Study on the Changes in Shielding Performance Based on Electrospinning Pattern Shapes in the Manufacturing Process of Polymer-Metal Composite Radiation Shielding Materials
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boice, J., Jr.; Dauer, L.T.; Kase, K.R.; Mettler, F.A., Jr.; Vetter, R.J. Evolution of radiation protection for medical workers. Br. J. Radiol. 2020, 93, 20200282. [Google Scholar] [CrossRef]
- Shang, Y.; Yang, G.; Su, F.; Feng, Y.; Ji, Y.; Liu, D.; Yin, R.; Liu, C.; Shen, C. Multilayer polyethylene/ hexagonal boron nitride composites showing high neutron shielding efficiency and thermal conductivity. Compos. Commun. 2020, 19, 147–153. [Google Scholar] [CrossRef]
- Yao, B.; Hong, W.; Chen, T.; Han, Z.; Xu, X.; Hu, R.; Hao, J.; Li, C.; Li, H.; Perini, S.E.; et al. Highly stretchable polymer composite with strain-enhanced electromagnetic interference shielding effectiveness. Adv. Mater. 2020, 32, e1907499. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, W.; Zhang, X.; Gao, Y.; Guo, S. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: Layered structure design and shielding mechanism. Sci. Rep. 2021, 11, 4384. [Google Scholar] [CrossRef] [PubMed]
- Wanasinghe, D.; Aslani, F. A review on recent advancement of electromagnetic interference shielding novel metallic materials and processes. Compos. B Eng. 2019, 176, 107207. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El-Khatib, A.M.; Badawi, M.S.; Rashad, A.R.; El-Sharkawy, R.M.; Thabet, A.A. Fabrication, characterization and gamma rays shielding properties of Nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat. Phys. Chem. 2018, 145, 160–173. [Google Scholar] [CrossRef]
- Ghosh, S.; Remanan, S.; Mondal, S.; Ganguly, S.; Das, P.; Singha, N.; Das, N.C. An approach to prepare mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant electromagnetic interference shielding. Chem. Eng. J. 2018, 344, 138–154. [Google Scholar] [CrossRef]
- Hemath, M.; Mavinkere Rangappa, S.; Kushvaha, V.; Dhakal, H.N.; Siengchin, S. A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym. Compos. 2020, 41, 3940–3965. [Google Scholar] [CrossRef]
- John, A.; Benny, L.; Cherian, A.R.; Narahari, S.Y.; Varghese, A.; Hegde, G. Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: A review. J. Nanostruct. Chem. 2021, 11, 1–31. [Google Scholar] [CrossRef]
- Weulersse, C.; Houssany, S.; Guibbaud, N.; Segura-Ruiz, J.; Beaucour, J.; Miller, F.; Mazurek, M. Contribution of thermal neutrons to soft error rate. IEEE Trans. Nucl. Sci. 2018, 65, 1851–1857. [Google Scholar] [CrossRef]
- Wang, B.; Qiu, T.; Yuan, L.; Fang, Q.; Wang, X.; Guo, X.; Zhang, D.; Lai, C.; Wang, Q.; Liu, Y. A comparative study between pure bismuth/tungsten and the bismuth tungsten oxide for flexible shielding of gamma/X rays. Radiat. Phys. Chem. 2023, 208, 110906. [Google Scholar] [CrossRef]
- Chala, T.F.; Wu, C.M.; Chou, M.H.; Gebeyehu, M.B.; Cheng, K.B. Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites. Nanomaterials 2017, 7, 191. [Google Scholar] [CrossRef]
- More, C.V.; Alsayed, Z.; Badawi, M.S.; Thabet, A.A.; Pawar, P.P. Polymeric composite materials for radiation shielding: A review. Environ. Chem. Lett. 2021, 19, 2057–2090. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Bhawal, P.; Ravindren, R.; Das, N.C. Polymer nanocomposites for electromagnetic interference shielding: A review. J. Nanosci. Nanotechnol. 2018, 18, 7641–7669. [Google Scholar] [CrossRef]
- Bhat, A.; Budholiya, S.; Aravind Raj, S.; Sultan, M.T.H.; Hui, D.; Md Shah, A.U.; Safri, S.N.A. Review on nanocomposites based on aerospace applications. Nanotechnol. Rev. 2021, 10, 237–253. [Google Scholar] [CrossRef]
- Al-Mezrakchi, R.Y.H. An investigation into scalability production of ultra-fine nanofiber using electrospinning systems. Fibers Polym. 2018, 19, 105–115. [Google Scholar] [CrossRef]
- Jian, S.; Zhu, J.; Jiang, S.; Chen, S.; Fang, H.; Song, Y.; Duan, G.; Zhang, Y.; Hou, H. Nanofibers with diameter below one nanometer from electrospinning. RSC Adv. 2018, 8, 4794–4802. [Google Scholar] [CrossRef]
- Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M.A. Remediation of wastewater using various nano-materials. Arab. J. Chem. 2019, 12, 4897–4919. [Google Scholar] [CrossRef]
- Mansouri, E.; Mesbahi, A.; Malekzadeh, R.; Mansouri, A. Shielding characteristics of nanocomposites for protection against X- and gamma rays in medical applications: Effect of particle size, photon energy and nano-particle concentration. Radiat. Environ. Biophys. 2020, 59, 583–600. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wei, Q.; Zheng, W.; Zheng, Y.; Okosi, N.; Wang, Z.; Su, M. Enhanced radiation shielding with conformal light-weight nanoparticle–polymer composite. ACS Appl. Mater. Interfaces 2018, 10, 35510–35515. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, A.; Singh, D.; Thind, K.S.; Mudahar, G.S. Barium–borate–flyash glasses: As radiation shielding materials. Nucl. Instrum. Methods Phys. Res. B. 2008, 266, 140–146. [Google Scholar] [CrossRef]
- Hamouda, S.A.; al-Talhi, E.; Abdelmalik, M.B. Calculation of Gamma-ray Mass Absorption Coefficients for some Geological Compounds for Energy of 10–150 keV. Eng. Sci. Int. J. 2021, 8, 39–41. [Google Scholar] [CrossRef]
- Jalali, M.; Mohammadi, A. Gamma ray attenuation coefficient measurement for neutron-absorbent materials. Radiat. Phys. Chem. 2008, 77, 523–527. [Google Scholar] [CrossRef]
- Akkurt, I.; El-Khayatt, A.M. The effect of barite proportion on neutron and gamma-ray shielding. Ann. Nucl. Energy 2013, 51, 5–9. [Google Scholar] [CrossRef]
- Sedira, N.; Castro-Gomes, J. Study of an alkali-activated binder based on tungsten mining mud and brick powder waste. In Proceedings of the MATEC Web Conference, EDP Sciences, Centre of Materials and Building Technologies; CIVE–Central covilhã–4082. University of Beira Interior: Covilhã, Portugal, 2018; Volume 163. [Google Scholar] [CrossRef]
- Arof, A.K.; Mat Nor, N.A.; Aziz, N.; Kufian, M.Z.; Abdulaziz, A.A.; Mamatkarimov, O.O. Investigation on morphology of composite poly(ethylene oxide)-cellulose nanofibers. Mater. Today Proc. 2019, 17, 388–393. [Google Scholar] [CrossRef]
- Kim, S.C. Development of air pressure mirroring particle dispersion method for producing high-density tungsten medical radiation shielding film. Sci. Rep. 2021, 11, 485. [Google Scholar] [CrossRef]
- Boonin, K.; Yasaka, P.; Limkitjaroenporn, P.; Rajaramakrishna, R.; Askin, A.; Sayyed, M.I.; Kothan, S.; Kaewkhao, J. Effect of BaO on lead free zinc barium tellurite glass for radiation shielding materials in nuclear application. J. Non Cryst. Solids 2020, 550, 120386. [Google Scholar] [CrossRef]
- AbuAlRoos, N.J.; Baharul Amin, N.A.B.; Zainon, R. Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: A review. Radiat. Phys. Chem. 2019, 165, 108439. [Google Scholar] [CrossRef]
- Kiguli-Malwadde, E.; Byanyima, R.; Kawooya, M.G.; Mubuuke, A.G.; Basiimwa, R.C.; Pitcher, R. An audit of registered radiology equipment resources in Uganda. Pan Afr. Med. J. 2020, 37, 295. [Google Scholar] [CrossRef]
- Patidar, D.; Yap, L.B.C.; Begum, H.; Soh, B.P. Manual or auto-mode: Does this affect radiation dose in digital mammography without compromising image quality? Radiography 2022, 28, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Chusin, T.; Matsubara, K.; Takemura, A.; Okubo, R.; Ogawa, Y. Assessment of scatter radiation dose and absorbed doses in eye lens and thyroid gland during digital breast tomosynthesis. J. Appl. Clin. Med. Phys. 2019, 20, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Gennaro, G.; Cozzi, A.; Schiaffino, S.; Sardanelli, F.; Caumo, F. Radiation dose of contrast-enhanced mammography: A two-center prospective comparison. Cancers 2022, 14, 1774. [Google Scholar] [CrossRef] [PubMed]
- Madder, R.D.; LaCombe, A.; VanOosterhout, S.; Mulder, A.; Elmore, M.; Parker, J.L.; Jacoby, M.E.; Wohns, D. Radiation exposure among scrub technologists and nurse circulators during cardiac catheterization: The impact of accessory lead shields. JACC Cardiovasc. Interv. 2018, 11, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.R.; Rabah, M.; Emerson, S.; Schultz, C.; Madder, R.D. A novel catheterization laboratory radiation shielding system: Results of pre-clinical testing. Cardiovasc. Revasc. Med. 2022, 36, 51–55. [Google Scholar] [CrossRef]
- Deeraj, B.D.S.; Jayan, J.S.; Raman, A.; Saritha, A.; Joseph, K. Polymeric blends and nanocomposites for high performance EMI shielding and microwave absorbing applications. Compos. Interfaces 2022, 29, 1505–1547. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, P.; Xu, H.; Li, Q.; Guo, J.; Liao, X.; Shi, B. Advanced X-ray shielding materials enabled by the coordination of well-dispersed high atomic number elements in natural leather. ACS Appl. Mater. Interfaces 2020, 12, 19916–19926. [Google Scholar] [CrossRef]
- Yao, T.; Chen, H.; Samal, P.; Giselbrecht, S.; Baker, M.B.; Moroni, L. Self-assembly of electrospun nanofibers into gradient honeycomb structures. Mater. Des. 2019, 168, 107614. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, P.; Shi, X.; Zhang, G.; Wang, C. Multilevel structural stereocomplex polylactic acid/collagen membranes by pattern electrospinning for tissue engineering. Polymer 2018, 156, 250–260. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, X.; Heng, Z.; Chen, Y.; Zou, H.; Liang, M. Robust and flexible cellulose nanofiber/multiwalled carbon nanotube film for high-performance electromagnetic interference shielding. Ind. Eng. Chem. Res. 2018, 57, 17152–17160. [Google Scholar] [CrossRef]





| Transmission Dose | Effective X-ray Energy | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| 29.2 keV | 34.5 keV | 52.8 keV | 60.3 keV | ||||||
| Non | N-Fibers | Non | N-Fibers | Non | N-Fibers | Non | N-Fibers | ||
| P1 | Dose (mSv) | 0.295 | 0.0141 | 0.854 | 0.0521 | 1.117 | 0.1005 | 1.583 | 0.1708 |
| Shielding rate (%) | 95.22 | 93.90 | 91.00 | 89.21 | |||||
| P2 | Dose (mSv) | 0.295 | 0.0318 | 0.854 | 0.1175 | 1.117 | 0.2456 | 1.583 | 0.4686 |
| Shielding rate (%) | 89.22 | 86.24 | 78.01 | 70.40 | |||||
| P3 | Dose (mSv) | 0.295 | 0.0554 | 0.854 | 0.2298 | 1.117 | 0.3670 | 1.588 | 0.5928 |
| Shielding rate (%) | 81.22 | 73.11 | 67.14 | 62.55 | |||||
| P4 | Dose (mSv) | 0.295 | 0.0342 | 0.854 | 0.1185 | 1.117 | 0.2546 | 1.583 | 0.4874 |
| Shielding rate (%) | 88.41 | 86.12 | 77.21 | 69.21 | |||||
| Radiation Type | Effective X-ray Energy (keV) | Mean of Exposure (mSv) | Shielding Rate (%) | |||
| Nothing | 0.25 mm Pb | P1 (0.3 mm) | 0.25 mm Pb | P1 (0.3 mm) | ||
| X-ray | 29.2 | 0.312 | 0.0022 | 0.0149 | 99.29 | 95.22 |
| 34.5 | 0.854 | 0.0418 | 0.0521 | 95.11 | 93.90 | |
| 52.8 | 1.212 | 0.0806 | 0.1091 | 93.35 | 91.00 | |
| 60.3 | 1.583 | 0.1539 | 0.1866 | 90.28 | 89.21 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-C. Study on the Changes in Shielding Performance Based on Electrospinning Pattern Shapes in the Manufacturing Process of Polymer-Metal Composite Radiation Shielding Materials. Coatings 2023, 13, 1028. https://doi.org/10.3390/coatings13061028
Kim S-C. Study on the Changes in Shielding Performance Based on Electrospinning Pattern Shapes in the Manufacturing Process of Polymer-Metal Composite Radiation Shielding Materials. Coatings. 2023; 13(6):1028. https://doi.org/10.3390/coatings13061028
Chicago/Turabian StyleKim, Seon-Chil. 2023. "Study on the Changes in Shielding Performance Based on Electrospinning Pattern Shapes in the Manufacturing Process of Polymer-Metal Composite Radiation Shielding Materials" Coatings 13, no. 6: 1028. https://doi.org/10.3390/coatings13061028
APA StyleKim, S.-C. (2023). Study on the Changes in Shielding Performance Based on Electrospinning Pattern Shapes in the Manufacturing Process of Polymer-Metal Composite Radiation Shielding Materials. Coatings, 13(6), 1028. https://doi.org/10.3390/coatings13061028
