Numerical Investigation of a High-Quality Factor Refractometric Nano-Sensor Comprising All-Dielectric Metamaterial Structures
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diest, K. Numerical Methods for Metamaterial Design; Springer: New York, NY, USA, 2013. [Google Scholar]
- Barber, D.J.; Freestone, I.C. An investigation of the origin of the color of the Lycurgus cup by an analytical transmission electron microscopy. Archaeometry 1990, 32, 33–45. [Google Scholar] [CrossRef]
- Veselago, V.G. The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. Sov. Phys. Uspekhi 1968, 10, 509–514. [Google Scholar] [CrossRef]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and negative refractive index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Schurig, D.; Mock, J.J.; Justice, B.J.; Cummer, S.A.; Pendry, J.B.; Starr, A.F.; Smith, D.R. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science 2006, 314, 977–980. [Google Scholar] [CrossRef][Green Version]
- Shalaev, V.; Cai, W.; Chettiar, U.; Yuan, H.; Sarychev, A.; Drachev, V.; Kildishev, A. Negative index of refraction in optical metamaterials. Opt. Lett. 2005, 30, 3356–3358. [Google Scholar] [CrossRef]
- Cui, T.J.; Smith, D.; Liu, R. Metamaterials: Theory, Design, and Applications; Springer: Boston, MA, USA, 2009; Available online: https://www.springer.com/gp/book/9781441905727 (accessed on 11 May 2023).
- Genevet, P.; Capasso, F.; Aieta, F.; Khorasaninejad, M.; Devlin, R. Recent advances in planar optics: From plasmonic to dielectric metasurfaces. Optica 2017, 4, 139–152. [Google Scholar] [CrossRef][Green Version]
- Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Planar photonics with metasurfaces. Science 2013, 339, 1232009. [Google Scholar] [CrossRef][Green Version]
- Li, A.; Singh, S.; Sievenpiper, D. Metasurfaces and their applications. Nanophotonics 2018, 7, 989–1011. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.; Sun, H. Metamaterials application in sensing. Sensors 2012, 12, 2742–2765. [Google Scholar] [CrossRef][Green Version]
- Zhang, S.; Wong, C.L.; Zeng, S.; Bi, R.; Tai, K.; Dholakia, K.; Olivo, M. Metasurfaces for biomedical applications: Imaging and sensing from a nanophotonics perspective. Front. Opt. Photonics 2021, 10, 265–299. [Google Scholar] [CrossRef]
- Jin, C.; Wu, Z.; Molinski, J.H.; Zhou, J.; Ren, Y.; Zhang, J.X. Plasmonic nanosensors for point-of-care biomarker detection. Mater. Today Bio 2022, 14, 100263. [Google Scholar] [CrossRef] [PubMed]
- Rakhshani, M.R.; Mansouri-Birjandi, M.A. High sensitivity plasmonic refractive index sensing and its application for human blood group identification. Sens. Actuators B Chem. 2017, 249, 168–176. [Google Scholar] [CrossRef]
- Kabashin, A.V.; Evans, P.; Pastkovsky, S.; Hendren, W.; Wurtz, G.A.; Atkinson, R.; Pollard, R.; Podolskiy, V.A.; Zayats, A.V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Alipour, A.; Farmani, A.; Mir, A. SiO2–silver metasurface architectures for ultrasensitive and tunable plasmonic biosensing. Plasmonics 2020, 15, 1935–1942. [Google Scholar] [CrossRef]
- Vafapour, Z.; Keshavarz, A.; Ghahraloud, H. The potential of terahertz sensing for cancer diagnosis. Heliyon 2020, 6, e05623. [Google Scholar] [CrossRef]
- Tavousi, A.; Rakhshani, M.; Mansouri-Birjandi, M. High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt. Commun. 2018, 429, 166–174. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J.; Ahmed, K.; Bui, F.M.; Al-Zahrani, F.A. Recent Advances in Biosensors for Detection of COVID-19 and Other Viruses. IEEE Rev. Biomed. Eng. 2022, 16, 22–37. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Katkar, V.; Parmar, J.; Al-Zahrani, F.A.; Ahmed, K.; Bui, F.M. Encoding and Tuning of THz Metasurface-Based Refractive Index Sensor with Behavior Prediction Using XGBoost Regressor. IEEE Access 2022, 10, 24797–24814. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J.; Natesan, A.; Katkar, V. Graphene-Based Metasurface Refractive Index Biosensor for Hemoglobin Detection: Machine Learning Assisted Optimization. IEEE Trans. Nanobiosci. 2022, 22, 430–437. [Google Scholar] [CrossRef]
- Hajshahvaladi, L.; Kaatuzian, H.; Danaie, M.; Karimi, Y. Design of a highly sensitive tunable plasmonic refractive index sensor based on a ring-shaped nano-resonator. Opt. Quantum Electron. 2022, 54, 51. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J. Detection of cancer with graphene metasurface-based highly efficient sensors. Diam. Relat. Mater. 2022, 129, 109367. [Google Scholar] [CrossRef]
- Almpanis, E.; Papanikolaou, N. Dielectric nanopatterned surfaces for subwavelength light localization and sensing applications. Microelectron. Eng. 2016, 159, 60–63. [Google Scholar] [CrossRef]
- Liang, Y.; Koshelev, K.; Zhang, F.; Lin, H.; Lin, S.; Wu, J.; Jia, B.; Kivshar, Y. Bound states in the continuum in anisotropic plasmonic metasurfaces. Nano Lett. 2020, 20, 6351–6356. [Google Scholar] [CrossRef] [PubMed]
- Abir, T.; Tal, M.; Ellenbogen, T. Second-Harmonic Enhancement from a Nonlinear Plasmonic Metasurface Coupled to an Optical Waveguide. Nano Lett. 2022, 22, 2712–2717. [Google Scholar] [CrossRef]
- Hasan, M.R.; Hellesø, O.G. Dielectric optical nanoantennas. Nanotechnology 2021, 32, 202001. [Google Scholar] [CrossRef]
- Hu, J.; Lawrence, M.; Dionne, J.A. High Quality Factor Dielectric Metasurfaces for Ultraviolet Circular Dichroism Spectroscopy. ACS Photonics 2020, 7, 36–42. [Google Scholar] [CrossRef]
- Son, H.; Kim, S.-J.; Hong, J.; Sung, J.; Lee, B. Design of highly perceptible dual-resonance all-dielectric metasurface colorimetric sensor via deep neural networks. Sci. Rep. 2022, 12, 8512. [Google Scholar] [CrossRef]
- Zhong, J.; Ghosh, P.; Li, Q. All-dielectric metasurface refractive index sensor with microfluidics. J. Phys. Conf. Ser. 2021, 1838, 012001. [Google Scholar] [CrossRef]
- Karthikeyan, M.; Jayabala, P.; Ramachandran, S.; Dhanabalan, S.S.; Sivanesan, T.; Ponnusamy, M. Tunable Optimal Dual Band Metamaterial Absorber for High Sensitivity THz Refractive Index Sensing. Nanomaterials 2022, 12, 2693. [Google Scholar] [CrossRef]
- Nejat, M.; Nozhat, N. Ultrasensitive THz Refractive Index Sensor Based on a Controllable Perfect MTM Absorber. IEEE Sens. J. 2019, 19, 10490–10497. [Google Scholar] [CrossRef]
- Hajshahvaladi, L.; Kaatuzian, H.; Danaie, M. A high-sensitivity refractive index biosensor based on Si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution. Opt. Commun. 2022, 502, 127421. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, Y.; Chen, F. Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing. Optik 2021, 229, 166300. [Google Scholar] [CrossRef]
- Chamoli, S.K.; Singh, S.C.; Guo, C. Design of Extremely Sensitive Refractive Index Sensors in Infrared for Blood Glucose Detection. IEEE Sens. J. 2020, 20, 4628–4634. [Google Scholar] [CrossRef]
- Vafapour, Z. Polarization-independent perfect optical metamaterial absorber as a glucose sensor in food industry applications. IEEE Trans. Nanobiosci. 2019, 18, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Vafapour, Z.; Ghahraloud, H.; Keshavarz, A.; Islam, S.; Rashidi, A.; Dutta, M.; Stroscio, M.A. The potential of refractive index nanobiosensing using a multi-band optically tuned perfect light metamaterial absorber. IEEE Sens. J. 2021, 21, 13786–13793. [Google Scholar] [CrossRef]
- Asim, A.; Cada, M. Design of a Plasmonic Metasurface for Refractive Index Sensing of Aqueous Glucose. Prog. Electromagn. Res. Lett. 2022, 107, 133–139. [Google Scholar] [CrossRef]
- Al-Naib, I. Terahertz Asymmetric S-Shaped Complementary Metasurface Biosensor for Glucose Concentration. Biosensors 2022, 12, 609. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, L.; Shi, H.; Cao, S.; Yang, S.; Wu, Y. Near-infrared plasma cavity metasurface with independently tunable double Fano resonances. Results Phys. 2021, 25, 104204. [Google Scholar] [CrossRef]
- Cheng, F.; Yang, X.; Gao, J. Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers. Opt. Lett. 2014, 39, 3185–3188. [Google Scholar] [CrossRef]
- Yang, J.; Qi, L.; Li, B.; Wu, L.; Shi, D.; Uqaili, J.A.; Tao, X. A terahertz metamaterial sensor used for distinguishing glucose concentration. Results Phys. 2021, 26, 104332. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Amer. 1965, 55, 1205–1208. [Google Scholar] [CrossRef]
- Peter, F. Über Brechungsindizes und Absorptionskonstanten des Diamanten zwischen 644 und 226 mμ. Z. Für Phys. 1923, 15, 358–368. [Google Scholar] [CrossRef]
- Phillip, H.R.; Taft, E.A. Kramers-Kronig analysis of reflectance data for diamond. Phys. Rev. 1964, 136, A1445–A1448. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, Z.; Meng, D.; Qin, Z.; Fan, Y.; Shi, X.; Smith, D.R.; Hou, E. All-dielectric refractive index sensor based on Fano resonance with high sensitivity in the mid-infrared region. Results Phys. 2021, 24, 104129. [Google Scholar] [CrossRef]
- He, K.; Liu, Y.; Fu, Y. Transmit-Array, Metasurface-based tunable polarizer and high-performance biosensor in the visible regime. Nanomaterials 2019, 9, 603. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wu, P.; Qu, S.; Zeng, X.; Su, N.; Chen, M.; Yu, Y. High-Q refractive index sensors based on all-dielectric metasurfaces. RSC Adv. 2022, 12, 21264–21269. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Wang, X.; Wang, X.; Gao, J.; Yang, H. All-Dielectric Refractive Index Sensor Based on Multiple Fano Resonance with High Sensitivity in the Long-Wave Infrared Region. Coatings 2022, 12, 970. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Cai, G.; Zhuo, J.; Lai, K.; Ye, L. All-dielectric metasurfaces with high Q-factor Fano resonances enabling multi-scenario sensing. Nanophotonics 2022, 11, 4537–4549. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, S.; Gao, Z.; Song, S.; Li, H.; Zhao, T.; Hu, Z. Excitations of Multiple Fano Resonances Based on Permittivity-Asymmetric Dielectric Meta-Surfaces for Nano-Sensors. IEEE Photonics J. 2022, 14, 4613107. [Google Scholar] [CrossRef]
- Yang, Y.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 2014, 5, 5753. [Google Scholar] [CrossRef][Green Version]
- Hu, J.; Lang, T.; Shi, G.-H. Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface. Opt. Express 2017, 25, 15241–15251. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Pan, C.; Chen, Y.; Ma, Q.; Liu, S.; Wu, E.; Wu, B. Electromagnetically induced transparency in all-dielectric U-shaped silicon metamaterials. Appl. Sci. 2018, 8, 1799. [Google Scholar] [CrossRef][Green Version]
- Liu, G.-D.; Zhai, X.; Wang, L.-L.; Lin, Q.; Xia, S.-X.; Luo, X.; Zhao, C.-J. A high-performance refractive index sensor based on fano resonance in Si split-ring metasurface. Plasmonics 2017, 13, 15–19. [Google Scholar] [CrossRef]
REF. | FREQUENCY BAND | MATERIALS | STRUCTURE | SPECTRAL REFERENCE | REFRACTIVE INDEX RANGE |
---|---|---|---|---|---|
[29] | Visible | SiN, Si | Nano-rod | Reflection Peak | 1.33–1.38 |
[30] | Near-Infrared | Si, SiO2 | Nano-disk | Transmission Peak | 1.0–1.4 |
[31] | Terahertz | Au, SiO2, graphene | Cuboid | Absorption Peak | 1.0–2.0 |
[32] | Terahertz | Au, SiO2, graphene | Cuboid | Absorption Peak | 1.3198, 1.3594 |
[33] | Near-Infrared | Au, SiO2, BK7 glass | Ring-shaped nano-hole | Reflection Dip | 1.32–1.5 |
[34] | Near-Infrared | Au | Split ring, nano-cylinders | Absorption Peak/Reflection Dip | 1.305–1.345 |
[35] | Near-Infrared | Au, Si3N4, Barium Flint (BAF 10) | Nano-bar | Reflection Dip | 1.33–1.38 |
[36] | Near-Infrared | Au, Ag, Cu, Al, MgF2, SiO2, HPDE, Al2O3, PMMA | Nano-ring, nano-disk | Absorption Peak | 1.33–1.4393 |
[37] | Near-Infrared | Au, Ag, Cu, Al, MgF2 | Nanostructure with multiple layers and circular well for sensing material | Absorption Peak | 1.34–1.45 |
[38] | Near-Infrared | Ag, SiO2 | Nano-cylinder | Absorption Peak | 1.33–1.37 |
[39] | Terahertz | Al | S Shape | Transmission Peak/Reflection Dip | 1.2–2.0 |
[40] | Near-Infrared | Au, Si | Nano-bars | Transmission/Absorption Peaks | 1.33–1.39 |
[41] | Near-Infrared | Au, MgF2 | Plus Shape | Reflection Dip/Absorption Peak | 1.312–1.384 |
[42] | Terahertz | Al, SiO2 | Split Ring Resonator (SRR) | Transmission Dip/Analyte Absorption Curves | 1.2–2.0 |
This Paper | Ultraviolet | Diamond, SiO2 | Nano-disk | Transmission Dip/Reflection Peak | 1.4–1.45 |
SENSOR CHARACTERISTICS | PEAK 1 | PEAK 2 |
---|---|---|
Full Width at Half Maximum (FWHM) | 0.26 nm | 0.45 nm |
Sensitivity (S) | 67 nm/RIU | 100 nm/RIU |
Figure of Merit (FOM) | 257.692 RIU−1 | 222.222 RIU−1 |
Quality (Q) Factor | 1229.269 | 769.291 |
Detection Limit (DL) | 2.033 RIU | 2.283 RIU |
Dynamic Range (DR) | 626.807 nm1/2 | 516.056 nm1/2 |
Detection Accuracy (DA) | 3.846 nm−1 | 2.222 nm−1 |
Signal-to-Noise Ratio (SNR) | 1.977 | 1.802 |
Resolution (R) | 136.211 nm | 228.300 nm |
Uncertainty | 0.0963 nm | 0.156 nm |
REF | OPERATING FREQUENCY | STRUCTURE | S (nm/RIU) | FOM (RIU−1) | Q |
---|---|---|---|---|---|
[46] | Mid-Infrared | Lucky knot | 986 | 32.7 | 520 |
[47] | Visible | Rectangular posts | 192 | 64 | - |
[48] | Visible | Periodic grating | 82.29 | 433.1 | 3207.9 |
[49] | Long-Wave Infrared | Asymmetric nanoholes etched in square Si structure | 2803 | 350 | - |
[50] | Mid-Infrared | Square nano-disk | 1430 | - | - |
[51] | Near-Infrared | Elliptical nano-cylinders | 400 | 3074 | >104 |
[52] | Near-Infrared | Rectangular bar with a ring | 289 | 103 | - |
[53] | Near-Infrared | Nano-blocks | 306.71 | 10.09 | - |
[54] | Near-Infrared | U-shaped cylinder | 203 | 29 | 130 |
[55] | Near-Infrared | Split ring | 452 | 56.2 | 133 |
This work | Ultraviolet | Circular nano-disks | 100 | 257.692 RIU−1 | 1229.269 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asim, A.; Cada, M.; Fine, A.; Ma, Y.; Ibraheem, F. Numerical Investigation of a High-Quality Factor Refractometric Nano-Sensor Comprising All-Dielectric Metamaterial Structures. Coatings 2023, 13, 1027. https://doi.org/10.3390/coatings13061027
Asim A, Cada M, Fine A, Ma Y, Ibraheem F. Numerical Investigation of a High-Quality Factor Refractometric Nano-Sensor Comprising All-Dielectric Metamaterial Structures. Coatings. 2023; 13(6):1027. https://doi.org/10.3390/coatings13061027
Chicago/Turabian StyleAsim, Arslan, Michael Cada, Alan Fine, Yuan Ma, and Farheen Ibraheem. 2023. "Numerical Investigation of a High-Quality Factor Refractometric Nano-Sensor Comprising All-Dielectric Metamaterial Structures" Coatings 13, no. 6: 1027. https://doi.org/10.3390/coatings13061027
APA StyleAsim, A., Cada, M., Fine, A., Ma, Y., & Ibraheem, F. (2023). Numerical Investigation of a High-Quality Factor Refractometric Nano-Sensor Comprising All-Dielectric Metamaterial Structures. Coatings, 13(6), 1027. https://doi.org/10.3390/coatings13061027