In Vitro Activity of Delafloxacin Against Corynebacterium spp.
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Susceptibility Testing
4.3. Sequencing and Gene Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMD | Broth microdilution |
CA | Categorical agreement |
EA | Essential agreement |
GS | Gradient strip |
MIC | Minimal inhibitory concentration |
PAβN | Phenylalanine-arginine β-naphthylamide |
QRDR | Quinolone resistance determining region |
References
- Funke, G.; von Graevenitz, A.; Clarridge, J.E., 3rd; Bernard, K.A. Clinical microbiology of coryneform bacteria. Clin. Microbiol. Rev. 1997, 10, 125–159. [Google Scholar] [CrossRef]
- Bernard, K. The genus Corynebacterium and other medically relevant coryneform-like bacteria. J. Clin. Microbiol. 2012, 50, 3152–3158. [Google Scholar] [CrossRef] [PubMed]
- Zasada, A.A.; Mosiej, E. Contemporary microbiology and identification of Corynebacteria spp. causing infections in human. Lett. Appl. Microbiol. 2018, 66, 472–483. [Google Scholar] [CrossRef]
- Olender, A. Antibiotic resistance and detection of the most common mechanism of resistance (MLSB) of opportunistic Corynebacterium. Chemotherapy 2013, 59, 294–306. [Google Scholar] [CrossRef]
- Khodadadi, R.B.; El Zein, S.; Rivera O’Connor, C.G.; Stevens, R.W.; Schuetz, A.N.; Abu Saleh, O.M.; Fida, M. Retrospective analysis of antimicrobial susceptibility profiles of non-diphtheriae Corynebacterium species from a tertiary hospital and reference laboratory, 2012–2023. J. Clin. Microbiol. 2024, 62, e0119924. [Google Scholar] [CrossRef] [PubMed]
- Neemuchwala, A.; Soares, D.; Ravirajan, V.; Marchand-Austin, A.; Kus, J.V.; Patel, S.N. In Vitro Antibiotic Susceptibility Pattern of Non-diphtheriae Corynebacterium Isolates in Ontario, Canada, from 2011 to 2016. Antimicrob. Agents Chemother. 2018, 62, e01776-17. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Garcés, J.L.; Alos, J.I.; Tamayo, J. In vitro activity of linezolid and 12 other antimicrobials against coryneform bacteria. Int. J. Antimicrob. Agents 2007, 29, 688–692. [Google Scholar] [CrossRef]
- Martínez-Martínez, L.; Suárez, A.I.; Ortega, M.C.; Perea, E.J. Comparative in vitro activities of new quinolones against coryneform bacteria. Antimicrob. Agents Chemother. 1994, 38, 1439–1441. [Google Scholar] [CrossRef]
- Sierra, J.M.; Martinez-Martinez, L.; Vázquez, F.; Giralt, E.; Vila, J. Relationship between mutations in the gyrA gene and quinolone resistance in clinical isolates of Corynebacterium striatum and Corynebacterium amycolatum. Antimicrob. Agents Chemother. 2005, 49, 1714–1719. [Google Scholar] [CrossRef]
- Soriano, F.; Huelves, L.; Naves, P.; Rodríguez-Cerrato, V.; del Prado, G.; Ruiz, V.; Ponte, C. In vitro activity of ciprofloxacin, moxifloxacin, vancomycin and erythromycin against planktonic and biofilm forms of Corynebacterium urealyticum. J. Antimicrob. Chemother. 2009, 63, 353–356. [Google Scholar] [CrossRef]
- Martínez-Martínez, L.; Pascual, A.; Suárez, A.I.; Perea, E.J. In-vitro activity of levofloxacin, ofloxacin and D-ofloxacin against coryneform bacteria and Listeria monocytogenes. J. Antimicrob. Chemother. 1999, 43 (Suppl. 3), 27–32. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, X.; Zhang, J.; Wang, Y.; Lv, Y.; Du, X.; ChaoLuMen, Q.; Wang, J. Wide- spread and diversity of mutation in the gyrA gene of quinolone-resistant Corynebacterium striatum strains isolated from three tertiary hospitals in China. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 71. [Google Scholar] [CrossRef]
- Ramos, J.N.; Valadão, T.B.; Baio, P.V.P.; Mattos-Guaraldi, A.L.; Vieira, V.V. Novel mutations in the QRDR region gyrA gene in multidrug-resistance Corynebacterium spp. isolates from intravenous sites. Antonie Van Leeuwenhoek 2020, 113, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Kocsis, B.; Gulyás, D.; Szabó, D. Delafloxacin, Finafloxacin, and Zabofloxacin: Novel Fluoroquinolones in the Antibiotic Pipeline. Antibiotics 2021, 10, 1506. [Google Scholar] [CrossRef]
- Markham, A. Delafloxacin: First Global Approval. Drugs 2017, 77, 1481–1486. [Google Scholar] [CrossRef]
- Turban, A.; Guérin, F.; Dinh, A.; Cattoir, V. Updated Review on Clinically Relevant Properties of Delafloxacin. Antibiotics 2023, 12, 1241. [Google Scholar] [CrossRef]
- Gerges, B.; Rosenblatt, J.; Shellburne, S.A.; Chaftari, A.M.; Hachem, R.; Raad, I. In vitro activity of tebipenem and comparator agents against bacterial pathogens isolated from patients with cancer. JAC-Antimicrob. Resist. 2023, 5, dlad132. [Google Scholar] [CrossRef]
- Bichali, A.R.; Piau, C.; Reissier, S.; Lecourt, M.; Collet, A.; Penven, M.; Guérin, F.; Cattoir, V. In Vitro Activity of Novel Antibiotics Against Corynebacterium spp. Clinical Isolates Responsible for Difficult-to-Treat Infections. Microb. Drug Resist. 2025, 31, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Drlica, K.; Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev. 1997, 61, 377–392. [Google Scholar] [CrossRef] [PubMed]
- Nilius, A.M.; Shen, L.L.; Hensey-Rudloff, D.; Almer, L.S.; Beyer, J.M.; Balli, D.J.; Cai, Y.; Flamm, R.K. In vitro antibacterial potency and spectrum of ABT-492, a new fluoroquinolone. Antimicrob. Agents Chemother. 2003, 47, 3260–3269. [Google Scholar] [CrossRef]
- de la Rosa, J.M.O.; Fernández, M.A.; Rodríguez-Villodres, Á.; Casimiro-Soriguer, C.S.; Cisneros, J.M.; Lepe, J.A. High-level delafloxacin resistance through the combination of two different mechanisms in Staphylococcus aureus. Int. J. Antimicrob. Agents 2023, 61, 106795. [Google Scholar] [CrossRef]
- Hooper, D.C. Emerging mechanisms of fluoroquinolone resistance. Emerg. Infect. Dis. 2001, 7, 337–341. [Google Scholar] [CrossRef]
- Beyer, R.; Pestova, E.; Millichap, J.J.; Stosor, V.; Noskin, G.A.; Peterson, L.R. A convenient assay for estimating the possible involvement of efflux of fluoroquinolones by Streptococcus pneumoniae and Staphylococcus aureus: Evidence for diminished moxifloxacin, sparfloxacin, and trovafloxacin efflux. Antimicrob. Agents Chemother. 2000, 44, 798–801. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Kiran Tudu, A. Tackling multidrug-resistant Staphylococcus aureus by natural products and their analogues acting as NorA efflux pump inhibitors. Bioorganic Med. Chem. 2023, 80, 117187. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Che, C.; Han, J.; Zhao, Y.; Zhang, Z.; An, G.; Si, M.; Chen, C. The TetR-type regulator AtsR is involved in multidrug response in Corynebacterium glutamicum. Microb. Cell Factories 2022, 21, 123. [Google Scholar] [CrossRef]
- Kittl, S.; Brodard, I.; Tresch, M.; Perreten, V. Novel tetracycline resistance gene tet(65) located on a multi-resistance Corynebacterium plasmid. J. Antimicrob. Chemother. 2024, 79, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Kim, Y.; Lee, M.S.; Lee, H.S. Gene lmrB of Corynebacterium glutamicum confers efflux-mediated resistance to lincomycin. Mol. Cells 2001, 12, 112–116. [Google Scholar] [CrossRef]
- ISO 20776-1:2019; Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices. Part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. ITEH Standards: San Francisco, CA, USA, 2019.
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 15.0; European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2025. [Google Scholar]
- ISO 20776-2:2021; Clinical Laboratory Testing and In Vitro Diagnostic Test Systems-Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices-Part 2: Evaluation of Performance of Antimicrobial Susceptibility Test Devices Against Reference Broth Micro-Dilution. ITEH Standards: San Francisco, CA, USA, 2021.
- ISO 20776-2:2007; Clinical Laboratory Testing and In Vitro Diagnostic Test Systems-Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices-Part 2: Evaluation of Performance of Antimicrobial Susceptibility Test Devices. ITEH Standards: San Francisco, CA, USA, 2007.
- Landis, J.R.; Koch, G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Tauch, A.; Trost, E.; Tilker, A.; Ludewig, U.; Schneiker, S.; Goesmann, A.; Arnold, W.; Bekel, T.; Brinkrolf, K.; Brune, I.; et al. The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing. J. Biotechnol. 2008, 136, 11–21. [Google Scholar] [CrossRef] [PubMed]
DELAFLOXACIN | CIPROFLOXACIN | LEVOFLOXACIN | MOXIFLOXACIN | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | N | MIC a ≤0.25 | MIC ≤0.016 | MIC Range | MIC50 | MIC90 | MIC Range | MIC50 | MIC90 | R b (N, %) | MIC Range | MIC50 | MIC90 | MIC Range | MIC50 | MIC90 | R b (N, %) | |
C. amycolatum | 13 | BMD | 11 (84.6%) | 5 (38.5%) | ≤0.002–2 | 0.03 | 0.5 | 0.016–>32 | 4 | >32 | 9 (69.2%) | 0.06–>32 | 4 | 32 | 0.016–16 | 1 | 8 | 8 (61.5%) |
GS | 12 (92.3%) | 4 (30.8%) | ≤0.002–2 | 0.023 | 0.25 | - | - | - | - | - | - | - | - | - | - | - | ||
C. glucuronolyticum | 10 | BMD | 4 (40%) | 3 (30%) | ≤0.002–2 | 0.5 | 2 | 0.016–4 | 4 | 4 | 7 (70%) | 0.06–>32 | 16 | 32 | 0.004–8 | 4 | 8 | 7 (70%) |
GS | 4 (40%) | 3 (30%) | ≤0.002–1 | 0.38 | 1 | - | - | - | - | - | - | - | - | - | - | - | ||
C. jeikeium | 10 | BMD | 7 (70%) | 5 (50%) | 0.004–16 | 0.008 | 8 | 0.06–>32 | 0.125 | >32 | 5 (50%) | 0.125–>32 | 0.25 | >32 | 0.03–16 | 0.06 | 16 | 4 (40%) |
GS | 6 (60%) | 4 (40%) | 0.006–>32 | 0.19 | 8 | - | - | - | - | - | - | - | - | - | - | - | ||
C. striatum | 10 | BMD | 0(0%) | 0 (0%) | 0.5–4 | 1 | 4 | 4–>32 | 32 | >32 | 10 (100%) | 4–>32 | >32 | >32 | 2–8 | 8 | 8 | 10 (100%) |
GS | 1 (10%) | 0 (0%) | 0.25–3 | 1.5 | 3 | - | - | - | - | - | - | - | - | - | - | - | ||
C. urealyticum | 10 | BMD | 1 (10%) | 1 (10%) | 0.008–8 | 4 | 8 | 0.06–>32 | >32 | >32 | 9 (90%) | 0.25–>32 | >32 | >32 | 0.06–32 | 32 | 32 | 9 (90%) |
GS | 1 (10%) | 1 (10%) | 0.006–>32 | 6 | >32 | - | - | - | - | - | - | - | - | - | - | - | ||
Corynebacterium spp. | 53 | BMD | 23 (43.4%) | 14 (26.4%) | ≤0.002–16 | 0.5 | 8 | 0.016–>32 | 8 | >32 | 40 (75.5%) | 0.06–>32 | 16 | >32 | 0.004–32 | 4 | 32 | 38 (71.7%) |
GS | 24 (45.3%) | 12 (21.4%) | ≤0.002–>32 | 0.5 | 6 | - | - | - | - | - | - | - | - | - | - | - |
ID_Isolates | DEL | MOX | CIP | LEV | Amino Acid Change(s) a |
---|---|---|---|---|---|
C. amycolatum | NA b | NA | NA | NA | Ser-Ala-Asp (87–88–91) |
CHURS-201026 | ≤0.002 | 0.016 | 0.016 | 0.06 | WT |
CHURS-201094 | ≤0.002 | 0.008 | 0.016 | 0.06 | WT |
CHURS-202160 | ≤0.002 | 0.008 | 0.016 | 0.06 | WT |
CHURS-201550 | ≤0.002 | 0.008 | 0.016 | 0.03 | WT |
CHURS-200784 | 0.016 | 1 | 2 | 4 | Ser87Arg |
CHURS-200921 | 0.03 | 1 | 4 | 4 | Ser87Arg |
CHURS-201216 | 0.03 | 1 | 4 | 4 | Ser87Arg |
CHURS-202276 | 0.03 | 1 | 4 | 4 | Ser87Arg |
CHURS-201445 | 0.125 | 0.5 | 8 | 4 | Ser87Arg |
CHURS-202275 | 0.125 | 1 | 8 | 8 | Ser87Ile |
CHURS-201033 | 0.125 | 2 | 32 | 16 | Ser87Ile Ala88Val * |
CHURS-201637 | 0.5 | 8 | >32 | 32 |
Ser87Arg
Ala88Pro |
CHURS-202078 | 2 | 16 | >32 | >32 |
Ser87Ile
Asp91Gly |
C. glucuronolyticum | NA | NA | NA | NA | Ser (87) |
CHURS-201459 | ≤0.002 | 0.004 | 0.016 | 0.06 | WT |
CHURS-200111 | 0.008 | 0.06 | 0.125 | 0.125 | WT |
CHURS-201458 | 0.008 | 0.06 | 0.125 | 0.25 | WT |
CHURS-202161 | 0.25 | 4 | 4 | 16 | Ser87Ile |
CHURS-201434 | 0.5 | 4 | 4 | 32 | Ser87Ile |
CHURS-200113 | 0.5 | 4 | 4 | 16 | Ser87Ile |
CHURS-200326 | 1 | 8 | 4 | 32 | Ser87Ile |
CHURS-200692 | 1 | 8 | 8 | >32 | Ser87Ile |
CHURS-200112 | 2 | 8 | 4 | 32 | Ser87Ile |
CHURS-201388 | 2 | 8 | 4 | 32 | Ser87Ile |
C. jeikeium | NA | NA | NA | NA | Ser-Asp (87–91) |
CHURS-182337 | 0.004 | 0.03 | 0.06 | 0.125 | WT |
CHURS-222505 | 0.004 | 0.03 | 0.06 | 0.125 | WT |
CHURS-200421 | 0.008 | 0.03 | 0.06 | 0.125 | WT |
CHURS-201636 | 0.008 | 0.03 | 0.06 | 0.25 | WT |
CHURS-181588 | 0.008 | 0.06 | 0.125 | 0.25 | WT |
CHURS-220538 | 0.125 | 1 | 4 | 4 | Ser87Arg |
CHURS-205744 | 0.25 | 2 | 16 | 8 | Ser87Arg |
CHURS-181717 | 1 | 2 | 8 | 16 | Ser87Ile |
CHURS-183397 | 8 | 16 | >32 | >32 |
Ser87Ile
Asp91Tyr |
CHURS-192312 | 16 | 16 | >32 | >32 |
Ser87Ile
Asp91Tyr |
C. striatum | NA | NA | NA | NA | Ser-Asp (87–91) |
CHURS-201982 | 0.5 | 2 | 4 | 4 | Ser87Val |
CHURS-200172 | 1 | 4 | 16 | 32 |
Ser87Phe
Asp91Ala |
CHURS-200532 | 1 | 4 | 16 | 32 |
Ser87Phe
Asp91Ala |
CHURS-200609 | 1 | 4 | 32 | >32 |
Ser87Phe
Asp91Ala |
CHURS-205232 | 1 | 8 | >32 | >32 |
Ser87Phe
Asp91Ala |
CHURS-201900 | 2 | 8 | 32 | >32 |
Ser87Phe
Asp91Ala |
CHURS-201917 | 2 | 8 | 32 | >32 |
Ser87Phe
Asp91Ala |
CHURS-202400 | 2 | 8 | >32 | >32 |
Ser87Phe
Asp91Ala |
CHURS-202043 | 4 | 8 | 32 | >32 |
Ser87Phe
Asp91Ala |
CHURS-202253 | 4 | 8 | >32 | >32 |
Ser87Phe
Asp91Ala |
C. urealyticum | NA | NA | NA | NA | Ser-Asp (87–91) |
CHURS-200585 | 0.008 | 0.06 | 0.06 | 0.25 | WT |
CHURS-201308 | 1 | 4 | 32 | 16 | Ser87Val |
CHURS-200529 | 4 | 16 | >32 | >32 |
Ser87Val
Asp91Tyr |
CHURS-201820 | 4 | 32 | >32 | 32 |
Ser87Val
Asp91Tyr |
CHURS-200825 | 4 | 32 | >32 | >32 |
Ser87Val
Asp91Tyr |
CHURS-200751 | 8 | 32 | >32 | >32 |
Ser87Val
Asp91Tyr |
CHURS-201390 | 8 | 32 | >32 | >32 |
Ser87Val
Asp91Tyr |
CHURS-201559 | 8 | 32 | >32 | >32 |
Ser87Val
Asp91Tyr |
CHURS-201661 | 8 | 32 | >32 | >32 |
Ser87Val
Asp91Tyr |
CHURS-201808 | 8 | 32 | >32 | >32 | Ser87Tyr Asp91Phe * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Rosa, M.; Elías-López, C.; Pedraza, R.; Riazzo, C.; Arjona-Torres, C.; Machuca, I.; Tejero-García, R.; Torre-Cisneros, J.; Martínez-Martínez, L. In Vitro Activity of Delafloxacin Against Corynebacterium spp. Antibiotics 2025, 14, 973. https://doi.org/10.3390/antibiotics14100973
Muñoz-Rosa M, Elías-López C, Pedraza R, Riazzo C, Arjona-Torres C, Machuca I, Tejero-García R, Torre-Cisneros J, Martínez-Martínez L. In Vitro Activity of Delafloxacin Against Corynebacterium spp. Antibiotics. 2025; 14(10):973. https://doi.org/10.3390/antibiotics14100973
Chicago/Turabian StyleMuñoz-Rosa, Montserrat, Cristina Elías-López, Rosa Pedraza, Cristina Riazzo, Cristina Arjona-Torres, Isabel Machuca, Rocio Tejero-García, Julian Torre-Cisneros, and Luis Martínez-Martínez. 2025. "In Vitro Activity of Delafloxacin Against Corynebacterium spp." Antibiotics 14, no. 10: 973. https://doi.org/10.3390/antibiotics14100973
APA StyleMuñoz-Rosa, M., Elías-López, C., Pedraza, R., Riazzo, C., Arjona-Torres, C., Machuca, I., Tejero-García, R., Torre-Cisneros, J., & Martínez-Martínez, L. (2025). In Vitro Activity of Delafloxacin Against Corynebacterium spp. Antibiotics, 14(10), 973. https://doi.org/10.3390/antibiotics14100973