Synthesis and Characterization of Silver Nanoparticles on Orthodontic Brackets: A New Alternative in the Prevention of White Spots
Abstract
1. Introduction
2. Materials and Methods
2.1. Orthodontic Brackets
2.2. Preparation of Samples and In Situ AgNP Synthesis
2.3. Characterization
2.3.1. Scanning Electron Microscopy and X-Ray Energy-Dispersive Spectroscopy (SEM/EDS)
2.3.2. Transmission Electron Microscopy (TEM)
2.3.3. Evaluation of the Antimicrobial Effect
3. Results
3.1. Characterization of Orthodontic Brackets
3.1.1. SEM/EDS
3.1.2. Transmission Electron Microscopy (TEM)
3.2. Evaluation of the Antimicrobial Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Babaahmady, K.G.; Challacombe, S.J.; Marsh, P.D.; Newman, H.N. Ecological study of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus at subsites from approximal dental plaque from children. Caries Res. 1998, 32, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Hamada, S.; Slade, H.D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 1980, 44, 331–384. [Google Scholar] [PubMed]
- Gonzalez-Perez, J.C.; Scougall-Vilchis, R.J.; Contreras-Bulnes, R.; De La Rosa-Gómez, I.; Uematsu, S.; Yamaguchi, R. Adherence of Streptococcus mutans to orthodontic band cements. Aust. Dent. J. 2012, 57, 464–469. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.M.; Featherstone, J.D. Demineralization and remineralization around orthodontic appliances: An in vivo study. Am. J. Orthod. Dentofac. Orthop. 1987, 92, 33–40. [Google Scholar] [CrossRef]
- Øgaard, B. White spot lesions during orthodontic treatment: Mechanisms and fluoride preventive aspects. Semin. Orthod. 2008, 14, 183–193. [Google Scholar] [CrossRef]
- Gorelick, L.; Geiger, A.M.; Gwinnett, A.J. Incidence of white spot formation after bonding and banding. Am. J. Orthod. 1982, 81, 93–98. [Google Scholar] [CrossRef]
- Julien, K.C.; Buschang, P.H.; Campbell, P.M. Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod. 2013, 83, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.A.; Clark, A.E.; Rody, W.J.; McGorray, S.P.; Wheeler, T.T. A prospective randomized clinical trial into the capacity of a toothpaste containing NovaMin to prevent white spot lesions and gingivitis during orthodontic treatment. Prog. Orthod. 2015, 16, 25. [Google Scholar] [CrossRef]
- Reddy, R.; Manne, R.; Sekhar, G.C.; Gupta, S.; Shivaram, N.; Nandalur, K.R. Evaluation of the efficacy of various topical fluorides on enamel demineralization adjacent to orthodontic brackets: An in vitro study. J. Contemp. Dent. Pract. 2019, 20, 89–93. [Google Scholar]
- Weir, E.; Lawlor, A.; Whelan, A.; Regan, F. The use of nanoparticles in antimicrobial materials and their characterization. Analyst 2008, 133, 835–845. [Google Scholar] [CrossRef]
- Allaker, R.P. The use of nanoparticles to control oral biofilm formation. J. Dent. Res. 2010, 89, 1175–1186. [Google Scholar] [CrossRef]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef]
- Hannig, M.; Kriener, L.; Hoth-Hannig, W.; Becker-Willinger, C.; Schmidt, H. Influence of nanocomposite surface coating on biofilm formation in situ. J. Nanosci. Nanotechnol. 2007, 7, 4642–4648. [Google Scholar]
- Monteiro, D.R.; Gorup, L.F.; Takamiya, A.S.; Ruvollo-Filho, A.C.; De-Camargo, E.R.; Barbosa, D.B. The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver. Int. J. Antimicrob. Agents 2009, 34, 103–110. [Google Scholar] [CrossRef]
- Correa, J.M.; Mori, M.; Sanches, H.L.; Cruz, A.D.D.; Poiate, E.; Poiate, I.A.V.P. Silver nanoparticles in dental biomaterials. Int. J. Biomater. 2015, 2015, 485275. [Google Scholar] [CrossRef] [PubMed]
- Pimpang, P.; Sutham, W.; Mangkorntong, N.; Mangkorntong, P.; Choopun, S. Effect of stabilizer on preparation of silver and gold nanoparticles using grinding method. Chiang Mai J. Sci. 2008, 35, 250–257. [Google Scholar]
- Zschech, D.; Kim, D.H.; Milenin, A.P.; Hopfe, S.; Scholz, R.; Goring, P.; Hillebrand, R.; Senz, S.; Hawker, C.J.; Russell, T.P. High-temperature resistant, ordered gold nanoparticles arrays. Nanotechnology 2006, 17, 2122–2126. [Google Scholar] [CrossRef]
- Giorgetti, E.; Giusti, A.; Laza, S.; Marsili, P.; Giammanco, F. Production of colloidal gold nanoparticles by picoseconds laser ablation in liquids. Phys. Status Solidi A 2007, 204, 1693–1698. [Google Scholar] [CrossRef]
- Turner, S.; Tavernier, S.; Huyberechts, G.; Biermans, E.; Bals, S.; Batenburg, K.; Tendeloo, G. Assisted spray pyrolysis production and characterization of ZnO nanoparticles with narrow size distribution. J. Nanopart. Res. 2010, 12, 615–622. [Google Scholar] [CrossRef]
- Ko, T.S.; Yang, S.; Hsu, H.C.; Chu, C.P.; Lin, H.F.; Liao, S.C.; Lu, T.C.; Kuo, H.C.; Hsieh, W.H.; Wang, S.C. ZnO nanopowders fabricated by dc thermal plasma synthesis. Mater. Sci. Eng. B 2006, 134, 54–58. [Google Scholar] [CrossRef]
- Breitwieser, D.; Moghaddam, M.M.; Spirk, S.; Baghbanzadeh, M.; Pivec, T.; Fasl, H.; Ribitsch, V.; Kappe, C.O. In situ preparation of silver nanocomposites on cellulosic fibers microwave vs conventional heating. Carbohydr. Polym. 2013, 94, 677–686. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interf. Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef]
- Nair, L.S.; Laurencin, C.T. Silver nanoparticles: Synthesis and therapeutic applications. J. Biomed. Nanotechnol. 2007, 3, 301–316. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. [Google Scholar] [CrossRef]
- McShan, D.; Ray, P.C.; Yu, H. Molecular toxicity mechanism of nanosilver. J. Food Drug Anal. 2014, 22, 116–127. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramirez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef]
- Feng, Q.L.; Wu, J.; Chen, G.Q.; Cui, F.Z.; Kim, T.N.; Kim, J.O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. [Google Scholar] [CrossRef]
- Yuranova, T.; Rincon, A.G.; Bozzi, A.; Parra, S.; Pulgarin, C.; Albers, P.; Kiwi, J. Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver. J. Photochem. Photobiol. A Chem. 2003, 161, 27–34. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Basak, S.; Das, J.K.; Medda, S.K.; Chattopadhyay, K.; De, G. Ag-TiO2 nanoparticle codoped SiO2 films on ZrO2 barrier-coated glass substrates with antibacterial activity in ambient condition. ACS Appl. Mater. Interf. 2010, 2, 2540–2546. [Google Scholar] [CrossRef]
- García-Contreras, R.; Argueta-Figueroa, L.; Mejía-Rubalcava, C.; Jiménez-Martínez, R.; Cuevas-Guajardo, S.; Sánchez-Reyna, P.A.; Mendieta-Zeron, H. Perspectives for the use of silver nanoparticles in dental practice. Int. Dent. J. 2011, 61, 297–301. [Google Scholar] [CrossRef]
- Garcia, I.M.; Ferreira, C.J.; de Souza, V.S.; Leitune, V.C.B.; Samuel, S.M.W.; de Souza Balbinot, G.; Collares, F.M. Ionic liquid as antibacterial agent for an experimental orthodontic adhesive. Dent. Mater. 2019, 35, 1155–1165. [Google Scholar] [CrossRef]
- Borzabadi-Farahani, A.; Borzabadi, E.; Lynch, E. Nanoparticles in orthodontics, a review of antimicrobial and anti-caries applications. Acta Odontol. Scand. 2014, 72, 413–417. [Google Scholar] [CrossRef]
- Bala, T.; Armstrong, G.; Laffir, F.; Thornton, R. Titania-silver and alumina-silver composite nanoparticles: Novel, versatile synthesis, reaction mechanism and potential antimicrobial application. J Colloid Interf. Sci. 2011, 356, 395–403. [Google Scholar] [CrossRef]
- ISO 20776-1E Clinical Laboratory Testing and In Vitro Diagnostic Test Systems—Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006.
- Biemer, J.J. Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Ann. Clin. Lab. Sci. 1973, 3, 135–140. [Google Scholar]
- Gold, O.G.; Jordan, H.V.; Vanhoute, J. A selective medium for Streptococcus-mutans. Arch. Oral. Biol. 1973, 11, 1357–1364. [Google Scholar] [CrossRef]
- Marcotte, H.; Lavoie, M.C. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol. Molecul. Biol. Rev. 1998, 62, 71–109. [Google Scholar]
- Anhoury, P.; Nathanson, D.; Hughes, C.V.; Socransky, S.; Feres, M.; Chou, L.L. Microbial profile on metallic and ceramic bracket materials. Angle Orthod. 2002, 72, 338–343. [Google Scholar]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef]
- Kerbusch, A.E.; Kuijpers-Jagtman, A.M.; Mulder, J.; Sanden, W.J. Methods used for prevention of white spot lesion development during orthodontic treatment with fixed appliances. Acta Odontol. Scand. 2012, 70, 564–568. [Google Scholar] [CrossRef]
- Mattingly, J.A.; Sauer, G.J.; Yancey, J.M.; Arnold, R.R. Enhancement of streptococcus mutans colonization by direct bonded orthodontic appliances. J. Dent. Res. 1983, 62, 1209–1211. [Google Scholar] [CrossRef]
- Bundy, K.J.; Butler, M.F.; Hochman, R.F. An investigation of the bacteriostatic properties of pure metals. J. Biomed. Mater. Res. 1980, 14, 653–663. [Google Scholar] [CrossRef]
- Ahn, S.J.; Lee, S.J.; Kook, J.K.; Lim, B.S. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent. Mater. 2009, 25, 206–213. [Google Scholar] [CrossRef]
- Poosti, M.; Ramazanzadeh, B.; Zebarjad, M.; Javadzadeh, P.; Naderinasab, M.; Shakeri, M.T. Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur. J. Orthod. 2013, 35, 676–679. [Google Scholar] [CrossRef]
- Baehni, P.C.; Takeuchi, Y. Anti-plaque agents in the prevention of biofilm-associated oral diseases. Oral Dis. 2003, 9, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Dai, S.A.; Fu, K.Y.; Hsu, S.H. Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. Int. J. Nanomed. 2010, 5, 1017–1028. [Google Scholar]
- Mariel Murga, H.; Centeno Sanchez, R.; Sánchez Meraz, W.; González Amaro, A.M.; Arredondo Hérnandez, R.; Mariel Cárdenas, J.; Gutiérrez Cantu, F.J. Eficacia antimicrobiana del primer ortodóncico adicionado con nanopartículas de plata: Estudio transversal in vitro. Investig. Clín. 2016, 57, 321–329. [Google Scholar]
- Ochoa Ramirez, E.D. Fuerza Estática Friccional y Rugosidad de la Superficie Del Slot de Brackets de Autoligado: Estudio In Vitro. Master’s Thesis, Universidad de Cartagena, Cartagena, Colombia, 2018. [Google Scholar]
Microorganism | Halos of Inhibition (mm, Mean ± SD) | ||||
---|---|---|---|---|---|
GI | GII | GIII | GIV | GV | |
(A) S. aureus | 9.77 ± 0.003 | 9.55 ± 0.003 | 9.72 ± 0.004 | 9.47 ± 0.004 | 9.98 ± 0.004 |
(B) E. coli | 11.4 ± 0.002 | 10.5 ± 0.005 | 9.51± 0.012 | 10.0 ± 0.006 | 9.44 ± 0.003 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasso-Ruiz, I.; Velazquez-Enriquez, U.; Scougall-Vilchis, R.J.; Lara-Carrillo, E.; Toral-Rizo, V.H.; López-Castañares, R.; Morales-Luckie, R.A. Synthesis and Characterization of Silver Nanoparticles on Orthodontic Brackets: A New Alternative in the Prevention of White Spots. Coatings 2019, 9, 480. https://doi.org/10.3390/coatings9080480
Jasso-Ruiz I, Velazquez-Enriquez U, Scougall-Vilchis RJ, Lara-Carrillo E, Toral-Rizo VH, López-Castañares R, Morales-Luckie RA. Synthesis and Characterization of Silver Nanoparticles on Orthodontic Brackets: A New Alternative in the Prevention of White Spots. Coatings. 2019; 9(8):480. https://doi.org/10.3390/coatings9080480
Chicago/Turabian StyleJasso-Ruiz, Irania, Ulises Velazquez-Enriquez, Rogelio José Scougall-Vilchis, Edith Lara-Carrillo, Victor Hugo Toral-Rizo, Rafael López-Castañares, and Raúl Alberto Morales-Luckie. 2019. "Synthesis and Characterization of Silver Nanoparticles on Orthodontic Brackets: A New Alternative in the Prevention of White Spots" Coatings 9, no. 8: 480. https://doi.org/10.3390/coatings9080480
APA StyleJasso-Ruiz, I., Velazquez-Enriquez, U., Scougall-Vilchis, R. J., Lara-Carrillo, E., Toral-Rizo, V. H., López-Castañares, R., & Morales-Luckie, R. A. (2019). Synthesis and Characterization of Silver Nanoparticles on Orthodontic Brackets: A New Alternative in the Prevention of White Spots. Coatings, 9(8), 480. https://doi.org/10.3390/coatings9080480