Fatigue Performance Improvement of Titanium Alloy with Microstructure Gradient and Residual Stress Gradient Produced by Laser Shock Peening
Abstract
1. Introduction
2. Materials and Experiments
2.1. Materials and Specimens
2.2. LSP Process
2.3. Residual Stress Measurement
2.4. EBSD and TEM Characterization
2.5. High-Cycle Fatigue Test
3. Results and Discussion
3.1. Gradient Residual Stress Distribution
3.2. Gradient Microstructure Features
3.3. High-Cycle Fatigue Performance
4. Conclusions
- (1)
- LSP induces a gradient-compressive residual stress in the surface layer of TC6 titanium alloy, with a maximum value of −708 MPa and an affected layer thickness greater than 1 mm.
- (2)
- From the surface to the material interior, the microstructure of the TC6 titanium alloy subjected to LSP treatments exhibited a gradient distribution with increasing depth: nanocrystalline, high dense dislocation, and matrix coarse grains. It was found that dislocation movement is the main reason for the formation of nanocrystalline in the LSP-treated TC6 titanium alloy.
- (3)
- After LSP, the high-cycle fatigue limit of the TC6 titanium alloy improved from 431 ± 10 MPa to 486 ± 14 MPa, increasing by 12.8%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, S.; Ahmadi, Z.; Pegues, J.W.; Mahjouri-Samani, M.; Shamsaei, N. Laser polishing for improving fatigue performance of additive manufactured Ti-6Al-4V parts. Opt. Laser Technol. 2021, 134, 106639. [Google Scholar] [CrossRef]
- Bergant, Z.; Trdan, U.; Grum, J. Effects of laser shock processing on high cycle fatigue crack growth rate and fracture toughness of aluminium alloy 6082-T651. Int. J. Fatigue 2016, 87, 444–455. [Google Scholar] [CrossRef]
- Wang, H.; Jürgensen, J.; Decker, P.; Hu, Z.; Yan, K.; Gurevich, E.L.; Ostendorf, A. Corrosion behavior of NiTi alloy subjected to femtosecond laser shock peening without protective coating in air environment. Appl. Surf. Sci. 2020, 501, 144338. [Google Scholar] [CrossRef]
- Li, J.; Zhou, J.; Feng, A.; Huang, S.; Meng, X.; Sun, Y.; Huang, Y.; Tian, X. Influence of multiple laser peening on vibration fatigue properties of TC6 titanium alloy. Opt. Laser Technol. 2019, 118, 183–191. [Google Scholar] [CrossRef]
- Rajan, S.S.; Manivasagam, G.; Ranganathan, M.; Swaroop, S. Influence of laser peening without coating on microstructure and fatigue limit of Ti-15V-3Al-3Cr-3Sn. Opt. Laser Technol. 2019, 111, 481–488. [Google Scholar] [CrossRef]
- Xu, G.; Luo, K.Y.; Dai, F.Z.; Lu, J.Z. Effects of scanning path and overlapping rate on residual stress of 316L stainless steel blade subjected to massive laser shock peening treatment with square spots. Appl. Surf. Sci. 2019, 481, 1053–1063. [Google Scholar] [CrossRef]
- Mao, B.; Li, B.; Lin, D.; Liao, Y. Enhanced room temperature stretch formability of AZ31B magnesium alloy sheet by laser shock peening. Mater. Sci. Eng. A 2019, 756, 219–225. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Muvvala, G.; Sarkar, S.; Racherla, V.; Nath, A.K. Effect of laser shock peening on microstructural, mechanical and corrosion properties of laser beam welded commercially pure titanium. Opt. Laser Technol. 2021, 133, 106527. [Google Scholar] [CrossRef]
- Karthik, D.; Yazar, K.; Bisht, A.; Swaroop, S.; Srivastava, C.; Suwas, S. Gradient plastic strain accommodation and nanotwinning in multi-pass laser shock peened 321 steel. Appl. Surf. Sci. 2019, 487, 426–432. [Google Scholar] [CrossRef]
- Meng, X.-K.; Wang, H.; Tan, W.-S.; Cai, J.; Zhou, J.-Z.; Liu, L. Gradient microstructure and vibration fatigue properties of 2024-T351 aluminium alloy treated by laser shock peening. Surf. Coat. Technol. 2020, 391, 125698. [Google Scholar] [CrossRef]
- Geng, Y.; Dong, X.; Wang, K.; Mei, X.; Tang, Z.; Duan, W. Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure. Opt. Laser Technol. 2020, 123, 105917. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Zhou, K.; Li, G. Effect of laser shock peening and annealing temperatures on stability of AA2195 alloy near-surface microstructure. Opt. Laser Technol. 2019, 119, 105569. [Google Scholar] [CrossRef]
- Prabhakaran, S.; Kalainathan, S.; Shukla, P.; Vasudevan, V.K. Residual stress, phase, microstructure and mechanical property studies of ultrafine bainitic steel through laser shock peening. Opt. Laser Technol. 2019, 115, 447–458. [Google Scholar] [CrossRef]
- Pan, X.; Guo, S.; Tian, Z.; Liu, P.; Dou, L.; Wang, X.; An, Z.; Zhou, L. Fatigue performance improvement of laser shock peened hole on powder metallurgy Ni-based superalloy labyrinth disc. Surf. Coat. Technol. 2021, 409, 126829. [Google Scholar] [CrossRef]
- Pan, Q.; Long, J.; Jing, L.; Tao, N.; Lu, L. Cyclic strain amplitude-dependent fatigue mechanism of gradient nanograined Cu. Acta Mater. 2020, 196, 252–260. [Google Scholar] [CrossRef]
- Long, J.; Pan, Q.; Tao, N.; Dao, M.; Suresh, S.; Lu, L. Improved fatigue resistance of gradient nanograined Cu. Acta Mater. 2019, 166, 56–66. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, Z.; Xu, J.; Lu, K. Simultaneous enhancement of stress- and strain-controlled fatigue properties in 316L stainless steel with gradient nanostructure. Acta Mater. 2019, 168, 133–142. [Google Scholar] [CrossRef]
- Zhou, W.F.; Ren, X.D.; Yang, Y.; Tong, Z.P.; Chen, L. Tensile behavior of nickel with gradient microstructure produced by laser shock peening. Mater. Sci. Eng. A 2020, 771, 138603. [Google Scholar] [CrossRef]
- Wang, C.; Luo, K.; Bu, X.; Su, Y.; Cai, J.; Zhang, Q.; Lu, J. Laser shock peening-induced surface gradient stress distribution and extension mechanism in corrosion fatigue life of AISI 420 stainless steel. Corros. Sci. 2020, 177, 109027. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, K.; Li, G. Surface gradient microstructural characteristics and evolution mechanism of 2195 aluminum lithium alloy induced by laser shock peening. Opt. Laser Technol. 2019, 109, 1–7. [Google Scholar] [CrossRef]
- Mao, B.; Liao, Y.; Li, B. Gradient twinning microstructure generated by laser shock peening in an AZ31B magnesium alloy. Appl. Surf. Sci. 2018, 457, 342–351. [Google Scholar] [CrossRef]
- Umapathi, A.; Swaroop, S. Phase gradient in a laser peened TC6 titanium alloy analyzed using synchrotron radiation. Mater. Charact. 2017, 131, 431–439. [Google Scholar] [CrossRef]
- Shen, X.; Shukla, P.; Subramaniyan, A.K.; Zammit, A.; Swanson, P.; Lawrence, J.; Fitzpatrick, M.E. Residual stresses induced by laser shock peening in orthopaedic Ti-6Al-7Nb alloy. Opt. Laser Technol. 2020, 131, 106446. [Google Scholar] [CrossRef]
- Nie, X.; He, W.; Zang, S.; Wang, X.; Zhao, J. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts. Surf. Coat. Technol. 2014, 253, 68–75. [Google Scholar] [CrossRef]
- Maxwell, D.C. A Rapid Method for Generation of a Haigh Diagram for High Cycle Fatigue, Fatigue and Fracture Mechanics; ASTM Special Technical Publication: West Conshohocken, PA, USA, 1999; pp. 626–641. [Google Scholar]
- Ren, W.; Nicholas, T. Effects and mechanisms of low cycle fatigue and plastic deformation on subsequent high cycle fatigue limit in nickel-base superalloy Udimet 720. Mater. Sci. Eng. A 2002, 332, 236–248. [Google Scholar] [CrossRef]
- Ren, W.; Nicholas, T. Notch size effects on high cycle fatigue limit stress of Udimet 720. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process 2003, 357, 141–152. [Google Scholar] [CrossRef]
- Srinivasan, S.; Garcia, D.B.; Gean, M.C.; Murthy, H.; Farris, T.N. Fretting fatigue of laser shock peened Ti–6Al–4V. Tribol. Int. 2009, 42, 1324–1329. [Google Scholar] [CrossRef]
- Pour-Ali, S.; Kiani-Rashid, A.-R.; Babakhani, A. Surface nanocrystallization and gradient microstructural evolutions in the surface layers of 321 stainless steel alloy treated via severe shot peening. Vacuum 2017, 144, 152–159. [Google Scholar] [CrossRef]
- Zhou, L.; Li, Y.; He, W.; He, G.; Nie, X.; Chen, D.; Lai, Z.; An, Z. Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process 2013, 578, 181–186. [Google Scholar] [CrossRef]
- Lu, J.; Duan, H.; Luo, K.; Wu, L.; Deng, W.; Cai, J. Tensile properties and surface nanocrystallization analyses of H62 brass subjected to room-temperature and warm laser shock peening. J. Alloys Compd. 2017, 698, 633–642. [Google Scholar] [CrossRef]
- Pan, X.; Wang, X.; Tian, Z.; He, W.; Shi, X.; Chen, P.; Zhou, L. Effect of Dynamic Recrystallization on Texture Orientation and Grain Refinement of Ti6Al4V Titanium Alloy Subjected to Laser Shock Peening. J. Alloys Compd. 2021, 850, 156672. [Google Scholar] [CrossRef]
- Lu, J.; Wu, L.; Sun, G.; Luo, K.; Zhang, Y.; Cai, J.; Cui, C.; Luo, X. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts. Acta Mater. 2017, 127, 252–266. [Google Scholar] [CrossRef]
- Hignette, O.; Cloetens, P.; Rostaing, G.; Bernard, P.; Morawe, C. Efficient sub 100 nm focusing of hard x rays. Rev. Sci. Instrum. 2005, 76, 063709. [Google Scholar]
- Meyers, M.; Gregori, F.; Kad, B.; Schneider, M.; Kalantar, D.; Remington, B.; Ravichandran, G.; Boehly, T.; Wark, J. Laser-induced shock compression of monocrystalline copper: Characterization and analysis. Acta Mater. 2003, 51, 1211–1228. [Google Scholar] [CrossRef]
- Wei, C.; Nesterenko, V.; Weihs, T.; Remington, B.; Park, H.-S.; Meyers, M. Response of Ni/Al laminates to laser-driven compression. Acta Mater. 2012, 60, 3929–3942. [Google Scholar] [CrossRef]
- Lu, J.; Luo, K.; Zhang, Y.; Sun, G.; Gu, Y.; Zhou, J.; Ren, X.; Zhang, X.; Zhang, L.; Chen, K.; et al. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel. Acta Mater. 2010, 58, 5354–5362. [Google Scholar] [CrossRef]
- Nie, X.; He, W.; Zhou, L.; Li, Q.; Wang, X. Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance. Mater. Sci. Eng. A 2014, 594, 161–167. [Google Scholar] [CrossRef]
- Pan, X.; Li, X.; Zhou, L.; Feng, X.; Luo, S.; He, W. Effect of Residual Stress on S–N Curves and Fracture Morphology of Ti6Al4V Titanium Alloy after Laser Shock Peening without Protective Coating. Materials 2019, 12, 3799. [Google Scholar]
- Jing, L.; Pan, Q.; Long, J.; Tao, N.; Lu, L. Effect of volume fraction of gradient nanograined layer on high-cycle fatigue behavior of Cu. Scr. Mater. 2019, 161, 74–77. [Google Scholar] [CrossRef]







| Label | State | Initial Stress (MPa) | Number of Steps | Stress Increment (MPa) | Failure Stress (MPa) | Total Cycle Number (×106) | Fatigue Strength (MPa) | Average (MPa) |
|---|---|---|---|---|---|---|---|---|
| 1 | Untreated | 320 | 5 | 32 | 448 | 4.300 | 425.6 | 431 ± 10 |
| 2 | Untreated | 320 | 5 | 32 | 448 | 4.453 | 430.5 | |
| 3 | Untreated | 320 | 5 | 32 | 448 | 4.819 | 442.2 | |
| 4 | Untreated | 320 | 5 | 32 | 448 | 4.234 | 423.5 | |
| 5 | Untreated | 320 | 6 | 32 | 480 | 5.272 | 456.7 | |
| 6 | Untreated | 320 | 5 | 32 | 448 | 4.478 | 431.3 | |
| 7 | Untreated | 320 | 5 | 32 | 448 | 4.391 | 428.5 | |
| 8 | Untreated | 320 | 5 | 32 | 448 | 4.066 | 418.1 | |
| 9 | Untreated | 320 | 5 | 32 | 448 | 4.238 | 423.6 | |
| 10 | Untreated | 320 | 5 | 32 | 448 | 4.469 | 431.0 | |
| 11 | LSP | 350 | 5 | 35 | 490 | 4.863 | 485.2 | 486 ± 14 |
| 12 | LSP | 350 | 6 | 35 | 525 | 5.240 | 498.4 | |
| 13 | LSP | 350 | 5 | 35 | 490 | 4.951 | 488.3 | |
| 14 | LSP | 350 | 6 | 35 | 525 | 5.640 | 512.4 | |
| 15 | LSP | 350 | 5 | 35 | 490 | 4.403 | 469.1 | |
| 16 | LSP | 350 | 5 | 35 | 490 | 4.797 | 482.9 | |
| 17 | LSP | 350 | 6 | 35 | 525 | 5.091 | 493.2 | |
| 18 | LSP | 350 | 5 | 35 | 490 | 4.951 | 488.3 | |
| 19 | LSP | 350 | 5 | 35 | 490 | 4.137 | 459.8 | |
| 20 | LSP | 350 | 5 | 35 | 490 | 4.709 | 479.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, L.; Li, J. Fatigue Performance Improvement of Titanium Alloy with Microstructure Gradient and Residual Stress Gradient Produced by Laser Shock Peening. Coatings 2025, 15, 1443. https://doi.org/10.3390/coatings15121443
Ren L, Li J. Fatigue Performance Improvement of Titanium Alloy with Microstructure Gradient and Residual Stress Gradient Produced by Laser Shock Peening. Coatings. 2025; 15(12):1443. https://doi.org/10.3390/coatings15121443
Chicago/Turabian StyleRen, Libing, and Jutao Li. 2025. "Fatigue Performance Improvement of Titanium Alloy with Microstructure Gradient and Residual Stress Gradient Produced by Laser Shock Peening" Coatings 15, no. 12: 1443. https://doi.org/10.3390/coatings15121443
APA StyleRen, L., & Li, J. (2025). Fatigue Performance Improvement of Titanium Alloy with Microstructure Gradient and Residual Stress Gradient Produced by Laser Shock Peening. Coatings, 15(12), 1443. https://doi.org/10.3390/coatings15121443
