Preparation, Characterization, and Release Kinetics of Zanthoxylum bungeanum Leaf Polyphenol–Chitosan Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of ZMP
2.2.2. Purification and Analysis of ZMP
2.2.3. Preparation of Slow—Release Film
2.2.4. Performance Characterization of ZMP/C-film
Thickness, Opacity, and Solubility
Mechanical Properties
Structural Characterization
2.2.5. Kinetic Analysis of Polyphenol Release from ZMP/C-Film
2.2.6. Mathematical Modeling of Polyphenol Release
2.2.7. ZMP/C-Film Antioxidant Capacity
2.2.8. Practical Application of Film on Fresh Strawberry Fruit
2.3. Data Analysis
3. Results and Analysis
3.1. ZMP Composition Analysis
3.2. Physical Properties of ZMP/C-Film
3.2.1. Thickness, Opacity, Solubility, Tensile Strength, and Elongation at Break of the Film
3.2.2. Scanning Electron Microscopy (SEM)
3.2.3. Fourier Transform Infrared Spectroscopy (FTIR)
3.2.4. X-ray Diffraction Spectroscopy
3.3. Kinetics of Polyphenol Release
3.4. Anti-Oxidant Capacity
3.5. Strawberry Preservation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Muley, A.B.; Kedia, P.; Pegu, K.; Kausley, S.B.; Rai, B. Analyzing the physical and biochemical changes in strawberries during storage at different temperatures and the development of kinetic models. J. Food Meas. Charact. 2022, 16, 222–247. [Google Scholar] [CrossRef]
- Salmas, C.E.; Giannakas, A.E.; Moschovas, D.; Kollia, E.; Georgopoulos, S.; Gioti, C.; Leontiou, A.; Avgeropoulos, A.; Kopsacheili, A.; Avdylaj, L.; et al. Kiwi Fruits Preservation Using Novel Edible Active Coatings Based on Rich Thymol Halloysite Nanostructures and Chitosan/Polyvinyl Alcohol Gels. Gels 2022, 8, 823. [Google Scholar] [CrossRef] [PubMed]
- Jurić, S.; Bureš, M.S.; Vlahoviček-Kahlina, K.; Stracenski, K.S.; Fruk, G.; Jalšenjak, N.; Bandić, L.M. Chitosan-based layer-by-layer edible coatings application for the preservation of mandarin fruit bioactive compounds and organic acids. Food Chem. X 2023, 17, 100575. [Google Scholar] [CrossRef]
- Duan, C.; Meng, X.; Meng, J.; Khan, M.I.H.; Dai, L.; Khan, A.; An, X.; Zhang, J.; Huq, T.; Ni, Y. Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. J. Bioresour. Bioprod. 2019, 4, 11–21. [Google Scholar] [CrossRef]
- Liu, R.; Wang, J.; Huang, C.; Su, H.; Huang, H.; Luo, W.; An, J.; Zhao, H.; Xu, Y.; Wang, S. Chlorine dioxide gas slow—Release film for strawberry preservation. LWT 2023, 177, 114516. [Google Scholar]
- Thanh Huong, Q.T.; Hoai Nam, N.T.; Duy, B.T.; An, H.; Hai, N.D.; Kim Ngan, H.T.; Ngan, L.T.; Le Hoai Nhi, T.; Yen Linh, D.T.; Khanh, T.N.; et al. Structurally natural chitosan films decorated with Andrographis paniculata extract and selenium nanoparticles: Properties and strawberry preservation. Food Biosci. 2023, 53, 102647. [Google Scholar] [CrossRef]
- Hu, J. Preparation of Thermo-Sensitive Chitosan-Based Drug Carriers and Its Study of Sustained Release Property. Master’s Thesis, South China University of Technology, Guangzhou, China, 2000. [Google Scholar]
- Chen, W.B.; Yan, W.J.; Xu, X.L.; Zhang, J.H. Preparation, characterization and in vitro sustained antioxidant activity of α-tocopherol-loaded chitosan nanoparticles. Food Sci. 2017, 38, 216–223. [Google Scholar]
- Yang, L.-C.; Li, R.; Tan, J.; Jiang, Z.-T. Polyphenolics Composition of the Leaves of Zanthoxylum bungeanum Maxim. Grown in Hebei, China, and Their Radical Scavenging Activities. J. Agric. Food. Chem. 2013, 61, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Li, S.W.; Wang, Y.; Zhao, Y.Y.; Zhou, G.H.; Zhang, W.G. Study on the effect of pepper extract on the quality of conditioned pork patties during refrigeration. Sci. Technol. Food Ind. 2018, 39, 285–291+297. [Google Scholar]
- Luo, A.G. Separation, Purification, Biological Activity of Arthrospira plantensis Polysaccharide and Its Application in Preservation of Meat Products. Ph.D. Thesis, Shanxi University, Taiyuan, China, 2018. [Google Scholar]
- Quiñones, J.P.; Gothelf, K.V.; Kjems, J.; Yang, C.; Caballero, A.M.H.; Schmidt, C.; Covas, C.P. Self-assembled nanoparticles of modified-chitosan conjugates for the sustained release of dl-α-tocopherol. Carbohydr. Polym. 2013, 92, 856–864. [Google Scholar] [CrossRef]
- Gomaa, M.; Hifney, A.F.; Fawzy, M.A.; Abdel-Gawad, K.M. Use of seaweed and filamentous fungus derived polysaccharides in the development of alginate-chitosan edible films containing fucoidan: Study of moisture sorption, polyphenol release and antioxidant properties. Food Hydrocoll. 2018, 82, 239–247. [Google Scholar] [CrossRef]
- Luo, A.G.; Zhao, Q.; Ma, J.H.; Yang, Y.J.; Hu, B.F. Preparation and characterization of phycocyanin-chitosan composite films. Sci. Technol. Food Ind. 2020, 41, 25–29+36. [Google Scholar]
- Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Delivery Rev. 2012, 64, 163–174. [Google Scholar] [CrossRef]
- Guo, C.H.; Zhu, Y.; Ma, X.Y.; Shao, M.M.; Yu, M.Q.; Wang, Y.G. Optimization of the Extraction Process of Polyphenols from Zanthoxylum schinifolium Sieb. et Zucc and Research on the Determination and Antioxidant Properties of Polyphenols. China Condiment. 2021, 46, 1–6. [Google Scholar]
- Talón, E.; Trifkovic, K.T.; Vargas, M.; Chiralt, A.; González-Martínez, C. Release of polyphenols from starch-chitosan based films containing thyme extract. Carbohydr. Polym. 2017, 175, 122–130. [Google Scholar] [CrossRef]
- Gibis, M.; Ruedt, C.; Weiss, J. In vitro release of grape-seed polyphenols encapsulated from uncoated and chitosan-coated liposomes. Food Res. Int. 2016, 88, 105–113. [Google Scholar] [CrossRef]
- Indumathi, M.P.; Saral Sarojini, K.; Rajarajeswari, G.R. Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. Int. J. Biol. Macromol. 2019, 132, 1112–1120. [Google Scholar] [CrossRef]
- Hejazi, R.; Amiji, M. Chitosan-based gastrointestinal delivery systems. J. Control. Release 2003, 89, 151–165. [Google Scholar] [CrossRef]
- Gao, H.-X.; He, Z.; Sun, Q.; He, Q.; Zeng, W.-C. A functional polysaccharide film forming by pectin, chitosan, and tea polyphenols. Carbohydr. Polym. 2019, 215, 1–7. [Google Scholar] [CrossRef]
- Xue, F.; Zhao, M.; Liu, X.; Chu, R.; Qiao, Z.; Li, C.; Adhikari, B. Physicochemical properties of chitosan/zein/essential oil emulsion-based active films functionalized by polyphenols. Future Foods 2021, 3, 100033. [Google Scholar] [CrossRef]
- Chen, H.; Hu, X.; Chen, E.; Wu, S.; McClements, D.J.; Liu, S.; Li, B.; Li, Y. Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll. 2016, 61, 662–671. [Google Scholar] [CrossRef]
- Zhu, X.; Hou, X.; Ma, B.; Xu, H.; Yang, Y. Chitosan/gallnut tannins composite fiber with improved tensile, antibacterial and fluorescence properties. Carbohydr. Polym. 2019, 226, 115311. [Google Scholar] [CrossRef]
- Sun, L.; Sun, J.; Chen, L.; Niu, P.; Yang, X.; Guo, Y. Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydr. Polym. 2017, 163, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa, P.C.; Ramesh, M.N.; Kumar, K.R.; Tharanathan, R.N. Properties of chitosan films prepared under different drying conditions. J. Food Eng. 2004, 63, 79–85. [Google Scholar] [CrossRef]
- Shi, X.N. Synthesis, Preparation and Application of Functionalized Modified Nanocellulose System as a Dual Stimulus Responsive Drug Delivery System. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2015. [Google Scholar]
- Kadam, D.; Shah, N.; Palamthodi, S.; Lele, S.S. An investigation on the effect of polyphenolic extracts of Nigella sativa seedcake on physicochemical properties of chitosan-based films. Carbohydr. Polym. 2018, 192, 347–355. [Google Scholar] [CrossRef] [PubMed]









| Sample | Thickness (μm) | Opacity (mm−1) | Solubility (%) | Tensile Strength (MPa) | Elongation at Break (%) |
|---|---|---|---|---|---|
| C-film | 43.95 ± 0.11 a | 3.81 ± 0.07 c | 17.62 ± 0.21 b | 47.66 ± 5.05 a | 21.11 ± 2.59 b |
| TA/C-film | 41.47 ± 0.10 b | 11.92 ± 0.04 b | 22.65 ± 0.39 a | 43.14 ± 3.21 a | 30.15 ± 1.28 c |
| 0.5%ZMP/C-film | 41.19 ± 0.18 b | 12.07 ± 0.11 ab | 21.98 ± 0.27 a | 40.30 ± 2.19 b | 32.64 ± 1.90 a |
| 1.0%ZMP/C-film | 39.07 ± 0.23 c | 12.53 ± 0.06 a | 22.44 ± 0.13 a | 32.15 ± 1.30 c | 36.37 ± 2.35 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, A.; Chen, J.; Hu, B. Preparation, Characterization, and Release Kinetics of Zanthoxylum bungeanum Leaf Polyphenol–Chitosan Films. Coatings 2023, 13, 1138. https://doi.org/10.3390/coatings13071138
Luo A, Chen J, Hu B. Preparation, Characterization, and Release Kinetics of Zanthoxylum bungeanum Leaf Polyphenol–Chitosan Films. Coatings. 2023; 13(7):1138. https://doi.org/10.3390/coatings13071138
Chicago/Turabian StyleLuo, Aiguo, Jing Chen, and Bianfang Hu. 2023. "Preparation, Characterization, and Release Kinetics of Zanthoxylum bungeanum Leaf Polyphenol–Chitosan Films" Coatings 13, no. 7: 1138. https://doi.org/10.3390/coatings13071138
APA StyleLuo, A., Chen, J., & Hu, B. (2023). Preparation, Characterization, and Release Kinetics of Zanthoxylum bungeanum Leaf Polyphenol–Chitosan Films. Coatings, 13(7), 1138. https://doi.org/10.3390/coatings13071138
