Open AccessReview
Rapid Atmospheric-Pressure-Plasma-Jet Processed Porous Materials for Energy Harvesting and Storage Devices
by
Jian-Zhang Chen, Cheng-Che Hsu, Ching Wang, Wei-Yang Liao, Chih-Hung Wu, Ting-Jui Wu, Hsiao-Wei Liu, Haoming Chang, Shao-Tzu Lien, Hsin-Chieh Li, Chun-Ming Hsu, Peng-Kai Kao, Yao-Jhen Yang and I-Chun Cheng
Cited by 38 | Viewed by 10393
Abstract
Atmospheric pressure plasma jet (APPJ) technology is a versatile technology that has been applied in many energy harvesting and storage devices. This feature article provides an overview of the advances in APPJ technology and its application to solar cells and batteries. The ultrafast
[...] Read more.
Atmospheric pressure plasma jet (APPJ) technology is a versatile technology that has been applied in many energy harvesting and storage devices. This feature article provides an overview of the advances in APPJ technology and its application to solar cells and batteries. The ultrafast APPJ sintering of nanoporous oxides and 3D reduced graphene oxide nanosheets with accompanying optical emission spectroscopy analyses are described in detail. The applications of these nanoporous materials to photoanodes and counter electrodes of dye-sensitized solar cells are described. An ultrashort treatment (1 min) on graphite felt electrodes of flow batteries also significantly improves the energy efficiency.
Full article
►▼
Show Figures