The Effects of Induction Plasma Spheroidization on the Properties of Yttrium-Stabilized Zirconia Powders and the Performance of Corresponding Thermal Barrier Coatings for Gas Turbine Engine Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of YSZ Powders
2.2. Preparation and Testing of Coatings
2.3. Characterization and Simulation
3. Results and Discussion
3.1. Characterization of the Agglomerated YSZ Powders
3.2. Characterization of the IPS YSZ Powders
3.3. Plasma-Sprayed YSZ Coatings
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, X.G.; Yuan, J.Y.; Li, G.; Xu, M.Y.; Lu, G.Q.; Zhang, Y.X.; Yuan, F.H.; Huang, J.Q.; Deng, L.H.; Jiang, J.N.; et al. Plasma-sprayed Yb3Al5O12 as a novel thermal barrier coating for gas turbine applications. J. Eur. Ceram. Soc. 2024, 44, 5138–5153. [Google Scholar] [CrossRef]
- Brindley, W.J.; Miller, R.A. TBCs for better engine efficiency. Adv. Mater. Process 1989, 136, 29–33. [Google Scholar]
- Song, J.B.; Wang, L.S.; Dong, H.; Yao, J.T. Long lifespan thermal barrier coatings overview: Materials, manufacturing, failure mechanisms, and multiscale structural design. Ceram. Int. 2023, 49, 1–23. [Google Scholar] [CrossRef]
- Krogstad, J.A.; Kramer, S.; Lipkin, D.M.; Johnson, C.A.; Mitchell, D.R.G.; Cairney, J.M.; Levi, C.G. Phase Stability of t’-Zirconia-Based Thermal Barrier Coatings: Mechanistic Insights. J. Am. Ceram. Soc. 2011, 94, 168–177. [Google Scholar] [CrossRef]
- Rezanka, S.; Mack, D.E.; Mauer, G.; Sebold, D.; Guillon, O.; Vaßen, R. Investigation of the resistance of open-column-structured PS-PVD TBCs to erosive and high-temperature corrosive attack. Surf. Coat. Technol. 2017, 324, 222–235. [Google Scholar] [CrossRef]
- Hospach, A.; Mauer, G.; Vassen, R.; Stover, D. Columnar-structured thermal barrier coatings (TBCs) by thin film low-pressure spraying (LPPS-TF). Therm. Spray Technol. 2011, 20, 116–120. [Google Scholar] [CrossRef]
- Bakan, E.; Vaßen, R. Ceramic top coats of plasma-sprayed thermal barrier coatings: Materials, processes, and properties. J. Therm. Spray. Technol. 2017, 26, 992–1010. [Google Scholar] [CrossRef]
- Yang, L.X.; Yang, F.; Long, Y.; Zhao, Y.; Xiong, X.; Zhao, X.F.; Xiao, P. Evolution of residual stress in air plasma sprayed yttria stabilised zirconia thermal barrier coatings after isothermal treatment. Surf. Coat. Technol. 2014, 251, 98–105. [Google Scholar] [CrossRef]
- Zhao, X.L.; Liu, W.; Li, C.; Yan, G.; Wang, Q.W.; Yang, L.; Zhou, Y.C. Solid Particle Erosion Behavior of La2Ce2O7/YSZ Double-Ceramic-Layer and Traditional YSZ Thermal Barrier Coatings at High Temperature. Coatings 2022, 12, 1638. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Q.S.; Liu, Y.B.; Ning, X.J. Microstructure, thermal characteristics, and thermal cycling behavior of the ternary rare earth oxides (La2O3, Gd2O3, and Yb2O3) co-doped YSZ coatings. Surf. Coat. Technol. 2020, 403, 126387. [Google Scholar] [CrossRef]
- Yan, Z.; Peng, H.R.; Yuan, K.; Zhang, X. Optimization of Yb2O3-Gd2O3-Y2O3 Co-Doped ZrO2 Agglomerated and Calcined Powders for Air Plasma Spraying. Coatings 2021, 11, 373. [Google Scholar] [CrossRef]
- Guo, S.; Hao, Z.H.; Ma, R.L.; Wang, P.; Shi, L.Y.; Shu, Y.C.; He, J.L. Preparation of spherical WC-Co powder by spray granulation combined with radio frequency induction plasma spheroidization. Ceram. Int. 2023, 49, 12372–12380. [Google Scholar] [CrossRef]
- Li, G.F.; Wang, D.; Wu, Y.H.; Li, C.; Cheng, C.Y.; Yang, L.; Zhou, Y.C. The solid solution and microstructural evolution of WC doped Hf-Ta-C powders by induction plasma spheroidization. Powder Technol. 2023, 419, 118338. [Google Scholar] [CrossRef]
- Hossein, M.S.; Jackson, C.; Zane, Y. A review on ICP powder plasma spheroidization process parameters. Int. J. Refract. Met. Hard Mater. 2021, 103, 105764. [Google Scholar]
- Ko, S.; Koo, S.; Cho, W.; Hwnag, K.; Kim, J. Synthesis of SiC nano-powder from organic precursors using RF inductively coupled thermal plasma. Ceram. Int. 2012, 38, 1959–1963. [Google Scholar] [CrossRef]
- Saifutdinova, A.A.; Saifutdinov, A.I.; Gainullina, S.V.; Timerkaev, B.A. Modeling the parameters of an atmospheric pressure dielectric barrier discharge controlled by the shape of the applied voltage. IEEE Trans. Plasma Sci. 2022, 50, 1144–1156. [Google Scholar] [CrossRef]
- Christian, B.; Ilya, T.; Jörg, H.; Pierre, B.J. Numerical modeling of an inductively coupled plasma torch using OpenFOAM. Comput. Fluids 2021, 216, 104807. [Google Scholar]
- Shi, T.J.; Bai, B.T.; Peng, H.R.; Yuan, K.; Han, R.F.; Zhou, Q.; Pang, X.X.; Zhang, X.; Yan, Z. Improved thermal shock resistance of GYYZO-YSZ double ceramic layer TBCs induced by induction plasma spheroidization. Surf. Coat. Technol. 2024, 477, 130372. [Google Scholar] [CrossRef]
- Nagulin, K.; Nazarov, R.; Efimochkin, I.; Gilmutdinov, A. Optimization of radio-frequency plasma parameters for spheroidization of zirconium oxide powders. Surf. Coat. Technol. 2020, 382, 125196. [Google Scholar] [CrossRef]
- Ye, R.; Ishigaki, T.; Jurewicz, J.; Proulx, P.; Boulos, M.I. In-Flight Spheroidization of Alumina Powders in Ar–H2 and Ar–N2 Induction Plasmas. Plasma Chem. Plasma Process. 2004, 24, 555–571. [Google Scholar] [CrossRef]
- Dire, R.M.; Bissett, H.; Delport, D.; Premlall, K. Evaluation of spheroidized tungsten carbide powder produced by induction plasma melting. South Afr. Inst. Min. Metall. 2021, 121, 175–179. [Google Scholar] [CrossRef]
- Bissett, H.; Walt, D.V.I.; Havenga, J. Titanium and zirconium metal powder spheroidization by thermal plasma processes. J. South Afr. Inst. Min. Metall. 2015, 115, 937–942. [Google Scholar] [CrossRef]
- Shin, D.; Gitzhofer, F.; Moreau, C. Influence of induction plasma gas composition on Ti coatings microstructure and composition. In Thermal Spray 2004: Advances in Technology and Application: Proceedings of the International Thermal Spray Conference, Osaka, Japan, 10–12 May 2004; ASM International: Tokyo, Japan, 2004; pp. 825–830. [Google Scholar]
- Vassen, M.O.R.; Jarligo, T.; Steinke, D.E.; Mack, D. Stoever, Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 2010, 205, 938–942. [Google Scholar] [CrossRef]
- Shi, M.C.; Xue, Z.L.; Zhang, Z.Y.; Ji, X.J.; Byon, E.; Zhang, S.H. Effect of spraying powder characteristics on mechanical and thermal shock properties of plasma-sprayed YSZ thermal barrier coating. Surf. Coat. Technol. 2020, 395, 125913. [Google Scholar] [CrossRef]
Inlet Temperature (°C) | Outlet Temperature (°C) | Feed Rate (Hz) | Spray Disc Speed (rpm) |
---|---|---|---|
300 | 120 | 30 | 40 |
Power (kW) | Pressure (psi) | Carrier Gas, Ar (slpm) | Ar Flow (slpm) | H2 Flow (slpm) | Feeder Rate (g/min) |
---|---|---|---|---|---|
80 | 15 | 95 | 30 | 15 | 40 |
Parameter | Values |
---|---|
Kerosene (L/min) | 24 |
Primary gas, O2 (L/min) | 900 |
Carrier gas, Ar (L/min) | 3.5 |
Stand-off distance (mm) | 360 |
Powder feed rate (g/min) | 30 |
Tooling speed (r/min) | 100 |
Parameter | Values |
---|---|
Power (kW) | 46 |
Primary gas, Ar (L/min) | 38 |
Secondary gas, H2 (L/min) | 13 |
Carrier gas, Ar (L/min) | 4.5 |
Stand-off distance (mm) | 100 |
Powder feed rate (g/min) | 25 |
Tooling speed (r/min) | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, H.; Yu, Y.; Dong, J.; Shi, T.; Yuan, K.; Yan, Z.; Bai, B. The Effects of Induction Plasma Spheroidization on the Properties of Yttrium-Stabilized Zirconia Powders and the Performance of Corresponding Thermal Barrier Coatings for Gas Turbine Engine Applications. Coatings 2024, 14, 627. https://doi.org/10.3390/coatings14050627
Peng H, Yu Y, Dong J, Shi T, Yuan K, Yan Z, Bai B. The Effects of Induction Plasma Spheroidization on the Properties of Yttrium-Stabilized Zirconia Powders and the Performance of Corresponding Thermal Barrier Coatings for Gas Turbine Engine Applications. Coatings. 2024; 14(5):627. https://doi.org/10.3390/coatings14050627
Chicago/Turabian StylePeng, Haoran, Yueguang Yu, Jianxin Dong, Tianjie Shi, Kang Yuan, Zheng Yan, and Botian Bai. 2024. "The Effects of Induction Plasma Spheroidization on the Properties of Yttrium-Stabilized Zirconia Powders and the Performance of Corresponding Thermal Barrier Coatings for Gas Turbine Engine Applications" Coatings 14, no. 5: 627. https://doi.org/10.3390/coatings14050627
APA StylePeng, H., Yu, Y., Dong, J., Shi, T., Yuan, K., Yan, Z., & Bai, B. (2024). The Effects of Induction Plasma Spheroidization on the Properties of Yttrium-Stabilized Zirconia Powders and the Performance of Corresponding Thermal Barrier Coatings for Gas Turbine Engine Applications. Coatings, 14(5), 627. https://doi.org/10.3390/coatings14050627