Enhanced Tunable Properties of Strontium Barium Niobate Films on Dielectric Alumina Substrate at Microwaves
Abstract
:1. Introduction
2. Experimental
2.1. Sample Preparation
2.2. Structure Investigation
2.3. Electrical Measurements
3. Results and Discussion
3.1. Initial Stages of SBN Film Growth
3.2. Structure Characterization of SBN Films
3.3. Electrical Properties of SBN Planar Capacitive Structures
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, L.W.; Rappe, A.M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2016, 2, 16087. [Google Scholar] [CrossRef]
- Kong, L.B.; Li, S.; Zhang, T.S.; Zhai, J.W.; Boey, F.C.; Ma, J. Electrically tunable dielectric materials and strategies to improve their performances. Prog. Mater. Sci. 2010, 55, 840–893. [Google Scholar] [CrossRef]
- Liu, X.; Tu, J.; Li, H.; Tian, J.; Zhang, L. Research progress of double perovskite ferroelectric thin films. Appl. Phys. Rev. 2023, 10, 021315. [Google Scholar] [CrossRef]
- Song, L.; Glinsek, S.; Defay, E. Toward low-temperature processing of lead zirconate titanate thin films: Advances, strategies, and applications. Appl. Phys. Rev. 2021, 8, 041315. [Google Scholar] [CrossRef]
- Daumont, C.J.M.; Simon, Q.; Le Mouellic, E.; Payan, S.; Gardes, P.; Poveda, P.; Wolfman, J. Tunability, dielectric, and piezoelectric properties of Ba(1− x)CaxTi(1− y)ZryO3 ferroelectric thin films. J. Appl. Phys. 2016, 119, 094107. [Google Scholar] [CrossRef]
- Zhang, H.; Giddens, H.; Saunders, T.G.; Palma, M.; Abrahams, I.; Yan, H.; Hao, Y. Microwave tunability in tin substituted barium titanate. J. Eur. Ceram. Soc. 2023, in press. [Google Scholar] [CrossRef]
- Huang, J.; Gao, X.; MacManus-Driscoll, J.L.; Wang, H. Ferroelectric thin films and nanostructures: Current and future. In Nanostructures in Ferroelectric Films for Energy Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 19–39. [Google Scholar]
- Alema, F.; Pokhodnya, K. Dielectric properties of BaMg1/3Nb2/3O3 doped Ba0.45Sr0.55TiO3 thin films for tunable microwave applications. J. Adv. Dielectr. 2015, 5, 1550030. [Google Scholar] [CrossRef]
- Moon, S.E.; Kwak, M.H.; Kim, Y.T.; Ryu, H.C.; Lee, S.J.; Kang, K.Y. Measurement of microwave dielectric properties of (Sr,Ba)Nb2O6 thin films. Integr. Ferroelectr. 2004, 66, 275–281. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Tran, D.T.; Dang, H.T.; Nguyen, C.T.Q.; Rijnders, G.; Vu, H.N. Relaxor-Ferroelectric Films for Dielectric Tunable Applications: Effect of Film Thickness and Applied Electric Field. Materials 2021, 14, 6448. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef]
- Tumarkin, A.; Sapego, E.; Gagarin, A.; Karamov, A. High Tunable BaTixZr1-xO3 Films on Dielectric Substrate for Microwave Applications. Molecules 2022, 27, 6086. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, F.; Zhang, H.; Ouyang, J. Investigation of the electrical properties of RF sputtered BaTiO3 films grown on various substrates. Mater. Res. Bull. 2017, 95, 23–29. [Google Scholar] [CrossRef]
- Wollesen, L.; Douissard, P.A.; Infante, I.C.; Margueritat, J.; Gautier, B.; Martin, T.; Dujardin, C. Tunable crystalline structure and electrical properties of (Pb,Sr)TiO3 films grown by liquid phase epitaxy. CrystEngComm 2023, 25, 2096–2103. [Google Scholar] [CrossRef]
- Choueikani, F.; Jamon, D.; Neveu, S.; Blanc-Mignon, M.F.; Lefkir, Y.; Royer, F. Self-biased magneto-optical films based on CoFe2O4–silica nanocomposite. J. Appl. Phys. 2021, 129, 023101. [Google Scholar] [CrossRef]
- Zhao, H.; Ning, X.; Yao, H.; Hao, A.; Ismail, M. Facile sol-gel method derived Au nanoparticles decoration nickel ferrites thin films: Effect on optical and magnetic properties. Mater. Chem. Phys. 2021, 265, 124480. [Google Scholar] [CrossRef]
- Jackson, T.J.; Jones, I.P. Nanoscale defects and microwave properties of (BaSr)TiO3 ferroelectric thin films. J. Mater. Sci. 2009, 44, 5288–5296. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Zheng, X.J.; Jiao, F.; Hu, H.P. The effect of strain and dead layer on the nonlinear electric-mechanical behavior of ferroelectric thin films. Comput. Mater. Sci. 2013, 77, 377–383. [Google Scholar] [CrossRef]
- Roytburd, A.L.; Ouyang, J.; Artemev, A. Polydomain structures in ferroelectric and ferroelastic epitaxial films. J. Phys. Condens. Matter 2017, 29, 163001. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Nguyen, T.; Nguyen, M.D.; Vu, T.H. Impact of electrode materials on microstructure, leakage current and dielectric tunable properties of lead-free BSZT thin films. Ceram. Int. 2021, 47, 23214–23221. [Google Scholar] [CrossRef]
- Xu, Y. Ferroelectric Materials and Their Applications; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Tumarkin, A.; Sapego, E.; Gagarin, A.; Senkevich, S. Enhanced tunability of BaTixSn1−xO3 films on dielectric substrate. Appl. Sci. 2021, 11, 7367. [Google Scholar] [CrossRef]
- Dhole, S.; Chen, A.; Nie, W.; Park, B.; Jia, Q. Strain engineering: A pathway for tunable functionalities of perovskite metal oxide films. Nanomaterials 2022, 12, 835. [Google Scholar] [CrossRef] [PubMed]
- Raeder, T.M.; Holstad, T.S.; Nylund, I.E.; Einarsrud, M.A.; Glaum, J.; Meier, D.; Grande, T. Anisotropic in-plane dielectric and ferroelectric properties of tensile-strained BaTiO3 films with three different crystallographic orientations. AIP Adv. 2021, 11, 025016. [Google Scholar] [CrossRef]
- Wang, J.; Lou, J.; Wang, J.F.; Qu, S.B.; Du, H.L.; Cui, T.J. Ferroelectric composite artificially-structured functional material: Multifield control for tunable functional devices. J. Phys. D Appl. Phys. 2022, 55, 303002. [Google Scholar] [CrossRef]
- Tumarkin, A.; Gagarin, A.; Odinets, A.; Zlygostov, M.; Sapego, E.; Kotelnikov, I. Structural and microwave characterization of BaSrTiO3 thin films deposited on semi-insulating silicon carbide. Jpn. J. Appl. Phys. 2018, 57, 11UE02. [Google Scholar] [CrossRef]
- Harris, D.T.; Lam, P.G.; Burch, M.J.; Li, J.; Rogers, B.J.; Dickey, E.C.; Maria, J.P. Ultra-high tunability in polycrystalline Ba1−xSrxTiO3 thin films. Appl. Phys. Lett. 2014, 105, 072904. [Google Scholar] [CrossRef]
- Razumov, S.; Tumarkin, A.; Gaidukov, M.; Gagarin, A.; Kozyrev, A.; Vendik, O.; Ivanov, A.; Buslov, O.; Keys, V.; Sengupta, L.C.; et al. Characterisation of quality of BaxSr1-xTiO3 thin film by the commutation quality factor measured at microwaves. Appl. Phys. Lett. 2002, 81, 1675–1677. [Google Scholar] [CrossRef]
- Kaushal, A.; Vardhan, A.; Rawat, R.S.S. Intelligent material for modern age: A review. IOSR J. Mech. Civ. Eng. 2016, 13, 10–15. [Google Scholar]
- He, H.; Lu, X.; Hanc, E.; Chen, C.; Zhang, H.; Lu, L. Advances in lead-free pyroelectric materials: A comprehensive review. J. Mater. Chem. C 2020, 8, 1494–1516. [Google Scholar] [CrossRef]
- Jindal, S.; Vasishth, A.; Devi, S.; Anand, G. A review on tungsten bronze ferroelectric ceramics as electrically tunable devices. Integr. Ferroelectr. 2018, 186, 1–9. [Google Scholar] [CrossRef]
- Cheng, H.F.; Chiou, G.S.; Liu, K.S.; Lin, I.N. Ferroelectric properties of (Sr0.5Ba0.5)Nb2O6 thin films synthesized by pulsed laser deposition. Appl. Surf. Sci. 1997, 113, 217–221. [Google Scholar] [CrossRef]
- De Los, S.; Guerra, J.; Mendes, R.G.; Eiras, J.A.; Santos, I.A.; Araujo, E.B. Investigation of nonlinear dielectric properties in Sr0.75Ba0.25Nb2O6 relaxor ferroelectric thin films. J. Appl. Phys. 2008, 103, 014102. [Google Scholar] [CrossRef]
- Boulay, N.; Cuniot-Ponsard, M.; Desvignes, J.M.; Bellemain, A. Dielectric and ferroelectric properties of SrxBa1-xNb2O6 (SBN: X) thin films. Ferroelectrics 2007, 353, 10–20. [Google Scholar] [CrossRef]
- Beskin, I.M.; Kwon, S.; Posadas, A.B.; Kim, M.J.; Demkov, A.A. Growth and structure of strong pockels material strontium barium niobate on SrTiO3 and Si by molecular beam epitaxy. Adv. Photonics Res. 2021, 2, 2100111. [Google Scholar] [CrossRef]
- Pedersen, V.H.; Blichfeld, A.B.; Bakken, K.; Chernyshov, D.; Grande, T.; Einarsrud, M.A. Crystallization and texturing of SrxBa1–xNb2O6 thin films prepared by aqueous solution deposition—An in-situ X-ray diffraction study. Cryst. Growth Des. 2022, 22, 5912–5922. [Google Scholar] [CrossRef]
- Tumarkin, A.; Razumov, S.; Gagarin, A.; Altynnikov, A.; Mikhailov, A.; Platonov, R.; Butler, J.E. Ferroelectric varactor on diamond for elevated power microwave applications. IEEE Electron Device Lett. 2016, 37, 762–765. [Google Scholar] [CrossRef]
- Rodríguez-Santiago, V.; González, Y.; Fernández, F.E.; Mueller, C.H.; Keuls, F.W.V.; Miranda, F.A. Microwave properties of strontium barium niobate thin films grown by pulsed laser deposition. MRS Online Proc. Libr. 2001, 688, 7121. [Google Scholar] [CrossRef]
- Setter, N.; Damjanovic, D.; Eng, L.; Fox, G.; Gevorgian, S.; Hong, S.; Streiffer, S. Ferroelectric thin films: Review of materials, properties, and applications. J. Appl. Phys. 2006, 100, 051606. [Google Scholar] [CrossRef]
- Schmelzer, J.W. Nucleation Theory and Applications; Strauss GmbH: Mörlenbach, Germany, 2004. [Google Scholar]
- Tumarkin, A.V.; Serenkov, I.T.; Sakharov, V.I.; Afrosimov, V.V.; Odinets, A.A. Influence of the substrate temperature on the initial stages of growth of barium strontium titanate films on sapphire. Phys. Solid State 2016, 58, 364–369. [Google Scholar] [CrossRef]
- Kukushkin, S.A.; Osipov, A.V. Theory of phase transformations in the mechanics of solids and its applications for description of fracture, formation of nanostructures and thin semiconductor films growth. Key Eng. Mater. 2013, 528, 145–164. [Google Scholar] [CrossRef]
- Kukushkin, S.A.; Osipov, A.V. Nucleation kinetics of nanofilms. In Encyclopedia of Nanoscience and Nanotechnology; American Scientific Publishers: Valencia, CA, USA, 2004; Volume 8, pp. 113–136. [Google Scholar]
- Kukushkin, S.A. Evolution processes in multicomponent and multiphase films. Thin Solid Film. 1992, 207, 302–312. [Google Scholar] [CrossRef]
- Tumarkin, A.V.; Serenkov, I.T.; Sakharov, V.I. Investigation of the initial stages of the growth of barium strontium titanate ferroelectric films by medium-energy ion scattering. Phys. Solid State 2010, 52, 2561–2564. [Google Scholar] [CrossRef]
- Lukasiewicz, T.; Swirkowicz, M.A.; Dec, J.; Hofman, W.; Szyrski, W. Strontium–barium niobate single crystals, growth and ferroelectric properties. J. Cryst. Growth 2008, 310, 1464–1469. [Google Scholar] [CrossRef]
- Cuniot-Ponsard, M.; Desvignes, J.M.; Leroy, E. RF Magnetron Sputtering Deposition of Hetero-Epitaxial SrxBa1−xNb2O6 Thin Films: The Role of Temperature. Ferroelectrics 2003, 288, 159–168. [Google Scholar] [CrossRef]
- Paszkowski, R.; Wokulska, K.; Dec, J. Thermal expansion coefficients of strontium-barium niobate single crystals in the vicinity of the phase transition point. Cryst. Res. Technol. 2017, 52, 1600368. [Google Scholar] [CrossRef]
- Vendik, O.G.; Zubko, S.P.; Nikol’Skii, M.A. Modeling and calculation of the capacitance of a planar capacitor containing a ferroelectric thin film. Tech. Phys. 1999, 44, 349–355. [Google Scholar] [CrossRef]
- Vendik, I.B.; Vendik, O.G.; Kollberg, E.L. Commutation quality factor of two-state switchable devices. IEEE Trans. Microw. Theory Tech. 2000, 48, 802–808. [Google Scholar] [CrossRef]
- Vendik, O.G. Ferroelectrics find their “niche” among microwave control devices. Phys. Solid State 2009, 51, 1529–1534. [Google Scholar] [CrossRef]
No. | Substrate | Ts, °C | P, Pa | τ, s | Xmed, nm | C, % | A |
---|---|---|---|---|---|---|---|
2449 | Al2O3 | 850 | 10 | 60 | 1.29 | 36 | 3.1 |
2450 | Al2O3 | 800 | 10 | 60 | 0.48 | 40 | 1.3 |
2452 | Al2O3 | 750 | 10 | 60 | 1.68 | 42 | 4.7 |
2453 | Al2O3 | 880 | 10 | 60 | 2.16 | 23 | 3.3 |
2454 | Al2O3 | 950 | 10 | 60 | 1.56 | 42 | 4.3 |
Ts, °C | Scanning Area | Atom % | |||
---|---|---|---|---|---|
Sr | Ba | Nb | O | ||
750 | SQ1 | 11.5 | 3.1 | 28.6 | 56.1 |
SQ2 | 12.6 | 3.4 | 31.4 | 52.1 | |
SQ3 | 12.0 | 3.1 | 29.9 | 54.4 | |
850 | SQ1 | 10.8 | 3.0 | 26.5 | 59.2 |
SQ2 | 10.7 | 3.0 | 26.5 | 59.3 | |
SQ3 | 11.3 | 3.0 | 27.9 | 57.6 |
Composition | Substrate | Design | Tunability, % | Losses, tan δ | K | Reference |
---|---|---|---|---|---|---|
Sr0.5Ba0.5Nb2O6 | Pt/Si | MDM | 18 | not available | - | [32] |
Sr0.61Ba0.39Nb2O6 | MgO | planar | 35 | 0.005–0.05 (12 GHz) | 754 | [9] |
Sr0.61Ba0.39Nb2O6 | LaAlO3 | planar | 10 | 0.08–0.09 (1 MHz) | 50 | [38] |
Sr0.6Ba0.4Nb2O6 | Pt/Si | MDM | 46 | 0.03–0.09 (10 kHz) | 145 | [34] |
Sr0.75Ba0.25Nb2O6 | Pt/Ti | MDM | 45 | 0.034–0.036(100 kHz) | 300 | [33] |
Sr0.75Ba0.25Nb2O6 | Al2O3 | planar | 44 | 0.009–0.022 (2 GHz) | 1740 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumarkin, A.; Bogdan, A.; Sapego, E.; Gagarin, A.; Ivleva, L.; Serenkov, I.; Sakharov, V. Enhanced Tunable Properties of Strontium Barium Niobate Films on Dielectric Alumina Substrate at Microwaves. Coatings 2023, 13, 1937. https://doi.org/10.3390/coatings13111937
Tumarkin A, Bogdan A, Sapego E, Gagarin A, Ivleva L, Serenkov I, Sakharov V. Enhanced Tunable Properties of Strontium Barium Niobate Films on Dielectric Alumina Substrate at Microwaves. Coatings. 2023; 13(11):1937. https://doi.org/10.3390/coatings13111937
Chicago/Turabian StyleTumarkin, Andrey, Alexey Bogdan, Evgeny Sapego, Alexander Gagarin, Ludmila Ivleva, Igor Serenkov, and Vladimir Sakharov. 2023. "Enhanced Tunable Properties of Strontium Barium Niobate Films on Dielectric Alumina Substrate at Microwaves" Coatings 13, no. 11: 1937. https://doi.org/10.3390/coatings13111937
APA StyleTumarkin, A., Bogdan, A., Sapego, E., Gagarin, A., Ivleva, L., Serenkov, I., & Sakharov, V. (2023). Enhanced Tunable Properties of Strontium Barium Niobate Films on Dielectric Alumina Substrate at Microwaves. Coatings, 13(11), 1937. https://doi.org/10.3390/coatings13111937