Antimicrobial Efficacy of Sodium Dichloroisocyanurate Washing and Coating for Reduction of Foodborne Pathogens on Fresh Blackberries
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Bacterial Strains
2.2. Preparation of Antimicrobial Solution
2.3. Preparation of Coating Solution
2.4. Disk Diffusion Assay
2.5. Preparation of Blackberries and Inoculum
2.6. Treatment of Blackberries and Microbiological Analysis
2.7. Statistical Analysis
3. Results and Discussions
3.1. Disk Diffusion Assays and Selection of SDC Concentration
3.2. Treatment of Blackberry Surfaces with SDC Solutions
3.3. Treatment of Blackberry Surfaces with Hemicellulose-Based Coating Approach
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, R.; Gangrade, T.; Punasiya, R.; Ghulaxe, C. Rubus fruticosus (Blackberry) use as an herbal medicine. Pharmacogn. Rev. 2014, 8, 101–104. [Google Scholar] [CrossRef]
- D’Angelo, R.W.O.; Gonçalves, M.M.; Fachi, M.M.; Vilhena, R.d.O.; Pontarolo, R.; Maluf, D.F. UPLC–QToF-MS characterization of blackberry extracts of cultivars ‘Tupy’, ‘Guarani’, and ‘Xavante’: Development of extract-loaded niosomes. Rev. Bras. Farmacogn. 2020, 30, 519–527. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Santisteban, A.; Gordillo, B.; Hernanz, D.; Heredia, F.J.; Escudero-Gilete, M.L. Comparative study of red berry pomaces (blueberry, red raspberry, red currant, and blackberry) as sources of antioxidants and pigments. Eur. Food Res. Technol. 2019, 245, 1–9. [Google Scholar] [CrossRef]
- Dai, J.; Patel, J.D.; Mumper, R.J. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J. Med. Food 2007, 10, 258–265. [Google Scholar] [CrossRef]
- Hager, T.J.; Howard, L.R.; Liyanage, R.; Lay, J.O.; Prior, R.L. Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOF-MS. J. Agric. Food Chem. 2008, 56, 661–669. [Google Scholar] [CrossRef]
- Oszmiański, J.; Nowicka, P.; Teleszko, M.; Wojdyło, A.; Cebulak, T.; Oklejewicz, K. Analysis of phenolic compounds and antioxidant activity in wild blackberry fruits. Int. J. Mol. Sci. 2015, 16, 14540–14553. [Google Scholar] [CrossRef] [PubMed]
- Folmer, F.; Basavaraju, U.; Jaspars, M.; Hold, G.; El-Omar, E.; Dicato, M.; Diederich, M. Anticancer effects of bioactive berry compounds. Phytochem. Rev. 2014, 13, 295–322. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Riaz, M.; De Feo, V.; Jaafar, H.Z.E.; Moga, M. Rubus fruticosus L.: Constituents, biological activities, and health-related uses. Molecules 2014, 19, 10998–11029. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun. 2020, 15, 1934578X20903555. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific opinion on the risk posed by pathogens in food of non-animal origin. EFSA J. 2013, 11, 3025. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, W.; Sun, Y.; Sun, Y.; Wang, B.; Liu, M.; Qiu, Z.; Wang, Y.; Sun, Z.; Hu, P.; et al. Effects of multi-wavelength ultraviolet radiation on the inactivation and reactivation of E. coli in a recirculating water system. Aquac. Rep. 2025, 41, 102688. [Google Scholar] [CrossRef]
- Pérez-Lavalle, L.; Carrasco, E.; Valero, A. Strategies for microbial decontamination of fresh blueberries and derived products. Foods 2020, 9, 1558. [Google Scholar] [CrossRef]
- Wu, V.C.H.; Kim, B. Effect of a simple chlorine dioxide method for controlling five foodborne pathogens, yeasts, and molds on blueberries. Food Microbiol. 2007, 24, 794–800. [Google Scholar] [CrossRef]
- Goodburn, C.; Wallace, C.A. The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control 2013, 32, 418–427. [Google Scholar] [CrossRef]
- Tadepalli, S.; Bridges, D.F.; Driver, R.; Wu, V.C.H. Effectiveness of different antimicrobial washes combined with freezing against E. coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes inoculated on blueberries. Food Microbiol. 2018, 74, 34–39. [Google Scholar] [CrossRef]
- Pangloli, P.; Hung, Y.-C. Reducing microbiological safety risk on blueberries through innovative washing technologies. Food Control 2013, 32, 621–625. [Google Scholar] [CrossRef]
- Nadeem, M.; Leaks, K.; Abdullah, A.; Adamson, F.J.; Shahid, M.A. Enhancing postharvest quality of blackberries: Impact of sonicated and microwave-assisted pasteurized edible coating gels at different storage temperatures. Gels 2025, 11, 243. [Google Scholar] [CrossRef]
- Long, W., III; Sarker, M.I.; Annous, B.A.; Paoli, G.C. Evaluation of sodium dichloroisocyanurate treatment on recovered concentrations of Salmonella enterica, E. coli O157:H7, and Listeria monocytogenes from cattle hide surfaces and culture medium. J. Food Saf. 2020, 40, e12834. [Google Scholar] [CrossRef]
- WHO. Sodium Dichloroisocyanurate in Drinking Water. Available online: https://www.who.int/docs/default-source/wash-documents/wash-chemicals/sodium-dichloroisocyanurate-2add-feb2008.pdf (accessed on 1 August 2025).
- Dong, A.; Wang, Y.J.; Gao, Y.; Gao, T.; Gao, G. Chemical insights into antibacterial N-halamines. Chem. Rev. 2017, 117, 4806–4862. [Google Scholar] [CrossRef]
- Sarker, M.I.; Long, W.; Liu, C.K. Efficacy of aqueous solution of N-halamine to reduce microbiological contamination on cattle hides for meat safety with byproduct quality assurance. J. Am. Leather Chem. Assoc. 2020, 115, 330–336. [Google Scholar] [CrossRef]
- Zou, Q.; Meng, W.; Wang, C.; Wang, T.; Liu, X.; Li, D. Sodium dichloroisocyanurate: Improving broiler health by reducing harmful microbial levels in the waterline. Front. Vet. Sci. 2023, 10, 1234949. [Google Scholar] [CrossRef]
- da Silva Braga, R.; Poletto, M. Preparation and Characterization of Hemicellulose Films from Sugarcane Bagasse. Materials 2020, 13, 941. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, H.; Yang, B.; Weng, Y. Hemicellulose-Based Film: Potential Green Films for Food Packaging. Polymers 2020, 12, 1775. [Google Scholar] [CrossRef]
- Hussain, S.A.; Qi, P.X.; Sharma, B.K.; Yadav, M.P.; Mainali, K.; Jin, T.Z. Valorization of corn bran-derived carbohydrate polymers for developing biodegradable packaging films. J. Polym. Environ. 2025, 33, 2552–2566. [Google Scholar] [CrossRef]
- Hussain, S.A.; Sharma, B.K.; Qi, P.X.; Yadav, M.P.; Jin, T.Z. Antimicrobial and Physicochemical Properties of Hemicellulose-Based Films Incorporating Carvacrol. Polymers 2025, 17, 2073. [Google Scholar] [CrossRef]
- Ma, J.W.; Huang, B.S.; Hsu, C.W.; Peng, C.W.; Cheng, M.L.; Kao, J.Y.; Way, T.D.; Yin, H.C.; Wang, S.S. Efficacy and safety evaluation of a chlorine dioxide solution. Int. J. Environ. Res. Public Health 2017, 14, 329. [Google Scholar] [CrossRef]
- Malka, S.K.; Park, M.H. Fresh produce safety and quality: Chlorine dioxide’s role. Front. Plant Sci. 2022, 12, 775629. [Google Scholar] [CrossRef]
- Gerba, C.P. Quaternary ammonium biocides: Efficacy in application. Appl. Environ. Microbiol. 2015, 81, 464–469. [Google Scholar] [CrossRef]
- Luu, P.; Chhetri, V.S.; Janes, M.E.; King, J.M.; Adhikari, A. Effectiveness of aqueous chlorine dioxide in minimizing food safety risk associated with Salmonella, E. coli O157:H7, and Listeria monocytogenes on sweet potatoes. Foods 2020, 9, 1259. [Google Scholar] [CrossRef]
- Wang, F.; Xiang, L.; Leung, K.S.-Y.; Elsner, M.; Zhang, Y.; Guo, Y.; Pan, B.; Sun, H.; An, T.; Ying, G.; et al. Emerging contaminants: A One Health perspective. Innovation 2024, 5, 100612. [Google Scholar] [CrossRef]
- Martín-Diana, A.B.; Rico, D.; Barry-Ryan, C.; Frías, J.M.; Mulcahy, J.; Henehan, G.T. Comparison of calcium lactate with chlorine as a washing treatment for fresh-cut lettuce and carrots: Quality and nutritional parameters. JSFA Rep. 2005, 85, 2260–2268. [Google Scholar] [CrossRef]
- Nakano, H.; Pan, X. Effects of chlorine-based antimicrobial treatments on the microbiological qualities of selected leafy vegetables and wash water. Food Sci. Technol. Res. 2014, 20, 765–774. [Google Scholar] [CrossRef]
- Nazaruddin, N.; Afifah, N.; Bahi, M.; Susilawati, S.; Sani, N.D.M.; Esmaeili, C.; Iqhrammullah, M.; Murniana, M.; Hasanah, U.; Safitri, E. A simple optical pH sensor based on pectin and Ruellia tuberosa L-derived anthocyanin for fish freshness monitoring. F1000Research 2021, 10, 422. [Google Scholar] [CrossRef]
- Carpena, M.; Silva, A.; Barciela, P.; Perez-Vazquez, A.; Chamorro, F.; Cassani, L.; Barroso, M.F.; Xiao, J.; Prieto, M.A.; Simal-Gandara, J. Inclusion of Natural Anthocyanins as Food Spoilage Sensors. Eng. Proc. 2023, 48, 59. [Google Scholar] [CrossRef]
Zone of Inhibition (Diameter in mm) | |||
---|---|---|---|
Bacterial Pathogen | Trial 1 | Trial 2 | Average |
E. coli | 8 | 8.5 | 8.25 |
L. monocytogenes | 9.5 | 9 | 9.25 |
S. enterica | 8.5 | 8.25 | 8.37 |
Bacterial Pathogen | Best-Performing SDC Concentration (ppm) | Best-Performing Exposure Time (min) | a Log Reduction (CFU/mL) |
---|---|---|---|
E. coli | 1000 (Washing) | 8 | ** 5.0 ± 0.21 |
L. monocytogenes | 1000 (Washing) | 8 | * 3.6 ± 0.45 |
S. enterica | 1000(Washing) | 8 | ** 4.5 ± 0.11 |
S. enterica | 1000 (Coating) | 4 | *** 6.8 ± 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.A.; Sarker, M.I.; Jin, T.Z. Antimicrobial Efficacy of Sodium Dichloroisocyanurate Washing and Coating for Reduction of Foodborne Pathogens on Fresh Blackberries. Coatings 2025, 15, 1031. https://doi.org/10.3390/coatings15091031
Hussain SA, Sarker MI, Jin TZ. Antimicrobial Efficacy of Sodium Dichloroisocyanurate Washing and Coating for Reduction of Foodborne Pathogens on Fresh Blackberries. Coatings. 2025; 15(9):1031. https://doi.org/10.3390/coatings15091031
Chicago/Turabian StyleHussain, Syed Ammar, Majher I. Sarker, and Tony Z. Jin. 2025. "Antimicrobial Efficacy of Sodium Dichloroisocyanurate Washing and Coating for Reduction of Foodborne Pathogens on Fresh Blackberries" Coatings 15, no. 9: 1031. https://doi.org/10.3390/coatings15091031
APA StyleHussain, S. A., Sarker, M. I., & Jin, T. Z. (2025). Antimicrobial Efficacy of Sodium Dichloroisocyanurate Washing and Coating for Reduction of Foodborne Pathogens on Fresh Blackberries. Coatings, 15(9), 1031. https://doi.org/10.3390/coatings15091031