U-Bent Fiber Optic Probe for Localized Surface Plasmon Resonance Based Biosensor. Biosens. Bioelectron. 2009, 24, 2804–2809. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.H.; Sun, T.; Grattan, K.T.V. Optimization of Gold-Nanoparticle-Based Optical Fibre Surface Plasmon Resonance (SPR)-Based Sensors. Sens. Actuators B Chem. 2012, 164, 43–53. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.-J.; Park, J.-H.; Jeong, D.H.; Lee, S.-K. Effects of Surface Density and Size of Gold Nanoparticles in a Fiber-Optic Localized Surface Plasmon Resonance Sensor and Its Application to Peptide Detection. Meas. Sci. Technol. 2010, 21, 085805. [Google Scholar] [CrossRef]
- Habibi Masheli, M.; Eyvazi, S.; Aghdaee, M.; Amjad, J.M. LSPR of Nanoparticles Inside Strong Absorbent Medium. J. Phys. Chem. C 2023, 127, 23696–23705. [Google Scholar] [CrossRef]
- Gérardy, J.M.; Ausloos, M. Absorption Spectrum of Clusters of Spheres from the General Solution of Maxwell’s Equations. II. Optical Properties of Aggregated Metal Spheres. Phys. Rev. B 1982, 25, 4204–4229. [Google Scholar] [CrossRef]
- Jiang, Y.; Pillai, S.; Green, M.A. Realistic Silver Optical Constants for Plasmonics. Sci. Rep. 2016, 6, 30605. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998; ISBN 978-0-12-544423-1. [Google Scholar]
- dos Santos, D.S., Jr.; Sanfelice, R.C.; Alvarez-Puebla, R.; Oliveira, O.N., Jr.; Aroca, R.F. Optical Enhancing Properties in Layer-by-Layer Films of Dendrimer and Gold Nanoparticles. Macromol. Symp. 2006, 245–246, 325–329. [Google Scholar] [CrossRef]
- Morga, M.; Adamczyk, Z.; Oćwieja, M. Stability of Silver Nanoparticle Monolayers Determined by in Situ Streaming Potential Measurements. J. Nanopart. Res. 2013, 15, 2076. [Google Scholar] [CrossRef] [PubMed]
- Ruddy, V.; MacCraith, B.D.; Murphy, J.A. Evanescent Wave Absorption Spectroscopy Using Multimode Fibers. J. Appl. Phys. 1990, 67, 6070–6074. [Google Scholar] [CrossRef]
- Sensing Technology: Current Status and Future Trends III; Smart Sensors, Measurement and Instrumentation; Mason, A., Mukhopadhyay, S.C., Jayasundera, K.P., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 11, ISBN 978-3-319-10947-3. [Google Scholar]
- Random Sequential Adsorption. J. Theor. Biol. 1980, 87, 237–254. [CrossRef]
- Fan, Z.; Zhi, C.; Wu, L.; Zhang, P.; Feng, C.; Deng, L.; Yu, B.; Qian, L. UV/Ozone-Assisted Rapid Formation of High-Quality Tribological Self-Assembled Monolayer. Coatings 2019, 9, 762. [Google Scholar] [CrossRef]
- Fine Particle—An Overview|ScienceDirect Topics. Available online: https://www-sciencedirect-com.proxy.lib.uwaterloo.ca/topics/materials-science/fine-particle (accessed on 15 June 2022).
- Bochert, R. Contribution to Comprehension of Image Formation in Confocal Microscopy of Cornea with Rostock Cornea Module. Br. J. Ophthalmol. 2005, 89, 1351–1355. [Google Scholar] [CrossRef]
- Sanders, M.; Lin, Y.; Wei, J.; Bono, T.; Lindquist, R.G. An Enhanced LSPR Fiber-Optic Nanoprobe for Ultrasensitive Detection of Protein Biomarkers. Biosens. Bioelectron. 2014, 61, 95–101. [Google Scholar] [CrossRef]
- Csaki, A.; Jahn, F.; Latka, I.; Henkel, T.; Malsch, D.; Schneider, T.; Schröder, K.; Schuster, K.; Schwuchow, A.; Spittel, R.; et al. Nanoparticle Layer Deposition for Plasmonic Tuning of Microstructured Optical Fibers. Small 2010, 6, 2584–2589. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhu, H.; Lin, M.; Wang, F.; Hong, L.; Masson, J.-F.; Peng, W. Comparative Study of Block Copolymer-Templated Localized Surface Plasmon Resonance Optical Fiber Biosensors: CTAB or Citrate-Stabilized Gold Nanorods. Sens. Actuators B Chem. 2021, 329, 129094. [Google Scholar] [CrossRef]
- Luo, Z.; Zhang, J.; Wang, Y.; Chen, J.; Li, Y.; Duan, Y. An Aptamer Based Method for Small Molecules Detection through Monitoring Salt-Induced AuNPs Aggregation and Surface Plasmon Resonance (SPR) Detection. Sens. Actuators B Chem. 2016, 236, 474–479. [Google Scholar] [CrossRef]
- Feng, J.; Gao, J.; Yang, W.; Liu, R.; Shafi, M.; Zha, Z.; Liu, C.; Xu, S.; Ning, T.; Jiang, S. LSPR Optical Fiber Sensor Based on 3D Gold Nanoparticles with Monolayer Graphene as a Spacer. Opt. Express 2022, 30, 10187–10198. [Google Scholar] [CrossRef]
- Jia, S.; Bian, C.; Sun, J.; Tong, J.; Xia, S. A Wavelength-Modulated Localized Surface Plasmon Resonance (LSPR) Optical Fiber Sensor for Sensitive Detection of Mercury(II) Ion by Gold Nanoparticles-DNA Conjugates. Biosens. Bioelectron. 2018, 114, 15–21. [Google Scholar] [CrossRef]
Volume Percentage Glycerol/DI Water | Refractive Index |
---|---|
0% | 1.34 |
20% | 1.355 |
40% | 1.381 |
60% | 1.411 |
80% | 1.440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awad, O.; Ghannoum, A.; Nieva, P. Harnessing the Unique Nature of Evanescent Waves: Optimizing FOEW LSPR Sensors with Absorption-Focused Nanoparticle Design. Fibers 2025, 13, 81. https://doi.org/10.3390/fib13060081
Awad O, Ghannoum A, Nieva P. Harnessing the Unique Nature of Evanescent Waves: Optimizing FOEW LSPR Sensors with Absorption-Focused Nanoparticle Design. Fibers. 2025; 13(6):81. https://doi.org/10.3390/fib13060081
Chicago/Turabian StyleAwad, Omar, AbdulRahman Ghannoum, and Patricia Nieva. 2025. "Harnessing the Unique Nature of Evanescent Waves: Optimizing FOEW LSPR Sensors with Absorption-Focused Nanoparticle Design" Fibers 13, no. 6: 81. https://doi.org/10.3390/fib13060081
APA StyleAwad, O., Ghannoum, A., & Nieva, P. (2025). Harnessing the Unique Nature of Evanescent Waves: Optimizing FOEW LSPR Sensors with Absorption-Focused Nanoparticle Design. Fibers, 13(6), 81. https://doi.org/10.3390/fib13060081