High-Selectivity Growth of GaN Nanorod Arrays by Liquid-Target Magnetron Sputter Epitaxy
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
3.1. Effect of Gas Mixture on Nanorod Morphology and Growth Selectivity
3.2. Effects of Ga Adatom Incorporation on Nanorod Growth
- P ≤ . The entire substrate surface is covered by the NR collection zone, and zone C does not exist. All Ga adatoms impinging on the substrate surface contributes into the NR growth, and competition occurs for the Ga adatom impinging on zone B between neighboring NRs.
- ≤ P ≤ Ps. As the pitch is increased, less overlap occurs between the collection area of neighboring NRs, effectively reducing the competition for Ga adatoms between NRs. Zone C appears, and the collection zone does not cover parts of the substrate surface.
- P ≥ Ps. At the saturation pitch Ps, zone B disappears, i.e., no competition between NRs for Ga adatoms. Further increase of pitch will not affect the incorporation of Ga adatom into the NRs.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hu, J.; Zhang, Y.; Sun, M.; Piedra, D.; Chowdhury, N.; Palacios, T. Materials and processing issues in vertical GaN power electronics. Mater. Sci. Semicond. Process. 2018, 78, 75–84. [Google Scholar] [CrossRef]
- Ambacher, O. Growth and applications of Group III-nitrides. J. Phys. D Appl. Phys. 1998, 31, 2653–2710. [Google Scholar] [CrossRef]
- Bao, A. Group III-nitride nanowires. Mater. Sci. Technol. 2017, 33, 765–776. [Google Scholar] [CrossRef]
- Zhao, S.; Nguyen, H.P.T.; Kibria, M.G.; Mi, Z. III-Nitride nanowire optoelectronics. Prog. Quantum Electron. 2015, 44, 14–68. [Google Scholar] [CrossRef]
- Gurnett, K.; Adams, T. Native substrates for GaN: The plot thickens. III-Vs Rev. 2006, 19, 39–41. [Google Scholar] [CrossRef]
- Etzkorn, E.V.; Clarke, D.R. Cracking of GaN films. J. Appl. Phys. 2001, 89, 1025–1034. [Google Scholar] [CrossRef]
- Moram, M.A.; Ghedia, C.S.; Rao, D.V.S.; Barnard, J.S.; Zhang, Y.; Kappers, M.J.; Humphreys, C.J. On the origin of threading dislocations in GaN films. J. Appl. Phys. 2009, 106, 073513. [Google Scholar] [CrossRef]
- Kukushkin, S.A.; Osipov, A.V.; Bessolov, V.N.; Medvedev, B.K.; Nevolin, V.K.; Tcarik, K.A. Substrates for epitaxy of gallium nitride: New materials and techniques. Rev. Adv. Mater. Sci. 2008, 17, 1–32. [Google Scholar]
- Brooksby, J.C.; Mei, J.; Ponce, F.A. Correlation of spectral luminescence with threading dislocations in green-light-emitting InGaN quantum wells. Appl. Phys. Lett. 2007, 90, 231901. [Google Scholar] [CrossRef]
- Zhao, S.; Kibria, M.G.; Wang, Q.; Nguyen, H.P.T.; Mi, Z. Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiOx by catalyst-free molecular beam epitaxy. Nanoscale 2013, 5, 5283–5287. [Google Scholar] [CrossRef]
- Zhao, C.; Alfaraj, N.; Chandra Subedi, R.; Liang, J.W.; Alatawi, A.A.; Alhamoud, A.A.; Ebaid, M.; Alias, M.S.; Ng, T.K.; Ooi, B.S. III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Prog. Quantum Electron. 2018, 61, 1–31. [Google Scholar] [CrossRef]
- Lee, S.K.; Choi, H.J.; Pauzauskie, P.; Yang, P.; Cho, N.K.; Park, H.D.; Suh, E.K.; Lim, K.Y.; Lee, H.J. Gallium nitride nanowires with a metal initiated metal-organic chemical vapor deposition (MOCVD) approach. Phys. Status Solidi Basic Res. 2004, 241, 2775–2778. [Google Scholar] [CrossRef]
- Consonni, V. Self-induced growth of GaN nanowires by molecular beam epitaxy: A critical review of the formation mechanisms. Phys. Status Solidi Rapid Res. Lett. 2013, 7, 699–712. [Google Scholar] [CrossRef]
- Serban, E.A.; Palisaitis, J.; Yeh, C.-C.; Hsu, H.-C.; Tsai, Y.-L.; Kuo, H.-C.; Junaid, M.; Hultman, L.; Persson, P.O.Å.; Birch, J.; et al. Selective-area growth of single-crystal wurtzite GaN nanorods on SiOx/Si(001) substrates by reactive magnetron sputter epitaxy exhibiting single-mode lasing. Sci. Rep. 2017, 7, 12701. [Google Scholar] [CrossRef] [PubMed]
- Kishino, K.; Sekiguchi, H.; Kikuchi, A. Improved Ti-mask selective-area growth (SAG) by rf-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays. J. Cryst. Growth 2009, 311, 2063–2068. [Google Scholar] [CrossRef]
- Gačević, Ž.; Gómez Sánchez, D.; Calleja, E. Formation mechanisms of gan nanowires grown by selective area growth homoepitaxy. Nano Lett. 2015, 15, 1117–1121. [Google Scholar] [CrossRef]
- Schuster, F.; Hetzl, M.; Weiszer, S.; Garrido, J.A.; de la Mata, M.; Magen, C.; Arbiol, J.; Stutzmann, M. Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy. Nano Lett. 2015, 15, 1773–1779. [Google Scholar] [CrossRef]
- Yamano, K.; Kishino, K. Selective area growth of InGaN-based nanocolumn LED crystals on AlN/Si substrates useful for integrated μ-LED fabrication. Appl. Phys. Lett. 2018, 112, 091105. [Google Scholar] [CrossRef]
- Yanagihara, A.; Ikeda, K.; Kishino, K.; Yamano, K. Monolithic integration of four-colour InGaN-based nanocolumn LEDs. Electron. Lett. 2015, 51, 852–854. [Google Scholar]
- Kishino, K.; Nagashima, K.; Yamano, K. Monolithic integration of InGaN-Based nanocolumn light-emitting diodes with different emission colors. Appl. Phys. Express 2013, 6, 012101. [Google Scholar] [CrossRef]
- Kishino, K.; Kamimura, J.; Kamiyama, K. Near-infrared ingan nanocolumn light-emitting diodes operated at 1.46μm. Appl. Phys. Express 2012, 5, 5–8. [Google Scholar] [CrossRef]
- Kishino, K.; Ishizawa, S. Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns. Nanotechnology 2015, 26, 225602. [Google Scholar] [CrossRef] [PubMed]
- Sekiguchi, H.; Kishino, K.; Kikuchi, A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 2010, 96, 96–99. [Google Scholar] [CrossRef]
- Ra, Y.H.; Wang, R.; Woo, S.Y.; Djavid, M.; Sadaf, S.M.; Lee, J.; Botton, G.A.; Mi, Z. Full-color single nanowire pixels for projection displays. Nano Lett. 2016, 16, 4608–4615. [Google Scholar] [CrossRef] [PubMed]
- Ra, Y.; Rashid, R.T.; Liu, X.; Sadaf, S.M.; Mashooq, K.; Mi, Z. An electrically pumped surface-emitting semiconductor green laser. Sci. Adv. 2020, 6, eaav7523. [Google Scholar] [CrossRef]
- Kouno, T.; Kishino, K.; Yamano, K.; Kikuchi, A. Two-dimensional light confinement in periodic InGaN/GaN nanocolumn arrays and optically pumped blue stimulated emission. Opt. Express 2009, 17, 20440–20447. [Google Scholar] [CrossRef]
- Ra, Y.-H.; Rashid, R.T.; Liu, X.; Lee, J.; Mi, Z. Scalable nanowire photonic crystals: Molding the light emission of InGaN. Adv. Funct. Mater. 2017, 1702364, 1702364. [Google Scholar] [CrossRef]
- Chen, Y. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72. [Google Scholar] [CrossRef]
- Pimpin, A.; Srituravanich, W. Reviews on micro- and nanolithography techniques and their applications. Eng. J. 2012, 16, 37–56. [Google Scholar] [CrossRef]
- Barbagini, F.; Bengoechea-Encabo, A.; Albert, S.; Martinez, J.; Sanchez García, M.A.; Trampert, A.; Calleja, E. Critical aspects of substrate nanopatterning for the ordered growth of GaN nanocolumns. Nanoscale Res. Lett. 2011, 6, 632. [Google Scholar] [CrossRef]
- Pease, R.F.; Chou, S.Y. Lithography and other patterning techniques for future electronics. Proc. IEEE 2008, 96, 248–270. [Google Scholar] [CrossRef]
- Waid, S.; Wanzenboeck, H.D.; Muehlberger, M.; Gavagnin, M.; Bertagnolli, E. Focused ion beam direct patterning of hardmask layers. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2014, 32, 041602. [Google Scholar] [CrossRef]
- Martinez, J.; Barbagini, F.; Bengoechea-Encabo, A.; Albert, S.; Sanchez García, M.A.; Calleja, E. Fabrication of GaN nanorods by focused ion beam. Microelectron. Eng. 2012, 98, 250–253. [Google Scholar] [CrossRef][Green Version]
- Serban, E.A.; Palisaitis, J.; Persson, P.O.Å.; Hultman, L.; Birch, J.; Hsiao, C.L. Site-controlled growth of GaN nanorod arrays by magnetron sputter epitaxy. Thin Solid Films 2018, 660, 950–955. [Google Scholar] [CrossRef]
- Prabaswara, A.; Birch, J.; Junaid, M.; Serban, E.A.; Hultman, L.; Hsiao, C.-L. Review of GaN thin film and nanorod growth using magnetron sputter epitaxy. Appl. Sci. 2020, 10, 3050. [Google Scholar] [CrossRef]
- Izyumskaya, N.; Avrutin, V.; Ding, K.; Ozgur, U.; Morkoc, H.; Fujioka, H. Emergence of high quality sputtered III-nitride semiconductors and devices. Semicond. Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Junaid, M.; Hsiao, C.; Chen, Y.-T.; Lu, J.; Palisaitis, J.; Persson, P.O.Å.; Hultman, L.; Birch, J. Effects of N2 partial pressure on growth, structure, and optical properties of GaN nanorods deposited by liquid-target reactive magnetron sputter epitaxy. Nanomaterials 2018, 8, 223. [Google Scholar] [CrossRef]
- Junaid, M.; Hsiao, C.-L.; Palisaitis, J.; Jensen, J.; Persson, P.O.Å.; Hultman, L.; Birch, J. Electronic-grade GaN(0001)/Al2O3(0001) grown by reactive DC-magnetron sputter epitaxy using a liquid Ga target. Appl. Phys. Lett. 2011, 98, 141915. [Google Scholar] [CrossRef]
- Bengoechea-Encabo, A.; Barbagini, F.; Fernandez-Garrido, S.; Grandal, J.; Ristic, J.; Sanchez-Garcia, M.A.; Calleja, E.; Jahn, U.; Luna, E.; Trampert, A. Understanding the selective area growth of GaN nanocolumns by MBE using Ti nanomasks. J. Cryst. Growth 2011, 325, 89–92. [Google Scholar] [CrossRef]
- Gotschke, T.; Schumann, T.; Limbach, F.; Stoica, T.; Calarco, R. Influence of the adatom diffusion on selective growth of GaN nanowire regular arrays. Appl. Phys. Lett. 2011, 98, 103102. [Google Scholar] [CrossRef]
- Stoica, T.; Sutter, E.; Meijers, R.J.; Debnath, R.K.; Calarco, R.; Lüth, H.; Grützmacher, D. Interface and wetting layer effect on the catalyst-free nucleation and growth of gan nanowires. Small 2008, 4, 751–754. [Google Scholar] [CrossRef] [PubMed]
- Schumann, T.; Gotschke, T.; Limbach, F.; Stoica, T.; Calarco, R. Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer. Nanotechnology 2011, 22, 095603. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, H.; Mutsukura, N. Structural properties of GaN and related alloys grown by radio-frequency magnetron sputter epitaxy. Thin Solid Film. 2008, 516, 2837–2842. [Google Scholar] [CrossRef]
- Steib, F.; Remmele, T.; Gülink, J.; Fündling, S.; Behres, A.; Wehmann, H.-H.; Albrecht, M.; Straßburg, M.; Lugauer, H.-J.; Waag, A. Defect generation by nitrogen during pulsed sputter deposition of GaN. J. Appl. Phys. 2018, 124, 175701. [Google Scholar] [CrossRef]
- Greczynski, G.; Lu, J.; Jensen, J.; Bolz, S.; Kölker, W.; Schiffers, C.; Lemmer, O.; Greene, J.E.; Hultman, L. A review of metal-ion-flux-controlled growth of metastable TiAlN by HIPIMS/DCMS co-sputtering. Surf. Coat. Technol. 2014, 257, 15–25. [Google Scholar] [CrossRef]
- Bertness, K.A.; Sanders, A.W.; Rourke, D.M.; Harvey, T.E.; Roshko, A.; Schlager, J.B.; Sanford, N.A. Controlled nucleation of GaN nanowires grown with molecular beam epitaxy. Adv. Funct. Mater. 2010, 20, 2911–2915. [Google Scholar] [CrossRef]
- Lymperakis, L.; Neugebauer, J. Large anisotropic adatom kinetics on nonpolar GaN surfaces: Consequences for surface morphologies and nanowire growth. Phys. Rev. B 2009, 79, 241308. [Google Scholar] [CrossRef]
- Calarco, R.; Meijers, R.J.; Debnath, R.K.; Stoica, T.; Sutter, E.; Lüth, H. Nucleation and growth of GaN nanowires on Si(111) performed by molecular beam epitaxy. Nano Lett. 2007, 7, 2248–2251. [Google Scholar] [CrossRef]
- Songmuang, R.; Landré, O.; Daudin, B. From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer. Appl. Phys. Lett. 2007, 91, 251902. [Google Scholar] [CrossRef]
- Consonni, V.; Dubrovskii, V.G.; Trampert, A.; Geelhaar, L.; Riechert, H. Quantitative description for the growth rate of self-induced GaN nanowires. Phys. Rev. B 2012, 85, 155313. [Google Scholar] [CrossRef]
- Fernández-Garrido, S.; Grandal, J.; Calleja, E.; Sánchez-García, M.A.; López-Romero, D. A growth diagram for plasma-assisted molecular beam epitaxy of GaN nanocolumns on Si(111). J. Appl. Phys. 2009, 106, 2007–2010. [Google Scholar] [CrossRef]
- Morassi, M.; Guan, N.; Dubrovskii, V.G.; Berdnikov, Y.; Barbier, C.; Mancini, L.; Largeau, L.; Babichev, A.V.; Kumaresan, V.; Julien, F.H.; et al. Selective area growth of GaN nanowires on graphene nanodots. Cryst. Growth Des. 2020, 20, 552–559. [Google Scholar] [CrossRef]
- Gierak, J.; Bourhis, E.; Jede, R.; Bruchhaus, L.; Beaumont, B.; Gibart, P. FIB technology applied to the improvement of the crystal quality of GaN and to the fabrication of organised arrays of quantum dots. Microelectron. Eng. 2004, 73–74, 610–614. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serban, E.A.; Prabaswara, A.; Palisaitis, J.; Persson, P.O.Å.; Hultman, L.; Birch, J.; Hsiao, C.-L. High-Selectivity Growth of GaN Nanorod Arrays by Liquid-Target Magnetron Sputter Epitaxy. Coatings 2020, 10, 719. https://doi.org/10.3390/coatings10080719
Serban EA, Prabaswara A, Palisaitis J, Persson POÅ, Hultman L, Birch J, Hsiao C-L. High-Selectivity Growth of GaN Nanorod Arrays by Liquid-Target Magnetron Sputter Epitaxy. Coatings. 2020; 10(8):719. https://doi.org/10.3390/coatings10080719
Chicago/Turabian StyleSerban, Elena Alexandra, Aditya Prabaswara, Justinas Palisaitis, Per Ola Åke Persson, Lars Hultman, Jens Birch, and Ching-Lien Hsiao. 2020. "High-Selectivity Growth of GaN Nanorod Arrays by Liquid-Target Magnetron Sputter Epitaxy" Coatings 10, no. 8: 719. https://doi.org/10.3390/coatings10080719
APA StyleSerban, E. A., Prabaswara, A., Palisaitis, J., Persson, P. O. Å., Hultman, L., Birch, J., & Hsiao, C.-L. (2020). High-Selectivity Growth of GaN Nanorod Arrays by Liquid-Target Magnetron Sputter Epitaxy. Coatings, 10(8), 719. https://doi.org/10.3390/coatings10080719