A-Site Doping Effect on PLZT Relaxor Ferroelectric Glass-Free Medium-Temperature Sintering Ceramics
Abstract
1. Introduction
2. Experimental Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dai, S.; Li, M.; Wu, X.; Wu, Y.; Li, X.; Hao, Y.; Luo, B. Combinatorial optimization of perovskite-based ferroelectric ceramics for energy storage applications. J. Adv. Ceram. 2024, 13, 877–910. [Google Scholar] [CrossRef]
- Yang, K.; Luo, G.; Ma, L.; Chen, R.; Chen, Z.; Feng, Q. Excellent energy storage performance in Bi0.5Na0.5TiO3-based lead-free high-entropy relaxor ferroelectrics via B-site modification. J. Adv. Ceram. 2024, 13, 345–353. [Google Scholar] [CrossRef]
- Li, J.; Yin, R.; Xiong, Z.; Bao, Y.; Zhang, X.; Wu, W.; Li, L.; Bai, Y. Manipulating Zr/Ti ratio based on phase diagram for large electrocaloric effects with multiple target operation temperatures in PLZT ceramics. J. Adv. Ceram. 2024, 13, 1422–1431. [Google Scholar] [CrossRef]
- Chen, S.; Yang, T.; Yao, X. Effects of glass additions on the dielectric properties and energy storage performance of Pb0.97La0.02(Zr0.56Sn0.35Ti0.09)O3 antiferroelectric ceramics. J. Mater. Sci. Mater. Electron. 2013, 24, 4764–4768. [Google Scholar] [CrossRef]
- Li, D.; Deng, W.; Shen, Z.; Li, Z.; Zeng, X.; Shi, X.; Zhang, Y.; Luo, W.; Song, F.; Wu, C. Aliovalent Sm-doping enables BNT-based realxor ferroelectric ceramics with >90% energy efficiency. J. Adv. Ceram. 2024, 13, 2043–2050. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, Z.; Han, B.; Peng, H.; Dai, K.; Xu, Z.; Fu, Z.; Hu, Z.; Wang, G. Designing silver niobate-based relaxor antiferroelectrics for ultrahigh energy storage performance. J. Adv. Ceram. 2024, 13, 1282–1290. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, Q.; Zhao, S.; Wang, M.; Wei, X.; Feng, Y.; Xu, Z.; Yao, X. Low temperature sintering of PLZST-based antiferroelectric ceramics with Al2O3 addition for energy storage applications. J. Eur. Ceram. Soc. 2022, 42, 1380–1387. [Google Scholar] [CrossRef]
- Ding, J.; Wang, J.; Yang, H.; Liu, Z.; Yu, C.; Li, X.; Deng, C.; Zhu, H. Improvement of Mechanical Properties of Composites with Surface Modified B4C for Precision Machining. Materials 2023, 16, 882. [Google Scholar] [CrossRef]
- Yulia, S.; Sergii, S.; Andrii, B.; Mykola, K.; Viktor, K.; Yulia, T.; Alexander, T.; Anatolii, B. Effect of Synthesis Temperature on Structure and Magnetic Properties of (La,Nd)0.7Sr0.3MnO3 Nanoparticles. Nanoscale Res. Lett. 2017, 12, 100. [Google Scholar]
- Stanciu, C.; Pintilie, I.; Surdu, A.; Truşcă, R.; Vasile, B.; Eftimie, M.; Ianculescu, A. Influence of Sintering Strategy on the Characteristics of Sol-Gel Ba1−xCexTi1−x/4O3 Ceramics. Nanomaterials 2019, 9, 1675. [Google Scholar] [CrossRef]
- Gui, D.; Ma, X.; Yuan, H.; Wang, C. Mn- and Yb-Doped BaTiO3-(Na0.5Bi0.5)TiO3 Ferroelectric Relaxor with Low Dielectric Loss. Materials 2023, 16, 2229. [Google Scholar] [CrossRef]
- Lu, X.; Liu, G.; Lu, J. Development of Ceramic 3D/4D Printing in China. Addit. Manuf. Front. 2024, 3, 200158. [Google Scholar] [CrossRef]
- Altiparmak, S.; Daminabo, S. Suitability Analysis for Extrusion-Based Additive Manufacturing Process. Addit. Manuf. Front. 2024, 3, 200106. [Google Scholar] [CrossRef]
- Tsikriteas, Z.; Roscow, J.; Bowen, C.; Khanbareh, H. Exploring lead-free materials for screen-printed piezoelectric wearable devices. Cell Rep. Phys. Sci. 2024, 5, 101962. [Google Scholar] [CrossRef]
- Gao, T.; Liao, Q.; Si, W.; Chu, Y.; Dong, H.; Li, Y.; Liao, Y.; Qin, L. From fundamentals to future challenges for flexible piezoelectric actuators. Cell Rep. Phys. Sci. 2024, 5, 101789. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, S.; Yang, T.; Scherer, M.; Schultheiß, J.; Meier, D.; Tan, X.; Kleebe, H.; Chen, L.; Koruza, J.; et al. Precipitation Hardening in Ferroelectric Ceramics. Adv. Mater. 2021, 33, e2102421. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, J.; Yuan, H.; Zheng, Z.; Zhao, L. High Energy Storage Performance in La-Doped AgNbO3 Ceramics via Tape Casting. ACS Appl. Mater. Interfaces 2022, 14, 48926–48935. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Li, Y.; Chen, P.; Cai, J.; Yan, Y.; Zhou, Y.; Wang, D.; Liu, G. Enhanced energy storage performance in Sn doped Sr0.6(Na0.5Bi0.5)0.4TiO3 lead-free relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 2019, 39, 3057–3063. [Google Scholar] [CrossRef]
- Fu, X.; Jiang, F.; Gao, R.; Peng, Z. Microstructure and Nonohmic Properties of SnO2-Ta2O5-ZnO System Doped with ZrO2. Sci. World J. 2014, 2014, 754890. [Google Scholar] [CrossRef]
- Fan, J.; Wang, J.; He, G.; Long, Z.; Hu, Z. Ultrahigh energy storage performance of a 0.75Bi0.47Na0.47Ba0.06TiO3-0.25CaTi0.8Sn0.2O3 ceramic under moderate electric fields. Inorg. Chem. Front. 2023, 10, 5475–5487. [Google Scholar] [CrossRef]
- Xu, R.; Xu, Z.; Feng, Y.; Tian, J.; Huang, D. Energy storage and release properties of Sr-doped (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics. Ceram. Int. 2016, 42, 12875–12879. [Google Scholar] [CrossRef]
- Hamza, Z.A.; Dawood, J.J.; Jabbar, M.A. Ag/Mo Doping for Enhanced Photocatalytic Activity of Titanium (IV) Dioxide during Fuel Desulphurization. Molecules 2024, 29, 4603. [Google Scholar] [CrossRef]
- Cavallo, F.; Lagally, M.G. Semiconductor nanomembranes: A platform for new properties via strain engineering. Nanoscale Res. Lett. 2012, 7, 628. [Google Scholar] [CrossRef]
- Liao, Y.; Liao, Q.; Yin, Y.; Li, Y.; Du, M.; Zhao, H.; Li, L.; Wang, Y.; Qin, L. High temperature piezoelectric properties and ultra-high temperature sensing properties of bismuth tungstate. J. Adv. Ceram. 2024, 13, 1931–1942. [Google Scholar] [CrossRef]
- Li, J. The electronic, structural and magnetic properties of La1−1/3Sr1/3MnO3 film with oxygen vacancy: A first principles investigation. Sci. Rep. 2016, 6, 22422. [Google Scholar] [CrossRef]
- Yang, C.; Tian, Y.; Yang, C.; Kim, G.; Pu Jian, C. Recent Progress and Future Prospects of Anions O-site Doped Perovskite Oxides in Electrocatalysis for Various Electrochemical Systems. Adv. Sci. 2023, 10, e2304224. [Google Scholar] [CrossRef]
- Li, Z.; Roscow, J.; Khanbareh, H.; Davies, P.; Han, G.; Qin, J.; Haswell, G.; Wolverson, D.; Bowen, C. Porous Structure Enhances the Longitudinal Piezoelectric Coefficient and Electromechanical Coupling Coefficient of Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3. Adv. Sci. 2024, 11, e2406255. [Google Scholar] [CrossRef]
- Bao, Y.; Zhou, M.; Yan, S.; Cao, F.; Dong, X.; Wang, G. Novel complex B-site lead oxide antiferroelectric system developed by compositional design for dielectric energy storage. J. Eur. Ceram. Soc. 2019, 39, 4785–4793. [Google Scholar] [CrossRef]
- Kumar, S.; Dwivedi, G.D.; Kumar, S.; Mathur, R.B.; Saxena, U.; Ghosh, A.K.; Joshi, A.G.; Yang, H.D.; Chatterjee, S. Structural, transport and optical properties of (La0.6Pr0.4)0.65Ca0.35MnO3 nanocrystals: A wide band-gap magnetic semiconductor. Dalton Trans. 2015, 44, 3109–3117. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Wang, M.; Tang, M.; Lan, Y.; Xu, R.; Feng, Y.; Li, Z.; Wei, X.; Xu, Z. Low-temperature sintering of PLSZT-based antiferroelectric ceramics in reducing atmosphere for energy storage. J. Eur. Ceram. Soc. 2024, 44, 898–906. [Google Scholar] [CrossRef]
- Singh, A.; Kamboj, V.S.; Liu, J.; Llandro, J.; Duffy, L.B.; Senanayak, S.P.; Beere, H.E.; Ionescu, A.; Ritchie, D.A.; Hesjedal, T.; et al. Systematic Study of Ferromagnetism in CrxSb2−xTe3 Topological Insulator Thin Films using Electrical and Optical Techniques. Sci. Rep. 2018, 8, 17024. [Google Scholar] [CrossRef] [PubMed]
- El Hassan, Y.; Amine, B.; Karim, C.; Fatima, C.; Ilyas, J.; Soufian, E.B.; Zahra, B.; Mohamed, A. Structural, electrical, and dielectric study of the influence of 3.4% lanthanide (Ln3+ = Sm3+ and La3+) insertion in the A-site of perovskite Ba0.95Ln0.034Ti0.99Zr0.01O3. RSC Adv. 2022, 12, 33124–33141. [Google Scholar]
- Shi, W.; Zhang, L.; Jing, R.; Huang, Y.; Chen, F.; Shur, V.; Wei, X.; Liu, G.; Du, H.; Jin, L. Moderate Fields, Maximum Potential: Achieving High Records with Temperature-Stable Energy Storage in Lead-Free BNT-Based Ceramics. Nano-Micro Lett. 2024, 16, 91. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, W.; Zhou, X.; Luo, H.; Guo, R.; Zhang, D. Enhanced Energy Storage Properties of the Relaxor and Antiferroelectric Crossover Ceramic Enabled by a High Entropy Design. Materials 2025, 18, 1937. [Google Scholar] [CrossRef]
- Yu, C.; Wang, S.; Yan, X.; Li, W.; Yu, Y.; Zhao, X.; Yao, Y.; Tao, T.; Liang, B.; Gong, W.; et al. Excellent Energy Storage and Charge-Discharge Performance in (Pb1−xCax)(Zr0.55Sn0.45)O3 Antiferroelectric Ceramics. ACS Appl. Mater. Interfaces 2025, 17, 5066–5077. [Google Scholar] [CrossRef]
- Liao, Q.; Hou, W.; Liao, K.; Chen, L.; Song, Y.; Gao, G.; Qin, L. Solid-phase sintering and vapor-liquid-solid growth of BP@MgO quantum dot crystals with a high piezoelectric response. J. Adv. Ceram. 2022, 11, 1725–1734. [Google Scholar] [CrossRef]
- Dhavala, L.; Bhimireddi, R.; Muthukumar, V.; Kollipara, V.; Varma, K. Exceptional dielectric and varistor properties of Sr, Zn and Sn co-doped calcium copper titanate ceramics. RSC Adv. 2023, 13, 10476–10487. [Google Scholar] [CrossRef]
- Dariusz, B.; Dagmara, B.; Przemysław, N.; Lucjan, K. The Influence of Lanthanum Admixture on Microstructure and Electrophysical Properties of Lead-Free Barium Iron Niobate Ceramics. Materials 2024, 17, 3666. [Google Scholar] [CrossRef]
- Li, R.; Kang, H.; Chen, Z.; Fan, G.; Zou, C.; Wang, W.; Zhang, S.; Lu, Y.; Jie, J.; Cao, Z.; et al. A promising structure for fabricating high strength and high electrical conductivity copper alloys. Sci. Rep. 2016, 6, 20799. [Google Scholar] [CrossRef]
- Bougoffa, A.; Benali, E.; Benali, A.; Bejar, M.; Dhahri, E.; Graça, M.; Valente, M.; Otero Irurueta, G.; Costa, B. Investigation of temperature and frequency dependence of the dielectric properties of multiferroic (La0.8Ca0.2)0.4Bi0.6FeO3 nanoparticles for energy storage application. RSC Adv. 2022, 12, 6907–6917. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, X.; Tang, Y.; Wang, H.; Zhang, C.; Yu, W.; Wang, X.; Zhang, Y.; Xiao, M. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 2019, 10, 1088. [Google Scholar] [CrossRef]
- Khan, A.; Gul, N.; Luo, M.; Wu, J.; Khan, S.; Manan, A.; Wang, X.; Khan, T. Fabrication of a lead-free ternary ceramic system for high energy storage applications in dielectric capacitors. Front. Chem. 2022, 10, 1025030. [Google Scholar] [CrossRef]
- Panupong, J.; Nuttapon, P.; Anucha, W. Dielectric, ferroelectric, and energy storage efficiency of (Ba0.85Ca0.15)Zr0.1Ti0.9O3/BaTiO3 and Ba0.7Ca0.3TiO3/BaZr0.2Ti0.8O3 bilayer ceramic. Phys. Open 2024, 20, 100225. [Google Scholar]
- Wang, W.; Qian, J.; Geng, C.; Fan, M.; Yang, C.; Lu, L.; Cheng, Z. Flexible Lead-Free Ba0.5Sr0.5TiO3/0.4BiFeO3-0.6SrTiO3 Dielectric Film Capacitor with High Energy Storage Performance. Nanomaterials 2021, 11, 3065. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, B.; Li, Y.; Hall, D.A. Enhancement of Nonlinear Dielectric Properties in BiFeO3–BaTiO3Ceramics by Nb-Doping. Materials 2022, 15, 2872. [Google Scholar]
- Zhao, Q.; Sheng, T.; Pang, L.; He, G.; Di, J.; Zhao, L.; Hou, Z.; Cao, M. Highly efficient and giant negative electrocaloric effect of a Nb and Sn co-doped lead zirconate titanate antiferroelectric film near room temperature. RSC Adv. 2019, 9, 34114–34119. [Google Scholar] [CrossRef]
- Qiao, P.; Chen, X.; Liu, Z.; Wang, G.; Dong, X. Enhanced energy storage performance in Pb0.97La0.02(ZrxSn0.90−xTi0.10)O3 anti-ferroelectric ceramics. Mater. Lett. 2020, 260, 126877. [Google Scholar] [CrossRef]
- Li, L.; Wang, R.; Gu, Z.; Lu, M.; Zhu, M.; Zhang, S. Energy storage property of (Pb0.97La0.02)(Zr0.5Sn0.4Ti0.1)O3-(Na0.5Bi0.5)0.94Ba0.06TiO3 ceramics: Effects of antiferroelectric-relaxor transition and improved breakdown strength. J. Eur. Ceram. Soc. 2020, 40, 2996–3002. [Google Scholar] [CrossRef]
- Qiao, P.; Zhang, Y.; Chen, X.; Zhou, M.; Yan, S.; Dong, X.; Wang, G. Enhanced energy storage properties and stability in(Pb0.895La0.07)(ZrxTi1−x)O3 antiferroelectric ceramics. Ceram. Int. 2019, 45, 15898–15905. [Google Scholar] [CrossRef]
- Xu, H.; Dan, Y.; Zou, K.; Chen, G.; Zhang, Q.; Lu, Y.; He, Y. Superior energy storage performance in Pb0.97La0.02(Zr0.50 Sn0.43Ti0.07)O3 antiferroelectric ceramics. J. Mater. Res. Technol. 2019, 8, 3291–3296. [Google Scholar] [CrossRef]
- Teng, B.; Zeng, J.; Cheng, J.; Zheng, L.; Li, G. Effect of SnO2 doping on electric field-induced antiferroelectric-to-ferroelectric phase transition of Pb(Yb1/2Nb1/2)0.98Sn0.02O3 ceramics. J. Alloys Compd. 2020, 821, 153468. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Y.; Zou, K.; Chen, G.; Zhang, Y.; Li, H.; Lu, Y.; Zhang, Q.; He, Y. High energy density and efficiency in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics with high La3+ content and optimized Sn4+ content. Ceram. Int. 2019, 45, 24419–24424. [Google Scholar] [CrossRef]
- Yang, F.; Li, Q.; Hou, D.; Jia, Y.; Wang, W.; Fan, H. Enhanced energy storage properties of KNbO3modified (Bi0.5Na0.5)TiO3–BaTiO3based lead-free relaxor ferroelectric ceramics. New J. Chem. 2022, 46, 20965–20971. [Google Scholar] [CrossRef]
- Chao, W.; Yang, T.; Li, Y. Achieving high energy efficiency and energy density in PbHfO3-based antiferroelectric ceramics. J. Mater. Chem. C 2020, 8, 17016–17024. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Qi, L.; Guo, R.; Li, B.; Chen, D.; Zou, H. Orientation transition, dielectric, and ferroelectric behaviors of sol-gel derived PZT thin films deposited on Ti–Pt alloy layers: A Ti content-dependent study. Ceram. Int. 2020, 46, 10256–10261. [Google Scholar] [CrossRef]
- Srinivasan, S.; Marimuthu, P.; Yuvakkumar, R.; Ravi, G.; Abdullah, A.; Dhayalan, V. Neodymium-Doped Novel Barium Tungstate Nanospindles for the Enhanced Oxygen Evolution Reaction. ACS Omega 2023, 8, 3745–3754. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Liao, Q.; Xu, Y.; Liu, X.; Zhang, H.; Wang, H.; Dong, H.; Qin, L. A-Site Doping Effect on PLZT Relaxor Ferroelectric Glass-Free Medium-Temperature Sintering Ceramics. Coatings 2025, 15, 1032. https://doi.org/10.3390/coatings15091032
Zhang S, Liao Q, Xu Y, Liu X, Zhang H, Wang H, Dong H, Qin L. A-Site Doping Effect on PLZT Relaxor Ferroelectric Glass-Free Medium-Temperature Sintering Ceramics. Coatings. 2025; 15(9):1032. https://doi.org/10.3390/coatings15091032
Chicago/Turabian StyleZhang, Shuhan, Qingwei Liao, Yue Xu, Xinyu Liu, Haoran Zhang, Hongxian Wang, Heyu Dong, and Lei Qin. 2025. "A-Site Doping Effect on PLZT Relaxor Ferroelectric Glass-Free Medium-Temperature Sintering Ceramics" Coatings 15, no. 9: 1032. https://doi.org/10.3390/coatings15091032
APA StyleZhang, S., Liao, Q., Xu, Y., Liu, X., Zhang, H., Wang, H., Dong, H., & Qin, L. (2025). A-Site Doping Effect on PLZT Relaxor Ferroelectric Glass-Free Medium-Temperature Sintering Ceramics. Coatings, 15(9), 1032. https://doi.org/10.3390/coatings15091032