Preparation, Characterization, and Application of Sodium Alginate/ε-Polylysine Layer-by-Layer Self-Assembled Edible Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.3. Thickness and Transmittance Measurements
2.4. Mechanical Properties
2.5. Water Vapor Permeability (WVP)
2.6. Color Difference Analysis
2.7. Water Solubility
2.8. Fourier Transform Infrared Spectroscopy (FT-IR)
2.9. Differential Scanning Calorimetry (DSC)
2.10. Scanning Electron Microscopy (SEM)
2.11. X-ray Diffraction (XRD)
2.12. Antimicrobial Property
2.13. Blueberry Coating Treatment
2.14. Determination of Decay Rate, Firmness and Total Number of Molds
2.15. Data Analysis
3. Results and Discussion
3.1. Tensile Strength and Elongation at Break
3.2. Water Vapor Permeability and Transmittance
3.3. Appearance and Color Difference Analysis
3.4. Solubility
3.5. Fourier Transform Infrared Spectroscopy (FT-IR)
3.6. Differential Scanning Calorimetry (DSC)
3.7. Scanning Electron Microscopy (SEM)
3.8. X-ray Diffraction (XRD)
3.9. Antimicrobial Property
3.10. Effects of Different Treatments on Decay Rate, Firmness, Total Mold Number and Appearance of Blueberry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dehghani, S.; Hosseini, S.V.; Regenstein, J.M. Edible films and coatings in seafood preservation: A review. Food Chem. 2017, 240, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, S.; Chand, N.; Lodhi, R. Water sorption properties and antimicrobial action of zinc oxide nano particles loaded sago Starch film. J. Microb. Biotechnol. Food. 2013, 2, 11744–11758. [Google Scholar]
- Mayra, S.; Amparo, C. Starch-based coatings for preservation of fruits and vegetables. Coatings 2018, 8, 152. [Google Scholar]
- Antonella, L.; Claudia, M.G.; Nelson, R.A.; Valeria, N.G. Increase of walnuts’ shelf life using a walnut flour protein-based edible coating. LWT-Food Sci. Technol. 2020, 118, 108712. [Google Scholar]
- Marelli, B.; Brenckle, M.A.; Kaplan, D.L.; Omenetto, F.G. Silk fibroin as edible coating for perishable food preservation. Sci. Rep. 2016, 6, 25263. [Google Scholar] [CrossRef] [Green Version]
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: Desirable levels, instrumental and sensory measurement, and the effects of processing. Crit. Rev. Food Sci. 2010, 50, 369–389. [Google Scholar] [CrossRef]
- Debeaufort, F.; Quezada-Gallo, J.A.; Voilley, A. Edible films and coatings: Tomorrow’s packagings: A review. Crit. Rev. Food Sci. 1998, 38, 299–313. [Google Scholar] [CrossRef]
- Mo, X.; Peng, X.; Liang, X.; Fang, S.; Xie, H.; Chen, J.; Meng, Y. Development of antifungal gelatin-based nanocomposite films functionalized with natamycin-loaded zein/casein nanoparticles. Food Hydrocolloid. 2021, 113, 106506. [Google Scholar] [CrossRef]
- Xu, X.; Peng, X.; Huan, C.; Chen, J.; Meng, Y.; Fang, S. Development of natamycin-loaded zein-casein composite nanoparticles by a ph-driven method and application to postharvest fungal control on peach against Monilinia fructicola. Food Chem. 2023, 404, 134659. [Google Scholar] [CrossRef]
- Elanany, A.M.; Hassan, G.F.A.; Rehab, A.F. Effects of edible coatings on the shelf-life and quality of Anna apple (Malus Domestica Borkh) during cold storage. J. Food Technol. 2009, 14, 5–11. [Google Scholar]
- Wladimir, S.V.; Marcela, Z.R.; Catalina, R.O.; Ricardo, V.V.; Begona, G.C.; Andrea, S.W.; Fernando, O.L. Study of spray system applications of edible coating ssuspensions based on hydrocolloids containing cellulose nanofibers on grape surface (Vitis Vinifera L.). Food Bioprocess Technol. 2018, 11, 1575–1585. [Google Scholar]
- Calderón-Castro, A.; Vega-García, M.O.; Zazueta-Morales, J.D.J.; Fitch-Vargas, P.R.; Carrillo-López, A.; Gutiérrez-Dorado, R.; Limón-Valenzuela, V.; Aguilar-Palazuelos, E. Effect of extrusion process on the functional properties of high amylose corn starch edible films and Its application in mango (Mangifera Indica L.) Cv. tommy atkins. J. Food Sci. Technol. 2018, 55, 905–914. [Google Scholar] [CrossRef]
- Maqbool, M.; Ali, A.; Ramachandran, S.; Smith, D.R.; Alderson, P.G. Control of postharvest anthracnose of banana using a new edible composite coating. Crop Prot. 2010, 29, 1136–1141. [Google Scholar] [CrossRef]
- Barman, K.; Asrey, R.; Pal, R.K. Putrescine and carnauba wax pretreatments alleviate chilling injury, enhance shelf life and preserve pomegranate fruit quality during cold storage. Sci. Hortic. 2011, 130, 795–800. [Google Scholar] [CrossRef]
- Martínez-Romero, D.; Alburquerque, N.; Valverde, J.M.; Guillén, F.; Castillo, S.; Valero, D.; Serrano, M. Postharvest sweet cherry quality and safety maintenance by aloe vera treatment: A new edible coating. Postharvest Biol. Technol. 2006, 39, 93–100. [Google Scholar] [CrossRef]
- Pizato, S.; Chevalier, R.C.; Santos, M.F.D.; Costa, T.S.D.; Vega, W.R.C. Evaluation of the shelf-life extension of fresh-cut pineapple (Smooth cayenne) by application of different edible coatings. Brit. Food J. 2019, 121, 1592–1604. [Google Scholar] [CrossRef]
- Parreidt, T.S.; Schmid, M.; Müller, K. Effect of dipping and vacuum impregnation coating techniques with alginate based coating on physical quality parameters of cantaloupe melon. J. Food Sci. 2018, 83, 929–936. [Google Scholar] [CrossRef]
- Moalemiyan, M.; Ramaswamy, H.S. Quality retention and shelf-life extension in mediterranean cucumbers coated with a pectin-based film. J. Food Res. 2012, 1, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Villafae, F. Edible Coatings for Carrots. Food Rev. Int. 2016, 33, 84–103. [Google Scholar] [CrossRef]
- Wu, X.; Hu, Q.; Liang, X.; Fang, S. Fabrication of colloidal stable gliadin-casein nanoparticles for the encapsulation of natamycin: Molecular interactions and antifungal application on cherry tomato. Food Chem. 2022, 391, 133288. [Google Scholar] [CrossRef]
- Fang, S.; Zhao, X.J.; Liu, Y.M.; Liang, X.R.; Yang, Y.X. Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocolloid. 2019, 93, 102–110. [Google Scholar] [CrossRef]
- Brasil, I.M.; Gomes, C.; Puerta-Gomez, A.; Castell-Perez, M.E.; Moreira, R.G. Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT-Food Sci. Technol. 2012, 47, 39–45. [Google Scholar] [CrossRef]
- Martiñon, M.E.; Moreira, R.G.; Castell-Perez, M.E.; Gomes, C. Development of a multilayered antimicrobial edible coating for shelf-life extension of fresh-cut cantaloupe (Cucumis Melo L.) stored at 4 °C. LWT-Food Sci. Technol. 2014, 56, 341–350. [Google Scholar] [CrossRef]
- Yang, Q.; Hu, G.; Ma, Z. The review the characteristics of sodium alginate and Its application in meat products. China Food Addit. 2010, 01, 164–168. [Google Scholar]
- Avena-Bustillos, R.J.; Krochta, J.M. Water vapor permeability of caseinate-based edible films as affected by pH, calcium crosslinking and lipid content. J. Food Sci. 2010, 58, 904–907. [Google Scholar] [CrossRef]
- Wang, A.; Siddique, B.; Wu, L.; Ahmad, I.; Liu, X. Sodium alginate edible coating augmented with essential oils maintains fruits postharvest physiology during preservation: A review. Int. J. Multidiscip. Res. Dev. 2020, 7, 135–140. [Google Scholar]
- Shima, S.; Sakai, H. Polylysine produced by streptomyces. Agric. Biol. Chem. 1977, 41, 1807–1809. [Google Scholar] [CrossRef] [Green Version]
- Hiraki, J.; Ichikawa, T.; Ninomiya, S.I.; Seki, H.; Barnett, J.W. Use of adme studies to confirm the safety of e-Polylysine as a preservative in food. Regul. Toxicol. Pharmcol. 2003, 37, 328–340. [Google Scholar] [CrossRef]
- Ge, L.; Li, Z.; Han, M.; Wang, Y.; Li, X.; Mu, C.; Li, D. Antibacterial dialdehyde sodium alginate/ε-polylysine microspheres for fruit preservation. Food Chem. 2022, 387, 132885. [Google Scholar] [CrossRef]
- Cai, L.; Cao, A.; Bai, F.; Li, J. Effect of ε-polylysine in combination with alginate coating treatment on physicochemical and microbial characteristics of Japanese sea bass (Lateolabrax japonicas) during refrigerated storage. LWT-Food Sci. Technol. 2015, 62, 1053–1059. [Google Scholar] [CrossRef]
- Wu, T.; Farnood, R. Cellulose fiber networks reinforced with carboxymethyl cellulose/chitosan complex layer-by-layer. Carbohydr. Polym. 2014, 114, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Zhong, T.; Huang, R.; Sui, S.; Lian, Z.; Sun, X.; Wan, A.; Li, H. Effects of ultrasound treatment on lipid self-association and properties of methylcellulose/stearic acid blending films. Carbohydr. Polym. 2015, 131, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zou, L.; Hou, Y.; Qian, F.; Tuo, Y.; Wu, X.; Zhu, X.; Mu, G. The influence of the addition of transglutaminase at different phase on the film and film forming characteristics of whey protein concentrate-carboxymethyl chitosan composite films. Food Packag. Shelf. 2020, 25, 100546. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, T.; Song, Y.; Qian, F.; Tuo, Y. Mechanical properties of whey protein concentrate based film improved by the coexistence of nanocrystalline cellulose and transglutaminase. Int. J. Biol. Macromol. 2019, 126, 1266–1272. [Google Scholar] [CrossRef]
- Rahman, P.M.; Mujeeb, V.M.A.; Muraleedharan, K. Flexible chitosan-nano ZnO antimicrobial pouches as a new material for extending the shelf life of raw meat. Int. J. Biol. Macromol. 2017, 97, 382–391. [Google Scholar] [CrossRef]
- Sukyai, P.; Anongjanya; Bunyahwuthakul, N.; Kongsin, K.; Harnkarnsujarit; Sukatta, U. Effect of cellulose nanocrystals from sugarcane bagasse on whey protein isolate-based films. Food Res. Int. 2018, 107, 528–535. [Google Scholar] [CrossRef]
- Buonocore, G.G.; Nobile, M.A.D.; Panizza, A.; Bove, S.; Nicolais, L. Modeling the lysozyme release kinetics from antimicrobial films intended for food packaging applications. J. Food Sci. 2010, 68, 1365–1370. [Google Scholar] [CrossRef]
- Yan, J.; Luo, Z.; Ban, Z.; Lu, H.; Li, L. The effect of the layer-by-layer (lbl) edible coating on strawberry quality and metabolites during storage. Postharvest Biol. Technol. 2019, 147, 29–38. [Google Scholar] [CrossRef]
- Adzaly, N.Z.; Jackson, A.; Villalobos-Carvajal, R.; Kang, I.; Almenar, E. Development of a novel sausage casing. J. Food Eng. 2015, 152, 24–31. [Google Scholar] [CrossRef]
- Promhuad, K.; Bumbudsanpharoke, N.; Wadaugsorn, K.; Sonchaeng, U.; Harnkarnsujarit, N. Maltol-incorporated acetylated cassava starch films for shelf-life-extension packaging of bakery products. Polymers 2022, 14, 5342. [Google Scholar] [CrossRef]
- Rhim, J.W. Physical and mechanical properties of water resistant sodium alginate films. LWT-Food Sci. Technol. 2004, 37, 323–330. [Google Scholar] [CrossRef]
- Ling, X.; Wei, Y.; Zou, L.; Xu, S. Functionalization and dispersion of multiwalled carbon nanotubes modified with poly-l-Lysine. Colloid Surf. A 2014, 443, 19–26. [Google Scholar] [CrossRef]
- Shang, S.; Zhu, L.; Fan, J. Intermolecular interactions between natural polysaccharides and silk fibroin protein. Carbohydr. Polym. 2013, 93, 561–573. [Google Scholar] [CrossRef]
- Li, Y.; Jia, H.; Pan, F.; Jiang, Z.; Cheng, Q. Enhanced anti-swelling property and dehumidification performance by sodium alginate–poly(vinyl alcohol)/polysulfone composite hollow fiber membranes. J. Membr. Sci. 2012, 407, 211–220. [Google Scholar] [CrossRef]
- Huang, R.Y.M.; Pal, R.; Moon, G.Y. Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol–water and isopropanol–water mixtures. J. Membr. Sci. 1999, 160, 101–113. [Google Scholar] [CrossRef]
- Zhang, N.; Xu, J.; Gao, X.; Fu, X.; Zheng, D. Factors affecting water resistance of alginate/gellan blend films on paper cups for hot drinks. Carbohyd Polym. 2017, 156, 435–442. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, L.; Shen, J.; Song, M.; Chen, H. Preparation of poly(vinyl alcohol)-sodium alginate hollow-fiber composite membranes and pervaporation dehydration characterization of aqueous alcohol mixtures. Desalination 2006, 193, 202–210. [Google Scholar] [CrossRef]
- Xiao, C.; Lu, Y.; Liu, H.; Zhang, L. Preparation and physical properties of blend films from sodium alginate and polyacrylamide solutions. J. Macromol. Sci. A 2000, 37, 1663–1675. [Google Scholar] [CrossRef]
- Bekin, S.; Shokat, S.; Gürkan, K.; Yenici, G.; Keçeli, G.; Gürdağ, G. Dielectric, Thermal, and swelling properties of calcium ion-crosslinked sodium alginate film. Polym. Eng. Sci. 2014, 54, 1372–1382. [Google Scholar] [CrossRef]
- Nair, R.M.; Bindhu, B.; Reena, V.L. A polymer blend from gum arabic and sodium alginate-preparation and characterization. J. Polym. Res. 2020, 27, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.; Xu, H. Biosynthesis of epsilon-poly-l-Lysine-a review. Acta Microbiol. Sin. 2011, 51, 1291–1296. [Google Scholar]
- Li, H.; He, C.; Li, G.; Zhang, Z.; Li, B.; Tian, S. The modes of action of epsilon-polylysine (ε-PL) against Botrytis cinerea in jujube fruit. Postharvest Biol. Technol. 2019, 147, 1–9. [Google Scholar] [CrossRef]
- Duan, J.; Wu, R.; Strik, B.C.; Zhao, Y. Effect of edible coatings on the quality of fresh blueberries (duke and elliott) under commercial storage conditions. Postharvest Biol. Technol. 2011, 59, 71–79. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Q.; Critzer, F.; Davidson, P.M.; Zhong, Q. Effect of alginate coatings with cinnamon bark oil and soybean oil on quality and microbiological safety of cantaloupe. Int. J. Food Microbiol. 2015, 215, 25–30. [Google Scholar] [CrossRef]
- San, H.; Laorenza, Y.; Behzadfar, E.; Sonchaeng, U.; Wadaugsorn, K.; Sodsai, J.; Kaewpetch, T.; Promhuad, K.; Srisa, A.; Wongphan, P.; et al. Functional polymer and packaging technology for bakery products. Polymers 2022, 14, 3793. [Google Scholar] [CrossRef]
- Srisa, A.; Promhuad, K.; San, H.; Laorenza, Y.; Wongphan, P.; Wadaugsorn, K.; Sodsai, J.; Kaewpetch, T.; Tansin, K.; Harnkarnsujarit, N. Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-Covid-19 Era. Polymers 2022, 14, 4042. [Google Scholar] [CrossRef]
- Chiabrando, V.; Giacalone, G. Anthocyanins, phenolics and antioxidant capacity after fresh storage of blueberry treated with edible coatings. Int. J. Food Sci. Nutr. 2015, 66, 248–253. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, R.; He, X.; Liu, Y.; Meng, Y.; Chen, J. Preparation, Characterization, and Application of Sodium Alginate/ε-Polylysine Layer-by-Layer Self-Assembled Edible Film. Coatings 2023, 13, 516. https://doi.org/10.3390/coatings13030516
Bao R, He X, Liu Y, Meng Y, Chen J. Preparation, Characterization, and Application of Sodium Alginate/ε-Polylysine Layer-by-Layer Self-Assembled Edible Film. Coatings. 2023; 13(3):516. https://doi.org/10.3390/coatings13030516
Chicago/Turabian StyleBao, Ruohan, Xingfen He, Yifan Liu, Yuecheng Meng, and Jie Chen. 2023. "Preparation, Characterization, and Application of Sodium Alginate/ε-Polylysine Layer-by-Layer Self-Assembled Edible Film" Coatings 13, no. 3: 516. https://doi.org/10.3390/coatings13030516