Molecular Self-Reassembled Regenerated Fibres and Their Significance in Tissue Engineering Bio-Composites
Highlights
- The significance of molecular re-assembled fibres in tissue engineering bio-composite development relies on different advantages such as the possibility to develop through a cost-effective production route, efficient biodegradability, improved liquid absorbance property, high chemical stability, etc.
- However, significant challenges persist in the successful application of regenerated fibres, which include difficulty in processing, production scale-up-related challenges, etc.
- The present study highlights the important applications and limitations associated with the successful utilisation of molecularly reassembled regenerated fibres.
- Current work also provides important recommendations for future research, considering the expanding scope for developing innovative biomaterials in the field of tissue engineering.
Abstract
1. Introduction
2. Methodology
3. Properties of Native Cellulose and Collagen Fibres
3.1. Supramolecular Arrangement

3.2. Chemical Attributes
3.3. Structural and Physical Properties of Native Fibres

4. Molecular Self-Assembly and Regenerated Fibre
4.1. Molecular Reassembly and the Regenerative Process
4.2. Structural Properties of Regenerated Fibres
5. Tissue Engineering Biomaterials and Molecular Self-Assembled Collagen–Cellulose
6. Advantages and Challenges of Molecular Re-Assembled Cellulose and Collagen Fibres in Terms of Tissue Engineering Bio-Composite Development
7. Perspective for Future Research
8. Conclusions
9. Summary
Author Contributions
Funding
Data: Availability Statement
Acknowledgments
Conflicts of Interest
AI Statement
References
- Cota Quintero, J.L.; Ramos-Payán, R.; Romero-Quintana, J.G.; Ayala-Ham, A.; Bermúdez, M.; Aguilar-Medina, E.M. Hydrogel-Based Scaffolds: Advancing Bone Regeneration Through Tissue Engineering. Gels 2025, 11, 175. [Google Scholar] [CrossRef]
- Li, X.; Sim, D.; Wang, Y.; Feng, S.; Longo, B.; Li, G.; Andreassen, C.; Hasturk, O.; Stout, A.; Yuen, J.S.K.; et al. Fiber-Based Biomaterial Scaffolds for Cell Support towards the Production of Cultivated Meat. Acta Biomater. 2025, 191, 292–307. [Google Scholar] [CrossRef]
- Prasad, V.; Alliyankal Vijayakumar, A.; Jose, T.; George, S.C. A Comprehensive Review of Sustainability in Natural-Fiber-Reinforced Polymers. Sustainability 2024, 16, 1223. [Google Scholar] [CrossRef]
- Ullah, S.; Chen, X. Fabrication, Applications and Challenges of Natural Biomaterials in Tissue Engineering. Appl. Mater. Today 2020, 20, 100656. [Google Scholar] [CrossRef]
- Schiller, T.; Scheibel, T. Bioinspired and Biomimetic Protein-Based Fibers and Their Applications. Commun. Mater. 2024, 5, 56. [Google Scholar] [CrossRef]
- Thongnok, K.; Torgbo, S.; Sallehuddin, N.; Maarof, M.; Khamplod, T.; Fauzi, M.B.; Sukyai, P. Polydopamine-Coated Regenerated Cellulose-Bioceramic Composite Scaffolds for Enhanced Bone Tissue Engineering. Mater. Chem. Phys. 2025, 341, 130891. [Google Scholar] [CrossRef]
- Varnaitė-Žuravliova, S.; Baltušnikaitė-Guzaitienė, J. Properties, Production, and Recycling of Regenerated Cellulose Fibers: Special Medical Applications. J. Funct. Biomater. 2024, 15, 348. [Google Scholar] [CrossRef] [PubMed]
- Basu, P.; Saha, N.; Saha, P. Swelling and Rheological Study of Calcium Phosphate Filled Bacterial Cellulose-Based Hydrogel Scaffold. J. Appl. Polym. Sci. 2020, 137, 48522. [Google Scholar] [CrossRef]
- Woodings, C. A brief history of regenerated cellulose fibres. In Regenerated Cellulose Fibres; Woodings, C., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2001; pp. 1–21. [Google Scholar]
- Rules and Regulations Under the Textile Fiber Products Identification Act by USA Federal Trade Commission, Source: 24 FR 4480, 2 June 1959, in § 303.7 Generic Names and Definitions for Manufactured Fibers. Available online: https://www.ecfr.gov/current/title-16/part-303/section-303.7 (accessed on 28 September 2025).
- Shoulders, M.D.; Raines, R.T. Collagen Structure and Stability. Annu. Rev. Biochem. 2009, 78, 929–958. [Google Scholar] [CrossRef]
- Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef]
- Orgel, J.P.R.O.; Irving, T.C.; Miller, A.; Wess, T.J. Microfibrillar Structure of Type I Collagen in Situ. Proc. Natl. Acad. Sci. USA 2006, 103, 9001–9005. [Google Scholar] [CrossRef]
- Fratzl, P.; Gupta, H.S.; Paschalis, E.P.; Roschger, P. Structure and Mechanical Quality of the Collagen–Mineral Nano-Composite in Bone. J. Mater. Chem. 2004, 14, 2115–2123. [Google Scholar] [CrossRef]
- Kadler, K.E.; Holmes, D.F.; Trotter, J.A.; Chapman, J.A. Collagen Fibril Formation. Biochem. J. 1996, 316, 1–11. [Google Scholar] [CrossRef]
- Pedersen, G.B.; Blaschek, L.; Frandsen, K.E.H.; Noack, L.C.; Persson, S. Cellulose Synthesis in Land Plants. Mol. Plant. 2023, 16, 206–231. [Google Scholar] [CrossRef]
- Chen, Q.; Pei, Y.; Tang, K.; Albu-Kaya, M.G. Structure, extraction, processing, and applications of collagen as an ideal component for biomaterials—A review. Collagen Leather 2023, 5, 20. [Google Scholar] [CrossRef]
- Delmer, D.; Dixon, R.A.; Keegstra, K.; Mohnen, D. The Plant Cell Wall—Dynamic, Strong, and Adaptable—Is a Natural Shapeshifter. Plant Cell 2024, 36, 1257. [Google Scholar] [CrossRef]
- Karimi, K.; Taherzadeh, M.J. A Critical Review of Analytical Methods in Pretreatment of Lignocelluloses: Composition, Imaging, and Crystallinity. Bioresour. Technol. 2016, 200, 1008–1018. [Google Scholar] [CrossRef] [PubMed]
- Gibson, L.J. The Hierarchical Structure and Mechanics of Plant Materials. J. R. Soc. Interface 2012, 9, 2749–2766. [Google Scholar] [CrossRef]
- Sumathi, S. Biosynthesis and Assemblage of Extracellular Cellulose by Bacteria. In Handbook of Environmental Materials Management; Springer: Cham, Switzerland, 2018; pp. 1–43. [Google Scholar] [CrossRef]
- Esa, F.; Tasirin, S.M.; Rahman, N.A. Overview of Bacterial Cellulose Production and Application. Agric. Agric. Sci. Procedia 2014, 2, 113–119. [Google Scholar] [CrossRef]
- Khodayari, A.; Hirn, U.; Spirk, S.; Ogawa, Y.; Seveno, D.; Thielemans, W. Advancing Plant Cell Wall Modelling: Atomistic Insights into Cellulose, Disordered Cellulose, and Hemicelluloses—A Review. Carbohydr. Polym. 2024, 343, 122415. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Kadler, K.E.; Baldock, C.; Bella, J.; Boot-Handford, R.P. Collagens at a Glance. J. Cell Sci. 2007, 120, 1955–1958. [Google Scholar] [CrossRef]
- Dufresne, A. Nanocellulose: A New Ageless Bionanomaterial. Mater. Today 2013, 16, 220–227. [Google Scholar] [CrossRef]
- Himmel, M.E.; Ding, S.Y.; Johnson, D.K.; Adney, W.S.; Nimlos, M.R.; Brady, J.W.; Foust, T.D. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science 2007, 315, 804–807. [Google Scholar] [CrossRef]
- Svendsen, K.H.; Koch, M.H. X-ray Diffraction Evidence of Collagen Molecular Packing and Cross-linking in Fibrils of Rat Tendon Observed by Synchrotron Radiation. EMBO J. 1982, 1, 669–674. [Google Scholar] [CrossRef]
- Ioelovich, M. Peculiarity of Phase Transitions of Cellulose Nano Crystallites. ChemXpress 2016, 9, 106. [Google Scholar]
- Glasser, W.G.; Atalla, R.H.; Blackwell, J.; Brown, R.M.; Burchard, W.; French, A.D.; Klemm, D.O.; Nishiyama, Y. About the structure of cellulose: Debating the Lindman hypothesis. Cellulose 2012, 19, 589–598. [Google Scholar] [CrossRef]
- Pérez, S.; Mazeau, K. Conformations, Structures, and Morphologies of Celluloses From. In Polysaccharides; Dumitriu, S., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 41–68. [Google Scholar]
- Dutta, S.D.; Patel, D.K.; Lim, K.T. Functional Cellulose-Based Hydrogels as Extracellular Matrices for Tissue Engineering. J. Biol. Eng. 2019, 13, 55. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Y.; Phillips, G.O.; Yang, G. Utilization of Bacterial Cellulose in Food. Food Hydrocoll 2014, 35, 539–545. [Google Scholar] [CrossRef]
- Krässig, H.A. Cellulose: Structure, Accessibility and Reactivity; Gordon & Breach: Philadelphia, PA, USA, 1993. [Google Scholar]
- Quesada Cabrera, R.; Meersman, F.; McMillan, P.F.; Dmitriev, V. Nanomechanical and Structural Properties of Native Cellulose under Compressive Stress. Biomacromolecules 2011, 12, 2178–2183. [Google Scholar] [CrossRef]
- Gautieri, A.; Redaelli, A.; Buehler, M.J.; Vesentini, S. Age- and Diabetes-Related Nonenzymatic Crosslinks in Collagen Fibrils: Candidate Amino Acids Involved in Advanced Glycation End-Products. Matrix Biol. 2014, 34, 89–95. [Google Scholar] [CrossRef]
- Shen, Z.L.; Kahn, H.; Ballarini, R.; Eppell, S.J. Viscoelastic Properties of Isolated Collagen Fibrils. Biophys. J. 2011, 100, 3008–3015. [Google Scholar] [CrossRef]
- Wenger, M.P.E.; Bozec, L.; Horton, M.A.; Mesquidaz, P. Mechanical Properties of Collagen Fibrils. Biophys. J. 2007, 93, 1255–1263. [Google Scholar] [CrossRef]
- Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and its derivatives: Towards biomedical applications. Cellulose 2021, 28, 1893–1931. [Google Scholar] [CrossRef]
- Yue, C.; Ding, C.; Xu, M.; Hu, M.; Zhang, R. Self-Assembly Behavior of Collagen and Its Composite Materials: Preparation, Characterizations, and Biomedical Engineering and Allied Applications. Gels 2024, 10, 642. [Google Scholar] [CrossRef] [PubMed]
- Delepierre, G.; Eyley, S.; Thielemans, W.; Weder, C.; Cranston, E.D.; Zoppe, J.O. Patience Is a Virtue: Self-Assembly and Physico-Chemical Properties of Cellulose Nanocrystal Allomorphs. Nanoscale 2020, 12, 17480–17493. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, L.; Dan, W.; Dan, N.; Gu, Z. Evaluation of 1-Ethyl-3-Methylimidazolium Acetate Based Ionic Liquid Systems as a Suitable Solvent for Collagen. J. Appl. Polym. Sci. 2013, 130, 2245–2256. [Google Scholar] [CrossRef]
- Gautam, S.P.; Bundela, P.S.; Pandey, A.K.; Jamaluddin, J.; Awasthi, M.K.; Sarsaiya, S. A Review on Systematic Study of Cellulose. J. Appl. Nat. Sci. 2010, 2, 330–343. [Google Scholar] [CrossRef]
- Achilli, M.; Mantovani, D. Tailoring Mechanical Properties of Collagen-Based Scaffolds for Vascular Tissue Engineering: The Effects of PH, Temperature and Ionic Strength on Gelation. Polymers 2010, 2, 664–680. [Google Scholar] [CrossRef]
- Harris, J.R.; Soliakov, A.; Lewis, R.J. In Vitro Fibrillogenesis of Collagen Type I in Varying Ionic and PH Conditions. Micron 2013, 49, 60–68. [Google Scholar] [CrossRef]
- Chen, D.; Smith, L.R.; Khandekar, G.; Patel, P.; Yu, C.K.; Zhang, K.; Chen, C.S.; Han, L.; Wells, R.G. Distinct Effects of Different Matrix Proteoglycans on Collagen Fibrillogenesis and Cell-Mediated Collagen Reorganization. Sci. Rep. 2020, 10, 19065. [Google Scholar] [CrossRef]
- Garg, A.K.; Berg, R.A.; Silver, F.H.; Garg, H.G. Effect of Proteoglycans on Type I Collagen Fibre Formation. Biomaterials 1989, 10, 413–419. [Google Scholar] [CrossRef]
- Prasong, W.; Ishigami, A.; Thumsorn, S.; Kurose, T.; Ito, H. Improvement of Interlayer Adhesion and Heat Resistance of Biodegradable Ternary Blend Composite 3D Printing. Polymers 2021, 13, 740. [Google Scholar] [CrossRef]
- Maharjan, B.; Park, J.; Kaliannagounder, V.K.; Awasthi, G.P.; Joshi, M.K.; Park, C.H.; Kim, C.S. Regenerated Cellulose Nanofiber Reinforced Chitosan Hydrogel Scaffolds for Bone Tissue Engineering. Carbohydr. Polym. 2021, 251, 117023. [Google Scholar] [CrossRef]
- Sofi, H.S.; Akram, T.; Shabir, N.; Vasita, R.; Jadhav, A.H.; Sheikh, F.A. Regenerated Cellulose Nanofibers from Cellulose Acetate: Incorporating Hydroxyapatite (HAp) and Silver (Ag) Nanoparticles (NPs), as a Scaffold for Tissue Engineering Applications. Mater. Sci. Eng. C 2021, 118, 111547. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, T.; Hua, W.; Li, P.; Wang, X. 3D Porous Poly(Lactic Acid)/Regenerated Cellulose Composite Scaffolds Based on Electrospun Nanofibers for Biomineralization. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124048. [Google Scholar] [CrossRef]
- Chakraborty, P.K.; Adhikari, J.; Saha, P. Facile Fabrication of Electrospun Regenerated Cellulose Nanofiber Scaffold for Potential Bone-Tissue Engineering Application. Int. J. Biol. Macromol. 2019, 122, 644–652. [Google Scholar] [CrossRef]
- Daugela, P.; Pranskunas, M.; Juodzbalys, G.; Liesiene, J.; Baniukaitiene, O.; Afonso, A.; Sousa Gomes, P. Novel Cellulose/Hydroxyapatite Scaffolds for Bone Tissue Regeneration: In Vitro and in Vivo Study. J. Tissue Eng. Regen. Med. 2018, 12, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Huang, J.; Zhong, Y.; Li, K.; Zhang, L.; Cai, J. High-Strength and High-Toughness Double-Cross-Linked Cellulose Hydrogels: A New Strategy Using Sequential Chemical and Physical Cross-Linking. Adv. Funct. Mater. 2016, 26, 6279–6287. [Google Scholar] [CrossRef]
- De Araújo Júnior, A.M.; Braido, G.; Saska, S.; Barud, H.S.; Franchi, L.P.; Assunção, R.M.N.; Scarel-Caminaga, R.M.; Capote, T.S.O.; Messaddeq, Y.; Ribeiro, S.J.L. Regenerated Cellulose Scaffolds: Preparation, Characterization and Toxicological Evaluation. Carbohydr. Polym. 2016, 136, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, M.I.N.; Sankar, S.; Kashif, P.M.; Basha, S.K.H.; Sastry, T.P. Evaluation of Biomaterial Containing Regenerated Cellulose and Chitosan Incorporated with Silver Nanoparticles. Int. J. Biol. Macromol. 2015, 72, 680–686. [Google Scholar] [CrossRef]
- Müller, F.A.; Müller, L.; Hofmann, I.; Greil, P.; Wenzel, M.M.; Staudenmaier, R. Cellulose-Based Scaffold Materials for Cartilage Tissue Engineering. Biomaterials 2006, 27, 3955–3963. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Liu, X.; Zhao, H.; Xia, S.; Liu, W.; Bai, H.; Lv, F.; Zheng, X.; Huang, Y.; Gu, Q.; et al. Synthesis of Easily-Processable Collagen Bio-Inks Using Ionic Liquid for 3D Bioprinted Liver Tissue Models with Branched Vascular Networks. Sci. China Chem. 2023, 66, 1489–1499. [Google Scholar] [CrossRef]
- Wang, X.; Wu, T.; Wang, W.; Huang, C.; Jin, X. Regenerated Collagen Fibers with Grooved Surface Texture: Physicochemical Characterization and Cytocompatibility. Mater. Sci. Eng. C 2016, 58, 750–756. [Google Scholar] [CrossRef]
- Amsaveni, M.; Anumary, A.; Ashokkumar, M.; Chandrasekaran, B.; Thanikaivelan, P. Green Synthesis and Characterization of Hybrid Collagen-Cellulose-Albumin Biofibers from Skin Waste. Appl. Biochem. Biotechnol. 2013, 171, 1500–1512. [Google Scholar] [CrossRef]
- Meng, Z.; Zheng, X.; Tang, K.; Liu, J.; Ma, Z.; Zhao, Q. Dissolution and Regeneration of Collagen Fibers Using Ionic Liquid. Int. J. Biol. Macromol. 2012, 51, 440–448. [Google Scholar] [CrossRef]
- Zhao, H.; Jones, C.L.; Baker, G.A.; Xia, S.; Olubajo, O.; Person, V.N. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J. Biotechnol. 2009, 39, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yamagishi, N.; Gotoh, Y.; Potthast, A.; Rosenau, T. High performance cellulose fibers regenerated from 1-butyl-3-methylimidazolium chloride solution: Effects of viscosity and molecular weight. J. Appl. Polym. Sci. 2020, 137, 48681. [Google Scholar] [CrossRef]
- Tu, H.; Li, X.; Liu, Y.; Luo, L.; Duan, B.; Zhang, R. Recent progress in regenerated cellulose-based fibers from alkali/urea system via spinning process. Carbohydr. Polym. 2022, 296, 119942. [Google Scholar] [CrossRef]
- Yang, K.; Shan, J.; Wang, X.; Zhang, J.; Tian, G.; Yang, D.; Yang, J.; Ma, J. Characteristics of cellulose solutions prepared with three non-derivatizing solvents and comparison of regenerated fiber properties. J. Mol. Liq. 2025, 437, 128443. [Google Scholar] [CrossRef]
- Armir, N.A.Z.; Zulkifli, A.; Gunaseelan, S.; Palanivelu, S.D.; Salleh, K.M.; Othman, M.H.C.; Zakaria, S. Regenerated Cellulose Products for Agricultural and Their Potential: A Review. Polymers 2021, 13, 3586. [Google Scholar] [CrossRef] [PubMed]
- Santamala, H.; Livingston, R.; Sixta, H.; Hummel, M.; Skrifvars, M.; Saarela, O. Advantages of Regenerated Cellulose Fibres as Compared to Flax Fibres in the Processability and Mechanical Performance of Thermoset Composites. Compos. Part A Appl. Sci. Manuf. 2016, 84, 377–385. [Google Scholar] [CrossRef]
- Fazeli, M.; Islam, S.; Baniasadi, H.; Abidnejad, R.; Schlapp-Hackl, I.; Hummel, M.; Lipponen, J. Exploring the Potential of Regenerated Ioncell Fiber Composites: A Sustainable Alternative for High-Strength Applications. Green Chem. 2024, 26, 6822–6835. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Y.; Wang, L.; Chen, L.; Jin, Z.; Zhang, Q. A Cost-Effective and Chemical-Recycling Approach for Facile Preparation of Regenerated Cellulose Materials. Nano Lett. 2024, 24, 9074–9081. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Liyanage, S.; Abidi, N.; Parajuli, P.; Rumi, S.S.; Shamshina, J.L. Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers 2021, 13, 4344. [Google Scholar] [CrossRef]
- Wu, K.; Liu, D.; Gong, F.; Lei, C.; Fu, Q. Addressing the Challenge of Fabricating a High Content Regenerated Cellulose/Nanomaterial Composite: The Magical Effect of Urea. Green Chem. 2020, 22, 4121–4127. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Yang, S.G.; Li, L.; Yang, B.; Huang, H.D.; Yan, D.X.; Zhong, G.J.; Xu, L.; Li, Z.M. Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2018, 10, 40156–40167. [Google Scholar] [CrossRef]
- Lewis, K.M.; Spazierer, D.; Urban, M.D.; Lin, L.; Redl, H.; Goppelt, A. Comparison of Regenerated and Non-Regenerated Oxidized Cellulose Hemostatic Agents. Eur. Surg. Acta Chir. Austriaca 2013, 45, 213–220. [Google Scholar] [CrossRef]
- Fang, Z.; Lu, C.; Du, W.; Wang, X.; Yang, H.; Shi, M.; Liu, T.; Xie, Y.; Wang, S.; Xu, X.; et al. Injectable Self-Assembled Dual-Crosslinked Alginate/Recombinant Collagen-Based Hydrogel for Endometrium Regeneration. Int. J. Biol. Macromol. 2023, 236, 123943. [Google Scholar] [CrossRef]
- de Amorim, J.D.P.; da Silva Junior, C.J.G.; de Medeiros, A.D.M.; do Nascimento, H.A.; Sarubbo, M.; de Medeiros, T.P.M.; Costa, A.F.d.S.; Sarubbo, L.A. Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules 2022, 27, 5580. [Google Scholar] [CrossRef] [PubMed]

| Parameter | Collagen | Cellulose | Ref. |
|---|---|---|---|
| Composition |
|
| [11,24] |
|
| ||
| Intramolecular Bonds |
|
| [25,26] |
| Susceptible reactive Groups |
|
| [11,27] |
|
|
| Source Material | Biomaterial | Application | Property | Ref. |
|---|---|---|---|---|
| Cellulose | Polydopamine-coated regenerated cellulose- scaffolds | Bone tissue engineering |
| [6] |
| ||||
| ||||
| Regenerated cellulose nanofiber reinforced chitosan hydrogel | Bone tissue engineering |
| [49] | |
| ||||
| ||||
| Regenerated cellulose nanofibers loaded with hydroxyapatite and silver nanoparticles | Soft and hard tissue engineering |
| [50] | |
| ||||
| ||||
| Poly(lactic acid)/regenerated cellulose scaffold | Bone tissue engineering |
| [51] | |
| ||||
| ||||
| Electrospun regenerated cellulose nanofiber | Bone tissue regeneration |
| [52] | |
| ||||
| ||||
| ||||
| Cellulose/ Hydroxyapatite scaffold | Bone tissue engineering |
| [53] | |
| ||||
| ||||
| Double-cross-linked cellulose hydrogels | Artificial blood vessels and skin, tissue engineering materials |
| [54] | |
| ||||
| ||||
| Regenerated cellulose scaffolds | Tissue regeneration |
| [55] | |
| ||||
| ||||
| Regenerated cellulose-chitosan with silver nanoparticle bio-composite | Wound healing and skin tissue regeneration |
| [56] | |
| ||||
| ||||
| ||||
| Non-woven cellulose II fabrics | Cartilage tissue regeneration |
| [57] | |
| ||||
| ||||
| Collagen | Collagen bio-inks | 3D printed liver tissue |
| [58] |
| ||||
| ||||
| Regenerated collagen fibres | Tissue-engineered scaffolds, wound dressings and face masks |
| [59] | |
| ||||
| ||||
| ||||
| Collagen–Cellulose–Albumin Biofibres | Tissue-engineered scaffolds, wound dressings |
| [60] | |
| ||||
| Regenerated Collagen fibre | Tissue engineering |
| [42] | |
| ||||
| ||||
| ||||
| Regenerated Collagen/cellulose composite | Biomedical |
| [61] | |
|
| High Cost | Low Cost |
|---|---|
| LiCl/DMAC | NaOH/Urea |
| NMMO | NaOH/CS2 |
| LiCl/DMAC | |
| 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) | |
| 1-allyl-3-methylimidazolium chloride ([AMIM]Cl) | |
| Deep eutectic solvents |
| Current Research | Advantages | Limitation | Future Research Consideration |
|---|---|---|---|
| Regenerated fibre with molecular reassembly is developed by using alkaline solutions, ionic liquid-based solvent systems, etc | Cost-effective production route | Difficulty in processing | Analysis of in-depth chemical properties to improve overall bio-composite efficiency |
| Environmental sustain-ability | Challenge related to production scale-up | Utilisation of doping material to improve the mechanical properties | |
| Bioactive tissue engineering bio-composites are developed with these fibres | High chemical stability | Inadequate durability of regenerated fibres | Utilisation of different sustainable sources of native fibres to develop regenerated fibres |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stiliyanov-Atanasov, K.; Basu, P. Molecular Self-Reassembled Regenerated Fibres and Their Significance in Tissue Engineering Bio-Composites. Fibers 2025, 13, 149. https://doi.org/10.3390/fib13110149
Stiliyanov-Atanasov K, Basu P. Molecular Self-Reassembled Regenerated Fibres and Their Significance in Tissue Engineering Bio-Composites. Fibers. 2025; 13(11):149. https://doi.org/10.3390/fib13110149
Chicago/Turabian StyleStiliyanov-Atanasov, Kristiyan, and Probal Basu. 2025. "Molecular Self-Reassembled Regenerated Fibres and Their Significance in Tissue Engineering Bio-Composites" Fibers 13, no. 11: 149. https://doi.org/10.3390/fib13110149
APA StyleStiliyanov-Atanasov, K., & Basu, P. (2025). Molecular Self-Reassembled Regenerated Fibres and Their Significance in Tissue Engineering Bio-Composites. Fibers, 13(11), 149. https://doi.org/10.3390/fib13110149

