Molecular Dynamics Study on the Synergistic Compatibilization Mechanism of MAH-g-SBS in Epoxy Asphalt
Abstract
1. Introduction
2. Experimental and Simulation Methods
2.1. Experimental
2.1.1. Materials
2.1.2. Preparation of Epoxy Asphalt Samples
2.1.3. Test Methods
2.2. Molecular Dynamics Simulation
2.2.1. Molecular Model Selection
2.2.2. Simulation Process
3. Results and Discussion
3.1. Cohesive Energy Density and Solubility Parameter Analysis
3.2. Energy Distribution Analysis
3.3. Interaction Energy Analysis
3.4. Radial Distribution Function Analysis
3.5. Fractional Free Volume Analysis
3.6. Mean Square Displacement Analysis
3.7. Segregation Resistance Performance Analysis
3.8. Microscopic Analysis
4. Conclusions
- (1)
- The amphiphilic molecular structure of MAH-g-SBS significantly improves the thermodynamic compatibility between asphalt and epoxy resin, as evidenced by the reduced solubility parameter differences and interfacial energy, thereby enhancing the interfacial affinity and stability of the system;
- (2)
- The introduction of MAH-g-SBS reduces the total interaction energy and non-bonded energy of the epoxy asphalt system, indicating stronger intermolecular interactions and a more tightly bonded interface, which contributes to the formation of a more stable and compatible blend at the molecular level;
- (3)
- RDF and FFV analyses reveal that MAH-g-SBS promotes better dispersion and interpenetration between epoxy and asphalt molecules. It enhances the interactions between epoxy resin and polar components in asphalt such as asphaltenes and aromatics, thereby improving phase homogeneity and increasing free volume;
- (4)
- The presence of MAH-g-SBS also facilitates molecular mobility, as demonstrated by an increase in MSD, which helps improve the flexibility and diffusion capacity of the system and promotes stress relaxation at the interface, thus further enhancing the overall compatibility of the epoxy asphalt blend;
- (5)
- Segregation tests and fluorescence microscopy confirmed that MAH-g-SBS significantly improves the storage stability and phase uniformity of the epoxy asphalt system, which is consistent with the molecular-level predictions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Zhang, H.L.; Zhou, M.Y.; Ye, J. Investigation on the influence of gradation design on the road performance of cold mixed epoxy asphalt mixture based on microstructure evaluation. J. Mater. Res. Technol. 2024, 30, 2018–2028. [Google Scholar] [CrossRef]
- Wang, Q.C.; Min, Z.H.; Huang, W.; Chen, F. Effects of thermal-oxidative aging on mechanical behavior and microstructure of epoxy asphalt binder containing different asphalt contents. Constr. Build. Mater. 2024, 442, 137569. [Google Scholar] [CrossRef]
- Shan, B.L.; Cao, X.J.; Hao, Z.H.; Wei, K.L.; Tang, B.M. Synthesis of a novel curing agent containing dynamic disulfide bonds and the preparation of repairable epoxy vitrimer modified asphalt. Constr. Build. Mater. 2025, 463, 140053. [Google Scholar] [CrossRef]
- Abbas, H.A.; Manasrah, A.D.; Carbognani, L.; Sebakhy, K.O.; El Nokab, M.E.; Hacini, M.; Nassar, N.N. A study on the characteristics of Algerian Hassi-Messaoud asphaltenes: Solubility and precipitation. Pet. Sci. Technol. 2022, 40, 1279–1301. [Google Scholar] [CrossRef]
- Wang, J.Y.; Si, J.J.; Yu, X.; Jiang, Z.Q.; Zhang, M.Z.; Ding, G.Y.; Huang, J.L. Enhancing the compatibility of cold-mixed epoxy asphalt binder via graphene oxide grafted plant oil-based materials. J. Clean. Prod. 2023, 418, 138209. [Google Scholar] [CrossRef]
- Lu, Q.; Bors, J. Alternate uses of epoxy asphalt on bridge decks and roadways. Constr. Build. Mater. 2015, 78, 18–25. [Google Scholar] [CrossRef]
- Li, M.Y.; Min, Z.H.; Wang, Q.C.; Huang, W.; Shi, Z.Y. Influence of curing agent ratio, asphalt content and crosslinking degree on the compatibility and component distribution of epoxy asphalt in compound curing agent system. Int. J. Pavement Eng. 2023, 24, 2136375. [Google Scholar] [CrossRef]
- Gong, J.; Jing, F.; Zhao, R.K.; Li, C.X.; Cai, J.; Wang, Q.J.; Xie, H.F. Waste Cooking Oil-Modified Epoxy Asphalt Rubber Binders with Improved Compatibility and Extended Allowable Construction Time. Molecules 2022, 27, 7061. [Google Scholar] [CrossRef]
- Wang, J.Y.; Yu, X.; Si, J.J.; Shao, X.Y.; Zhao, S.; Ding, G.Y. Tailoring compatibility and mechanical properties of cold-mixed epoxy asphalt via external epoxy group content manipulation. Constr. Build. Mater. 2024, 414, 134948. [Google Scholar] [CrossRef]
- Xiang, Q.; Xiao, F.P. Applications of epoxy materials in pavement engineering. Constr. Build. Mater. 2020, 235, 117529. [Google Scholar] [CrossRef]
- Wang, Q.C.; Min, Z.H.; Wong, Y.D.; Shi, Z.Y.; Huang, W. Aging degradation of anhydride-cured epoxy asphalt binder subjected to ultraviolet exposure. Int. J. Pavement Eng. 2023, 24, 2171037. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, L.T.; Wu, J.H.; Ma, L.J.; Finlow, D.E.; Lin, S.Q.; Song, K.M. Thermal and mechanical properties of epoxy resin toughened with epoxidized soybean oil. J. Therm. Anal. Calorim. 2013, 113, 939–945. [Google Scholar] [CrossRef]
- Xu, P.J.; Zhu, Z.; Wang, Y.D.; Cong, P.L.; Li, D.G.; Hui, J.Z.; Ye, M. Phase structure characterization and compatibilization mechanism of epoxy asphalt modified by thermoplastic elastomer (SBS). Constr. Build. Mater. 2022, 320, 126262. [Google Scholar] [CrossRef]
- Liu, P.; Niu, K.M.; Tian, B.; Wang, M.; Wan, J.X.; Gong, Y.; Wang, B.B. Improving the Compatibility of Epoxy Asphalt Based on Poly(styrene-butadiene-styrene)-Grafted Carbon Nanotubes. Coatings 2025, 15, 314. [Google Scholar] [CrossRef]
- Cong, P.L.; Chen, S.F.; Chen, H.X. Preparation and Properties of Bitumen Modified with the Maleic Anhydride Grafted Styrene-Butadiene-Styrene Triblock Copolymer. Polym. Eng. Sci. 2011, 51, 1273–1279. [Google Scholar] [CrossRef]
- Yao, H.; Liu, J.F.; Xu, M.; Ji, J.; Dai, Q.L.; You, Z.P. Discussion on molecular dynamics (MD) simulations of the asphalt materials. Adv. Colloid Interface Sci. 2022, 299, 102565. [Google Scholar] [CrossRef]
- Liu, K.; Yang, Q.; Qiu, X.; Xu, W.Y.; Xiao, S.L.; Gu, Y.; Ye, Y.C. An investigation toward adhesion characteristics of emulsified asphalt residue-aggregate interface through MD simulation. Constr. Build. Mater. 2024, 438, 137251. [Google Scholar] [CrossRef]
- Hu, M.J.; Sun, D.Q.; Hofko, B.; Sun, Y.R.; Mirwald, J.; Xu, L. Multiscale optimization on polymer-based rejuvenators for the efficient recycling of aged high-viscosity modified asphalt: Molecular dynamics simulation and experimental analysis. J. Clean. Prod. 2024, 449, 141736. [Google Scholar] [CrossRef]
- Tang, Y.J.; Fu, Z.; Raos, G.; Ma, F.; Zhao, P.; Hou, Y.J. Molecular dynamics simulation of adhesion at the asphalt-aggregate interface: A review. Surf. Interfaces 2024, 44, 103706. [Google Scholar] [CrossRef]
- He, L.; Zheng, Y.F.; Alexiadis, A.; Falchetto, A.C.; Li, G.N.; Valentin, J.; Van den Bergh, W.; Vasiliev, Y.E.; Kowalski, K.J.; Grenfell, J. Research on the self-healing behavior of asphalt mixed with healing agents based on molecular dynamics method. Constr. Build. Mater. 2021, 295, 103706. [Google Scholar] [CrossRef]
- Yan, S.; Dong, Q.; Chen, X.Q.; Wang, X.; Shi, B.; Yao, K. Study on inherent characteristics of asphalt regenerating agents: Insights from density functional theory calculations and molecular dynamics simulations. Constr. Build. Mater. 2024, 411, 134390. [Google Scholar] [CrossRef]
- Li, G.N.; Tan, Y.Q.; Fu, Y.K.; Liu, P.F.; Fu, C.L.; Oeser, M. Density, zero shear viscosity and microstructure analysis of asphalt binder using molecular dynamics simulation. Constr. Build. Mater. 2022, 345, 128332. [Google Scholar] [CrossRef]
- Liu, Q.; Ding, G.Y.; Zhang, Z.Y.; Fu, C.L.; Oeser, M. Investigation on bitumen-epoxy interface in cold mixed epoxy bitumen using experimental observation and molecular dynamics simulation. Constr. Build. Mater. 2021, 303, 124490. [Google Scholar] [CrossRef]
- Abdukadir, A.; Pei, Z.S.; Yu, W.; Wang, J.M.; Chen, A.L.; Tang, K.; Yi, J.Y. Performance optimization of epoxy resin-based modified liquid asphalt mixtures. Case Stud. Constr. Mater. 2022, 17, e01598. [Google Scholar] [CrossRef]
- Li, D.D.; Greenfield, M.L. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 2014, 115, 347–356. [Google Scholar] [CrossRef]
- Chowdhury, A.; Nourian, P.; Wasiuddin, N.; Peters, A. Investigation of Polymer-Asphalt Compatibility Using Molecular Dynamics Simulation. J. Phys. Chem. B 2024, 128, 4821–4829. [Google Scholar] [CrossRef]
- Wei, K.L.; Su, Y.; Cao, X.J.; Jiang, T.Q.; Deng, M.; Wu, Y. Molecular Dynamics Simulation of Interaction between Polymer Modifier and Asphalt. J. Test. Eval. 2022, 50, 2175–2189. [Google Scholar] [CrossRef]
- Yamamoto, S.; Tanaka, K. Molecular Dynamics Simulation of Cross-linked Epoxy Resins: Past and Future. Macromol. Rapid Commun. 2025, 46, e2400978. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, H.T.; Feng, Y.P.; Hang, Y.T. Effect of diffusion on interfacial properties of polyurethane-modified asphalt-aggregate using molecular dynamic simulation. Rev. Adv. Mater. Sci. 2022, 61, 778–794. [Google Scholar] [CrossRef]
- Li, N.; Liu, Z.Z.; Yin, J.Q.; Zhang, H.; Dou, H.; Li, B. Investigation of Compatibility Mechanisms and Diffusion Behavior of Polymer SBS-Modified Asphalt Compatibilizer Using Molecular Dynamics Simulation. Materials 2025, 18, 2238. [Google Scholar] [CrossRef]
- Li, M.Y.; Min, Z.H.; Wang, Q.C.; Huang, W.; Shi, Z.Y. Effect of epoxy resin content and conversion rate on the compatibility and component distribution of epoxy asphalt: A MD simulation study. Constr. Build. Mater. 2022, 319, 126050. [Google Scholar] [CrossRef]
- Tang, J.; Wang, H.; Liang, M. Molecular simulation and experimental analysis of interaction and compatibility between asphalt binder and Styrene-Butadiene-Styrene. Constr. Build. Mater. 2022, 342, 128028. [Google Scholar] [CrossRef]
- Shan, B.; Cao, X.; Hao, Z.; Wu, Y.; Yang, X.; Li, X. Experimental and Molecular Dynamics Simulations Investigating the Flexibility and Compatibility of Epoxidized Soybean Oil-Reinforced Epoxy Asphalt. J. Mater. Civ. Eng. 2024, 36, 04024327. [Google Scholar] [CrossRef]
- Xu, Z.H.; Xiong, Z.J.; Gong, M.H.; Zeng, Q.; Hong, J.X.; Fan, J. Molecular dynamics-based study of the modification mechanism of asphalt by graphene oxide. J. Mol. Model. 2023, 29, 368. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, Z.P.; Wang, L.; Sun, J.; Wang, Z.F.; Liu, H.; Chen, L.Q. Study on the compatibility between polyurethane and asphalt based on experiment and molecular dynamics simulation. Case Stud. Constr. Mater. 2022, 17, e01424. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Wang, Z.F.; Zhang, S.Y.; Liu, H.; Guo, Y.X.; Liu, X.S.; Tian, P.J.; Yang, Y.; Xia, J.J. Experimental studies and molecular dynamics simulation of the compatibility between thermoplastic polyurethane elastomer (TPU) and asphalt. Constr. Build. Mater. 2024, 411, 134316. [Google Scholar] [CrossRef]
- Gao, L.; Ji, X.; Tan, Y.W.; Wang, Z.Q.; Zhang, Y.; Kong, H.M. Molecular dynamics simulation of interfacial adhesion behavior between waterborne epoxy resin emulsified asphalt and aggregate. Compos. Interfaces 2023, 30, 749–770. [Google Scholar] [CrossRef]
- Jiao, B.Z.; Pan, B.F.; Che, T.K. Evaluating impacts of desulfurization and depolymerization on thermodynamics properties of crumb rubber modified asphalt through molecular dynamics simulation. Constr. Build. Mater. 2022, 323, 126360. [Google Scholar] [CrossRef]
- Chen, F.; Min, Z.H.; Li, M.Y.; Huang, W.; Wang, Q.C. Molecular dynamics study of cross-linking degrees effect on the aging resistance of epoxy asphalt: Insights from oxygen diffusion. J. Appl. Polym. Sci. 2024, 141, e55908. [Google Scholar] [CrossRef]
- Li, M.Y.; Min, Z.H.; Ouyang, H.; Chen, F.; Huang, W. The effect of composite curing agent ratio on the photooxidative aging behavior of epoxy asphalt based on molecular dynamics simulation. Constr. Build. Mater. 2023, 409, 134157. [Google Scholar] [CrossRef]
- Wang, Z.K.; Lv, Q.; Chen, S.H.; Li, C.L.; Sun, S.Q.; Hu, S.Q. Effect of Interfacial Bonding on Interphase Properties in SiO2/Epoxy Nanocomposite: A Molecular Dynamics Simulation Study. Acs Appl. Mater. Interfaces 2016, 8, 7499–7508. [Google Scholar] [CrossRef] [PubMed]
Indexes | Test Result | Specification |
---|---|---|
Penetration (25 °C, 0.1 mm) | 67.6 | 60–80 |
Softening Point (°C) | 55.2 | 44–57 |
Ductility (10 °C, cm) | >100 | ≥100 |
Density (g/cm3) | 1.052 | - |
Indexes | Value | Test Method |
---|---|---|
Melt Index (g/10 min) | 7.5 | ISO 1133/ASTM D1238 |
Melting point (°C) | 55.2 | ISO 11357-3 |
Density (g/cm3) | 0.915 | ISO 1183/ASTM D1505 |
Component | Molecular Structure | Molecule Formula | Mass Ratio (%) |
---|---|---|---|
Saturate | Suqalane | C30H62 | 11.113 |
Hopane | C35H6 | ||
Aromatic | PHPN | C35H44 | 31.902 |
DOCHN | C30H46 | ||
Resin | Quinolinohopane | C40H59N | 39.735 |
Thioisorenieratane | C40H60S | ||
Benzobisbenzothiophene | C18H10S2 | ||
Pyridinohopane | C36H57N | ||
Trimethybenzene | C29H50O | ||
Asphaltene | Phenol | C42H54O | 17.249 |
Pyrrole | C66H81N | ||
Thiophene | C51H62S |
Items | EA-30 | EA-30-MAH-g-SBS | ||
---|---|---|---|---|
Epoxy | Asphalt | Epoxy | Asphalt | |
CED (J/m3) | 2.271 × 107 | 1.542 × 108 | 2.621 × 107 | 1.329 × 108 |
δ, (J/m3)1/2 | 5.032 | 12.143 | 5.120 | 11.526 |
Items | Total (kcal/mol) | Valence (kcal/mol) | Non-Bond (kcal/mol) |
---|---|---|---|
EA-30 | 13,516.89 | 21,098.46 | −795.21 |
EA-30-MAH-g-SBS | 16,479.44 | 18,408.89 | −1127.12 |
Items | Einteraction (kcal/mol) | Etotal (kcal/mol) | Easphalt (kcal/mol) | Eepoxy (kcal/mol) | EMAH-g-SBS (kcal/mol) |
---|---|---|---|---|---|
EA-30 | 1524.64 | 16,479.44 | 10,220.47 | 4734.33 | 0 |
EA-30-MAH-g-SBS | −4161.32 | 13,516.89 | 10,658.02 | 4930.93 | 2089.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Niu, K.; Tian, B.; Wang, B.; Li, K.; Wan, J.; Shan, B. Molecular Dynamics Study on the Synergistic Compatibilization Mechanism of MAH-g-SBS in Epoxy Asphalt. Coatings 2025, 15, 946. https://doi.org/10.3390/coatings15080946
Liu P, Niu K, Tian B, Wang B, Li K, Wan J, Shan B. Molecular Dynamics Study on the Synergistic Compatibilization Mechanism of MAH-g-SBS in Epoxy Asphalt. Coatings. 2025; 15(8):946. https://doi.org/10.3390/coatings15080946
Chicago/Turabian StyleLiu, Pan, Kaimin Niu, Bo Tian, Binbin Wang, Kai Li, Jiaxin Wan, and Bailin Shan. 2025. "Molecular Dynamics Study on the Synergistic Compatibilization Mechanism of MAH-g-SBS in Epoxy Asphalt" Coatings 15, no. 8: 946. https://doi.org/10.3390/coatings15080946
APA StyleLiu, P., Niu, K., Tian, B., Wang, B., Li, K., Wan, J., & Shan, B. (2025). Molecular Dynamics Study on the Synergistic Compatibilization Mechanism of MAH-g-SBS in Epoxy Asphalt. Coatings, 15(8), 946. https://doi.org/10.3390/coatings15080946