Antibiotic Alternatives and Next-Generation Therapeutics for Salmonella Control: A One Health Approach to Combating Antimicrobial Resistance
Abstract
1. Introduction
2. Antibiotic Alternatives
2.1. Small Molecules (SMs)
| Small Molecules | Targeted Salmonella Serovars | Host | Observations | Refs. |
|---|---|---|---|---|
| 3,4-dimethylbenzoic acid | S. typhimurium | In vitro | Treatment with 3,4-dimethylbenzoic acid led to a ~94% reduction in hilA expression. Furthermore, when epithelial cells were exposed to Salmonella treated with the compound, invasion rates dropped significantly, with statistical significance reported as p < 0.001 across three biological replicates. In addition, the bioactive fraction responsible for repression had a molecular weight, and retained activity comparable to the full fecal extract, showing ~79% repression of hilA. | [30] |
| JG-1 and M4 | S. typhi and S. typhimurium | In vitro, Mice | Both compounds significantly reduced biofilm formation of S. typhi and S. typhimurium in vitro, with EC50 values of 38.9 μM (M4) and 53.6 μM (JG-1) for S. typhi. Additionally, M4 was more potent in dispersing pre-formed biofilms, with an EC50 of 46.4 μM, compared to 829 μM for JG-1. Also, in vivo treatment reduced bacterial burden in the gallbladder by 1–2 logs, and when co-administered with ciprofloxacin, the reduction reached 3–4.5 logs. | [31] |
| CL-55 (N-(2,4-difluorophenyl)-4-(3-ethoxy-4-hydroxybenzyl)-5-oxo-5,6-dihydro-4H-[1,3,4]-thiadiazine-2-carboxamide) | S. typhimurium | Mice | Mice treated with 10 mg/kg intraperitoneally for 4 days showed a 500-fold reduction in S. typhimurium counts in the spleen and peritoneal lavages. In addition, 12-day therapy led to the complete eradication of Salmonella from infected mice. Moreover, no detectable pathogen was found 4–6 weeks post-treatment, indicating durable clearance. | [43] |
| Dephostatin | S. typhimurium | In vitro, Mice | Dephostatin significantly reduced intracellular replication of S. typhimurium and restored susceptibility to colistin. Furthermore, mice infected with S. typhimurium and treated with Dephostatin and colistin showed prolonged survival compared to colistin alone, they also showed a >60% survival rate with combination therapy vs. 25% with colistin monotherapy. | [33] |
| T315 | S. typhi and S. typhimurium | In vitro | T315 compound, when used in combination with ciprofloxacin, has demonstrated effective inhibition of biofilm formation in S. typhimurium and S. typhi serovars. Not only that, the half-maximal effective concentrations also (EC50) were determined to be 7.4 μM for S. typhimurium and 21.0 μM for S. typhi. | [34] |
| D61 | S. typhimurium | In vitro, Mice | D61 significantly reduced S. typhimurium load in: RAW 264.7 macrophage-like cells (~20-fold reduction; IC50 = 1.3 μM), Primary mouse bone marrow-derived macrophages (~17-fold reduction; IC50 = 7.9 μM), and Primary human macrophages (~23-fold reduction). Also, D61 treatment led to a significant reduction in Salmonella burden in the spleen and liver of infected mice. | [35] |
| C24H17ClN4O2S | S. typhimurium | In vitro, chicken model | C24H17ClN4O2S inhibited the SPI-1 Type III Secretion System (T3SS) in S. typhimurium. In addition, it downregulated InvF, a key transcriptional regulator, and reduced effector proteins like SipA and SipC. | [36,44] |
| Quercitrin | S. typhimurium | In vitro, Mice | Quercitrin reduced S. typhimurium adhesion to HeLa cells in a dose-dependent manner, with no cytotoxicity observed up to 64 μg/mL. Moreover, in the mouse infection model, quercitrin treatment led to a ~1.5 log10 reduction in S. typhimurium counts in the cecal contents compared to untreated controls. | [38] |
| Compound 7955004 | S. typhimurium | In vitro | 7955004 induced a 55% reduction in preformed S. typhimurium biofilms. There was no toxicity observed in mammalian cells even at 30 μM, which is ~6× higher than EC50. Also, there was no significant change in OD600 of planktonic bacteria after 24 h exposure. | [39] |
2.2. Quorum Sensing Inhibitors (QSIs)
| QSIs | Targeted Salmonella Serovars | Host | Observations | Refs. |
|---|---|---|---|---|
| Brominated Furanones | S. typhimurium | In vitro | Brominated furanones do not act on known QS systems in Salmonella (e.g., SdiA, AI-2) but may exert indirect effects on biofilm and motility. | [56] |
| Punicalagin | S. typhimurium SL1344 | In vitro | Punicalagin, even at sub-inhibitory concentrations (1/16× and 1/32× MIC), significantly reduced Salmonella motility, including both swimming and swarming behaviors. This reduction was associated with the downregulation of key motility-related genes (fliA, fliY, fljB, flhC, and fimD). Additionally, punicalagin dose-dependently inhibited violacein production in Chromobacterium violaceum, indicating its quorum sensing inhibitory activity. In Salmonella, it suppressed the expression of QS-regulated genes (sdiA and srgE) and significantly reduced bacterial invasion of human colonic cells (p < 0.01) without affecting adhesion. | [61] |
| Methyl gallate (MG) | S. typhimurium | In vitro | Exposure of S. typhimurium to methyl gallate at a concentration of 30 µg/mL led to notable downregulation of quorum sensing genes, including sdiA (52.8%), srgE (61.7%), and rck (22.2%). When MG was combined with a sub-minimum inhibitory concentration of marbofloxacin, suppression of the host cell signaling gene rac-1 increased to 71.9%, compared to 56.9% with MG alone. Furthermore, MG significantly reduced the expression of key virulence-associated genes: cheY (59.6%), ompD (60.2%), sipB (20.5%), lexA (31.4%), and ompF (16.2%). | [62] |
| Tannic acid | S. typhi, S. Paratyphi | In vitro | Tannic acid exhibited strong quorum sensing inhibitory activity at a minimum effective concentration of 400 μg/mL. It reduced cell surface hydrophobicity by 38–43% and extracellular polymeric substance (EPS) production by 35–50%. TA significantly enhanced the susceptibility of S. typhi and S. Paratyphi to a range of antibiotics, including amikacin, ampicillin, ciprofloxacin, azithromycin, chloramphenicol, and gentamicin. Additionally, TA drastically inhibited swarming motility, a key quorum sensing-regulated phenotype, without affecting bacterial growth. | [58,63] |
| Star anise extract | S. typhimurium | Food matrix | Star anise extract inhibited violacein production by 89% in Chromobacterium violaceum, indicating strong interference with quorum sensing-regulated pigment synthesis. Although this biosensor assay does not directly evaluate quorum sensing in S. typhimurium, it suggests that the extract may possess broad-spectrum quorum sensing inhibitory activity. Supporting this, swarming motility in S. typhimurium was significantly reduced—by up to 95.9%—at higher extract concentrations, highlighting its potential to impair bacterial communication and motility. | [64] |
| Esculetin | S. typhimurium | Chicken | Esculetin demonstrated strong antimicrobial and quorum sensing inhibitory activity against S. typhimurium, with MIC of 500 μg/mL. It downregulated key genes involved in quorum sensing and biofilm regulation, including adrA, lsrB, luxS, and rpoS. Mechanistically, esculetin competes with the LsrB receptor, preventing AI-2 uptake and disrupting QS signaling. At 8× MIC, esculetin was able to kill 2 log CFU/mL of S. typhimurium within 30 min. | [53] |
2.3. Probiotics
2.4. Prebiotics
2.5. Postbiotics
2.6. Antimicrobial Peptides (AMPs)
2.7. Essential Oils (EOs)
| Essential Oils, EOs | Salmonella Serovars | Host | Observations | Ref. |
|---|---|---|---|---|
| EOs from leaves of Coriandrum sativum L. | S. typhi | In vitro | The oil exhibited strong antibacterial and antifungal activity against all tested strains, such as Staphylococcus aureus, Bacillus spp., E. coli, S. typhi, Klebsiella pneumoniae, Proteus mirabilis and Candida albicans, except Pseudomonas aeruginosa, which was resistant. Notably, a 65 × 102 μg concentration of EO resulted in a zone of inhibition (13.0 ± 1.4 mm) against S. typhi. | [186] |
| A blend of thyme EOs, savory, peppermint, and black pepper seeds | S. enteritidis | Broiler chickens | A microencapsulated blend of thyme essential oil (50%), savory (25%), peppermint (12.5%), and black pepper seeds (12.5%) caused a significant decrease in S. enteritidis population in broiler chickens. Specifically, the bacterial load in the ileum decreased by 2.1 log10 CFU/g, and in the cecum by 2.4 log10 CFU/g compared to the untreated infected group (p < 0.05). | [187] |
| EOs derived from the seeds of Foeniculum vulgar and Cuminum cyminum L. | S. typhimurium, E. coli | In vitro | F. vulgare and C. cyminum EOs induced zones of inhibition measuring 33 and 22 mm against S. typhimurium, respectively. In addition, the minimum inhibitory concentrations (MICs) were determined to be 0.031 mg/mL for F. vulgare and 0.125 mg/mL for C. cyminum. Furthermore, F. vulgare and C. cyminum EOs induced zones of inhibition measuring 28 and 17 mm against E. coli, respectively. In addition, the minimum inhibitory concentrations (MICs) were determined to be 0.062 mg/mL for F. vulgare and 0.250 mg/mL for C. cyminum | [188] |
| Carvacrol, eucalyptol, thymol and lemon EO blend | S. heidelberg | Broiler chickens | At a concentration of 0.05%, EOs significantly (p < 0.05) reduced S. heidelberg colonization in the crop of infected broilers. Additionally, lower concentrations (0.025% and 0.015%) showed no significant effect. However, EOs did not impact colonization in the ceca or fecal shedding, indicating their antimicrobial activity may be localized to specific regions of the gastrointestinal tract. | [189] |
| Zahter extract, zahter essential oil, laurel extract, and laurel essential oil | S. typhimurium | Chicken wings | The 0.4% laurel exhibited the strongest inhibitory effect against S. typhimurium, while the zahter showed comparatively lower antimicrobial activity. These findings suggest that laurel may possess superior bioactive compounds for bacterial suppression. | [190] |
| Satureja hortensis | S. enteritidis | In vitro | The disc diffusion assay showed that Salmonella had an average inhibition zone of 38 mm with a standard deviation of ±4 mm. in addition, both half and quarter concentrations of the MIC/2 and MIC/4 effectively suppressed biofilm formation by S. enteritidis. | [191] |
| Blend of cinnamaldehyde, thymol, citral, carvacrol, β-pinene and limonene | S. enteritidis | Chicken | Thymol, carvacrol, and cinnamaldehyde significantly inhibited S. enteritidis biofilm formation in a concentration-dependent manner. Thymol at MIC reduced biofilm formation as early as 12 h (p < 0.05), with stronger effects observed at 24 and 48 h. Carvacrol at MIC also showed consistent inhibition across all time points (p < 0.05), though lower concentrations (1/2 and 1/4 MIC) unexpectedly promoted biofilm formation at 12 and 24 h (p < 0.05). Cinnamaldehyde significantly reduced biofilm biomass at all concentrations after 24 and 48 h (p < 0.05). | [192] |
| EOs blend derived from Origanum vulgare, Thymus serpyllum, Thymus vulgaris, and Melaleuca alternifolia | 25 MDR Salmonella strains | In vitro | EOs of T. serpyllum and O. vulgare showed a significant antimicrobial activity against MDR-Salmonella strains. | [193] |
| Cinnamaldehyde, carvacrol, thymol, eugenol and citral | S. typhimurium, C. jejuni | In vitro | All tested compounds demonstrated strong bactericidal activity. The lowest concentration of trans-cinnamaldehyde (10 mM) significantly reduced (p ≤ 0.05) S. enteritidis populations by approximately 6.0 log10 CFU/mL after 8 h, and by more than 8.0 log10 CFU/mL after 24 h of incubation. At a concentration of 25 mM, trans-cinnamaldehyde eliminated detectable (p ≤ 0.05) S. enteritidis within 8 h. Furthermore, carvacrol and eugenol also significantly decreased (p ≤ 0.05) populations of S. enteritidis and C. jejuni to below 1.0 log10 CFU/mL at concentrations of 50 and 75 mM for carvacrol, and 20 and 30 mM for eugenol. | [194] |
2.8. Organic Acids (OAs)
2.9. Vaccines
2.10. Bacteriophages
2.11. Fecal Microbiota Transplantation (FMT)
2.12. Nanomaterials
3. Potential of Genetic Engineering and CRISPR Technology
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Helmy, Y.A.; El-Adawy, H.; Sanad, Y.M.; Ghanem, M. Editorial: Food safety and public health. Front. Microbiol. 2023, 14, 1169139. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, B.; Mawad, A.M.; Saleh, M.; Kelley, W.G.; Harrington, P.J.; Lovestad, C.W.; Amezcua, J.; Sarhan, M.M.; El Zowalaty, M.E.; Ramadan, H. Salmonellosis: An overview of epidemiology, pathogenesis, and innovative approaches to mitigate the antimicrobial resistant infections. Antibiotics 2024, 13, 76. [Google Scholar] [CrossRef]
- Oludairo, O.O.; Kwaga, J.K.; Kabir, J.; Abdu, P.A.; Gitanjali, A.; Perrets, A.; Cibin, V.; Lettini, A.; Aiyedun, J. A review on Salmonella characteristics, taxonomy, nomenclature with special reference to non-typhoidal and typhoidal salmonellosis. Zagazig Vet. J. 2022, 50, 161–176. [Google Scholar] [CrossRef]
- Helmy, Y.A.; El-Adawy, H.; Abdelwhab, E.M. A Comprehensive Review of Common Bacterial, Parasitic and Viral Zoonoses at the Human-Animal Interface in Egypt. Pathogens 2017, 6, 33. [Google Scholar] [CrossRef]
- Huang, C. Salmonella—Current Trends and Perspectives in Detection and Control: Current Trends and Perspectives in Detection and Control; IntechOpen: London, UK, 2024. [Google Scholar]
- Matrajt, G.; Lillis, L.; Meschke, J.S. Review of methods suitable for environmental surveillance of Salmonella Typhi and Paratyphi. Clin. Infect. Dis. 2020, 71, S79–S83. [Google Scholar] [CrossRef] [PubMed]
- Griffith, R.W.; Carlson, S.A.; Krull, A.C. Salmonellosis. In Diseases of Swine; Wiley: New York, NY, USA, 2019; pp. 912–925. [Google Scholar]
- Fahmy, N.A.; Karna, S.; Bhusal, A.; Kabir, A.; Erol, E.; Helmy, Y.A. Multidrug Resistance and Virulence Traits of Salmonella enterica Isolated from Cattle: Genotypic and Phenotypic Insights. Antibiotics 2025, 14, 689. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hossain, H.; Chowdhury, M.S.R.; Hossain, M.M.; Saleh, A.; Binsuwaidan, R.; Noreddin, A.; Helmy, Y.A.; El Zowalaty, M.E. Molecular Characterization of Multidrug-Resistant and Extended-Spectrum β-Lactamases-Producing Salmonella enterica Serovars Enteritidis and Typhimurium Isolated from Raw Meat in Retail Markets. Antibiotics 2024, 13, 586. [Google Scholar] [CrossRef]
- Bula-Rudas, F.J.; Rathore, M.H.; Maraqa, N.F. Salmonella infections in childhood. Adv. Pediatr. 2015, 62, 29–58. [Google Scholar] [CrossRef]
- Saggu, V.; Sajan, C.; Patel, K.; Mahant, M.; Besh, S. Salmonellosis: An Overview. Adv. Multidiscip. Res. Dev. 2023, 1, 129. [Google Scholar]
- He, Y.; Jia, Q.; Cai, K.; Xu, S.; Li, H.; Xie, Q.; Qiu, Y.; Zhang, L.; Jiao, X. The global, regional, and national burden of Invasive Non-typhoidal Salmonella (iNTS): An analysis from the Global Burden of Disease Study 1990–2021. PLoS Neglected Trop. Dis. 2025, 19, e0012960. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D.; Carter, J.; Niemira, B.A. An investigation about the historic global foodborne outbreaks of Salmonella spp. in eggs: From hatcheries to tables. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70202. [Google Scholar] [CrossRef] [PubMed]
- Seys, S.A.; Sampedro, F.; Hedberg, C.W. Assessment of meat and poultry product recalls due to Salmonella contamination: Product recovery and illness prevention. J. Food Prot. 2017, 80, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Dewey-Mattia, D.; Subramhanya, S.; Cui, Z.; Griffin, P.M.; Lance, S.; Lanier, W.; Wise, M.E.; Crowe, S.J. Food recalls associated with foodborne disease outbreaks, United States, 2006–2016. Epidemiol. Infect. 2021, 149, e190. [Google Scholar] [CrossRef] [PubMed]
- Bäumler, A.J.; Hargis, B.M.; Tsolis, R.M. Tracing the origins of Salmonella outbreaks. Science 2000, 287, 50–52. [Google Scholar] [CrossRef]
- Holst, M.M. Contributing Factors of Foodborne Illness Outbreaks—National Outbreak Reporting System, United States, 2014–2022. MMWR. Surveill. Summ. 2025, 74, 1–12. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, H.; Xu, W.; Huang, J.; Meng, L.; Cao, C.; Zeng, J.; Meng, J.; Yang, B. Diversity of serotype, genotype, and antibiotic susceptibility of Salmonella prevalent in pickled ready-to-eat meat. Front. Microbiol. 2019, 10, 2577. [Google Scholar] [CrossRef]
- Helmy Yosra, A.; Kabir, A.; Saleh, M.; Kennedy Laura, A.; Burns, L.; Johnson, B. Draft genome sequence analysis of multidrug-resistant Salmonella enterica subsp. enterica serovar Mbandaka harboring colistin resistance gene mcr-9.1 isolated from foals in Kentucky, USA. Microbiol. Resour. Announc. 2024, 13, e00737-24. [Google Scholar] [CrossRef]
- Kabir, A.; Kelley, W.G.; Glover, C.; Erol, E.; Helmy, Y.A. Phenotypic and genotypic characterization of antimicrobial resistance and virulence profiles of Salmonella enterica serotypes isolated from necropsied horses in Kentucky. Microbiol. Spectr. 2025, 13, e0250124. [Google Scholar] [CrossRef]
- Kabir, A.; Lamichhane, B.; Habib, T.; Adams, A.; El-Sheikh Ali, H.; Slovis, N.M.; Troedsson, M.H.; Helmy, Y.A. Antimicrobial Resistance in Equines: A Growing Threat to Horse Health and Beyond—A Comprehensive Review. Antibiotics 2024, 13, 713. [Google Scholar] [CrossRef]
- Deblais, L.; Drozd, M.; Kumar, A.; Antwi, J.; Fuchs, J.; Khupse, R.; Helmy, Y.A.; Rajashekara, G. Identification of novel small molecule inhibitors of twin arginine translocation (Tat) pathway and their effect on the control of Campylobacter jejuni in chickens. Front. Microbiol. 2024, 15, 1342573. [Google Scholar] [CrossRef]
- Wilson, R.M.; Danishefsky, S.J. Small molecule natural products in the discovery of therapeutic agents: The synthesis connection. J. Org. Chem. 2006, 71, 8329–8351. [Google Scholar] [CrossRef] [PubMed]
- Vrisman, C.M.; Deblais, L.; Helmy, Y.A.; Johnson, R.; Rajashekara, G.; Miller, S.A. Discovery and characterization of low-molecular weight inhibitors of Erwinia tracheiphila. Phytopathology 2020, 110, 989–998. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Deblais, L.; Rajashekara, G.; Miller, S.A.; Helmy, Y.A.; Zhang, H.; Wu, P.; Qiu, Y.; Xu, X. High-throughput screening reveals small molecule modulators inhibitory to Acidovorax citrulli. Plant Pathol. 2020, 69, 818–826. [Google Scholar] [CrossRef]
- Scott, D.E.; Bayly, A.R.; Abell, C.; Skidmore, J. Small molecules, big targets: Drug discovery faces the protein–protein interaction challenge. Nat. Rev. Drug Discov. 2016, 15, 533–550. [Google Scholar] [CrossRef]
- Tirkkonen, H.; Brown, K.V.; Niemczura, M.; Faudemer, Z.; Brown, C.; Ponomareva, L.V.; Helmy, Y.A.; Thorson, J.S.; Nybo, S.E.; Metsä-Ketelä, M.; et al. Engineering bioBricks for deoxysugar biosynthesis and generation of new tetracenomycins. ACS Omega 2023, 8, 21237–21253. [Google Scholar] [CrossRef]
- Li, Q.; Kang, C. Mechanisms of action for small molecules revealed by structural biology in drug discovery. Int. J. Mol. Sci. 2020, 21, 5262. [Google Scholar] [CrossRef]
- Kathayat, D.; Helmy Yosra, A.; Deblais, L.; Srivastava, V.; Closs, G.; Khupse, R.; Rajashekara, G. Novel Small Molecule Growth Inhibitor Affecting Bacterial Outer Membrane Reduces Extraintestinal Pathogenic Escherichia coli (ExPEC) Infection in Avian Model. Microbiol. Spectr. 2021, 9, e00006-21. [Google Scholar] [CrossRef]
- Peixoto, R.J.; Alves, E.S.; Wang, M.; Ferreira, R.B.; Granato, A.; Han, J.; Gill, H.; Jacobson, K.; Lobo, L.A.; Domingues, R.M. Repression of Salmonella host cell invasion by aromatic small molecules from the human fecal metabolome. Appl. Environ. Microbiol. 2017, 83, e01148-17. [Google Scholar] [CrossRef]
- Sandala, J.L.; Eichar, B.W.; Kuo, L.G.; Hahn, M.M.; Basak, A.K.; Huggins, W.M.; Woolard, K.; Melander, C.; Gunn, J.S. A dual-therapy approach for the treatment of biofilm-mediated Salmonella gallbladder carriage. PLoS Pathog. 2020, 16, e1009192. [Google Scholar] [CrossRef]
- Nesterenko, L.N.; Zigangirova, N.A.; Zayakin, E.S.; Luyksaar, S.I.; Kobets, N.V.; Balunets, D.V.; Shabalina, L.A.; Bolshakova, T.N.; Dobrynina, O.Y.; Gintsburg, A.L. A small-molecule compound belonging to a class of 2, 4-disubstituted 1, 3, 4-thiadiazine-5-ones suppresses Salmonella infection in vivo. J. Antibiot. 2016, 69, 422–427. [Google Scholar] [CrossRef]
- Tsai, C.N.; MacNair, C.R.; Cao, M.P.; Perry, J.N.; Magolan, J.; Brown, E.D.; Coombes, B.K. Targeting two-component systems uncovers a small-molecule inhibitor of Salmonella virulence. Cell Chem. Biol. 2020, 27, 793–805.e7. [Google Scholar] [CrossRef]
- Moshiri, J.; Kaur, D.; Hambira, C.M.; Sandala, J.L.; Koopman, J.A.; Fuchs, J.R.; Gunn, J.S. Identification of a small molecule anti-biofilm agent against Salmonella enterica. Front. Microbiol. 2018, 9, 2804. [Google Scholar] [CrossRef] [PubMed]
- Nagy, T.A.; Quintana, J.L.; Reens, A.L.; Crooks, A.L.; Detweiler, C.S. Autophagy induction by a small molecule inhibits Salmonella survival in macrophages and mice. Antimicrob. Agents Chemother. 2019, 63, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Deblais, L.; Helmy, Y.A.; Kathayat, D.; Huang, H.-c.; Miller, S.A.; Rajashekara, G. Novel imidazole and methoxybenzylamine growth inhibitors affecting Salmonella cell envelope integrity and its persistence in chickens. Sci. Rep. 2018, 8, 13381. [Google Scholar] [CrossRef] [PubMed]
- Deblais, L.; Vrisman, C.; Kathayat, D.; Helmy, Y.A.; Miller, S.A.; Rajashekara, G. Imidazole and Methoxybenzylamine Growth Inhibitors Reduce Salmonella Persistence in Tomato Plant Tissues. J. Food Prot. 2019, 82, 997–1006. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Xu, J.; Liu, S.; Song, Z.; Chen, T.; Deng, X.; Wang, J.; Lv, Q. Quercitrin is a novel inhibitor of Salmonella enterica Serovar Typhimurium type III secretion system. Molecules 2023, 28, 5455. [Google Scholar] [CrossRef]
- Koopman, J.A.; Marshall, J.M.; Bhatiya, A.; Eguale, T.; Kwiek, J.J.; Gunn, J.S. Inhibition of Salmonella enterica biofilm formation using small-molecule adenosine mimetics. Antimicrob. Agents Chemother. 2015, 59, 76–84. [Google Scholar] [CrossRef]
- Wu, K.; Kwon, S.H.; Zhou, X.; Fuller, C.; Wang, X.; Vadgama, J.; Wu, Y. Overcoming Challenges in Small-Molecule Drug Bioavailability: A Review of Key Factors and Approaches. Int. J. Mol. Sci. 2024, 25, 13121. [Google Scholar] [CrossRef]
- Bedard, P.L.; Hyman, D.M.; Davids, M.S.; Siu, L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet 2020, 395, 1078–1088. [Google Scholar] [CrossRef]
- Smith, A.J. New horizons in therapeutic antibody discovery: Opportunities and challenges versus small-molecule therapeutics. J. Biomol. Screen. 2015, 20, 437–453. [Google Scholar] [CrossRef]
- Zigangirova, N.A.; Nesterenko, L.N.; Sheremet, A.B.; Soloveva, A.V.; Luyksaar, S.I.; Zayakin, E.S.; Balunets, D.V.; Gintsburg, A.L. Fluorothiazinon, a small-molecular inhibitor of T3SS, suppresses Salmonella oral infection in mice. J. Antibiot. 2021, 74, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Boonyom, R.; Roytrakul, S.; Thinwang, P. A small molecule, C24H17ClN4O2S, inhibits the function of the type III secretion system in Salmonella typhimurium. J. Genet. Eng. Biotechnol. 2022, 20, 54. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.B.; Bassler, B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001, 55, 165–199. [Google Scholar] [CrossRef] [PubMed]
- Abisado, R.G.; Benomar, S.; Klaus, J.R.; Dandekar, A.A.; Chandler, J.R. Bacterial quorum sensing and microbial community interactions. MBio 2018, 9, 10-1128. [Google Scholar] [CrossRef]
- Hense, B.A.; Schuster, M. Core principles of bacterial autoinducer systems. Microbiol. Mol. Biol. Rev. 2015, 79, 153–169. [Google Scholar] [CrossRef]
- Helmy, Y.A.; Kathayat, D.; Deblais, L.; Srivastava, V.; Closs, G., Jr.; Tokarski, R.J.; Ayinde, O.; Fuchs, J.R.; Rajashekara, G. Evaluation of novel quorum sensing inhibitors targeting auto-inducer 2 (AI-2) for the control of avian pathogenic Escherichia coli infections in chickens. Microbiol. Spectr. 2022, 10, e00286-22. [Google Scholar] [CrossRef]
- Helmy, Y.A.; Deblais, L.; Kassem, I.I.; Kathayat, D.; Rajashekara, G. Novel small molecule modulators of quorum sensing in avian pathogenic Escherichia coli (APEC). Virulence 2018, 9, 1640–1657. [Google Scholar] [CrossRef]
- Mangwani, N.; Dash, H.R.; Chauhan, A.; Das, S. Bacterial quorum sensing: Functional features and potential applications in biotechnology. J. Mol. Microbiol. Biotechnol. 2012, 22, 215–227. [Google Scholar] [CrossRef]
- Kalia, V.C. Quorum sensing inhibitors: An overview. Biotechnol. Adv. 2013, 31, 224–245. [Google Scholar] [CrossRef]
- Helmy, Y.A.; Kathayat, D.; Closs, G., Jr.; Galgozy, K.; Fuchs, J.R.; Rajashekara, G. Efficacy of quorum sensing and growth inhibitors alone and in combination against avian pathogenic Escherichia coli infection in chickens. Poult. Sci. 2023, 102, 102543. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, Z.; Yu, Z.; Huang, L.; Yang, F.; Xie, Y. Virtual screening of quorum sensing inhibitors for Salmonella typhimurium and their application as preservatives in chicken breast. Food Biosci. 2023, 55, 102957. [Google Scholar] [CrossRef]
- Choi, J.; Shin, D.; Kim, M.; Park, J.; Lim, S.; Ryu, S. LsrR-mediated quorum sensing controls invasiveness of Salmonella typhimurium by regulating SPI-1 and flagella genes. PLoS ONE 2012, 7, e37059. [Google Scholar] [CrossRef] [PubMed]
- Pereira, C.S.; Thompson, J.A.; Xavier, K.B. AI-2-mediated signalling in bacteria. FEMS Microbiol. Rev. 2013, 37, 156–181. [Google Scholar] [CrossRef]
- Janssens, J.C.; Steenackers, H.; Robijns, S.; Gellens, E.; Levin, J.; Zhao, H.; Hermans, K.; De Coster, D.; Verhoeven, T.L.; Marchal, K. Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Appl. Environ. Microbiol. 2008, 74, 6639–6648. [Google Scholar] [CrossRef] [PubMed]
- Birhanu, B.T.; Park, N.-H.; Lee, S.-J.; Hossain, M.A.; Park, S.-C. Inhibition of Salmonella typhimurium adhesion, invasion, and intracellular survival via treatment with methyl gallate alone and in combination with marbofloxacin. Vet. Res. 2018, 49, 101. [Google Scholar] [CrossRef]
- Sivasankar, C.; Jha, N.K.; Ghosh, R.; Shetty, P.H. Anti quorum sensing and anti virulence activity of tannic acid and it’s potential to breach resistance in Salmonella enterica Typhi/Paratyphi A clinical isolates. Microb. Pathog. 2020, 138, 103813. [Google Scholar] [CrossRef]
- Styles, M.J.; Blackwell, H.E. Non-native autoinducer analogs capable of modulating the SdiA quorum sensing receptor in Salmonella enterica serovar Typhimurium. Beilstein J. Org. Chem. 2018, 14, 2651–2664. [Google Scholar] [CrossRef]
- Durães, F.; Resende, D.I.; Palmeira, A.; Szemerédi, N.; Pinto, M.M.; Spengler, G.; Sousa, E. Xanthones active against multidrug resistance and virulence mechanisms of bacteria. Antibiotics 2021, 10, 600. [Google Scholar] [CrossRef]
- Li, G.; Yan, C.; Xu, Y.; Feng, Y.; Wu, Q.; Lv, X.; Yang, B.; Wang, X.; Xia, X. Punicalagin inhibits Salmonella virulence factors and has anti-quorum-sensing potential. Appl. Environ. Microbiol. 2014, 80, 6204–6211. [Google Scholar] [CrossRef]
- Mechesso, A.F.; Yixian, Q.; Park, S.-C. Methyl gallate and tylosin synergistically reduce the membrane integrity and intracellular survival of Salmonella typhimurium. PLoS ONE 2019, 14, e0221386. [Google Scholar] [CrossRef]
- Shin, M.; Kim, K.; Shim, W.; Yang, J.W.; Lee, H. Tannic Acid as a Degradable Mucoadhesive Compound. ACS Biomater. Sci. Eng. 2016, 2, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.R.T.; Lou, Z.; Zhang, J.; Yu, F.; Timilsena, Y.P.; Zhang, C.; Zhang, Y.; Bakry, A.M. Star anise (Illicium verum Hook. f.) as quorum sensing and biofilm formation inhibitor on foodborne bacteria: Study in milk. J. Food Prot. 2017, 80, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Moore, R.J.; Stanley, D.; Chousalkar, K.K. The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Appl. Environ. Microbiol. 2020, 86, e00600-20. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 2017, 61, 1600240. [Google Scholar] [CrossRef]
- Helmy, Y.A.; Taha-Abdelaziz, K.; Hawwas, H.A.E.-H.; Ghosh, S.; AlKafaas, S.S.; Moawad, M.M.; Saied, E.M.; Kassem, I.I.; Mawad, A.M. Antimicrobial resistance and recent alternatives to antibiotics for the control of bacterial pathogens with an emphasis on foodborne pathogens. Antibiotics 2023, 12, 274. [Google Scholar] [CrossRef]
- de Melo Pereira, G.V.; de Oliveira Coelho, B.; Júnior, A.I.M.; Thomaz-Soccol, V.; Soccol, C.R. How to select a probiotic? A review and update of methods and criteria. Biotechnol. Adv. 2018, 36, 2060–2076. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of action of probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [CrossRef]
- Abouelela, M.E.; Helmy, Y.A. Next-Generation Probiotics as Novel Therapeutics for Improving Human Health: Current Trends and Future Perspectives. Microorganisms 2024, 12, 430. [Google Scholar] [CrossRef]
- Helmy, Y.A.; Kassem, I.I.; Rajashekara, G. Immuno-modulatory effect of probiotic E. coli Nissle 1917 in polarized human colonic cells against Campylobacter jejuni infection. Gut Microbes 2021, 13, 1857514. [Google Scholar] [CrossRef]
- Helmy Yosra, A.; Closs, G.; Jung, K.; Kathayat, D.; Vlasova, A.; Rajashekara, G. Effect of Probiotic E. coli Nissle 1917 Supplementation on the Growth Performance, Immune Responses, Intestinal Morphology, and Gut Microbes of Campylobacter jejuni Infected Chickens. Infect. Immun. 2022, 90, e00337-22. [Google Scholar] [CrossRef]
- McFarland, L.V. Efficacy of single-strain probiotics versus multi-strain mixtures: Systematic review of strain and disease specificity. Dig. Dis. Sci. 2021, 66, 694–704. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Invernici, M.M.; Furlaneto, F.A.; Messora, M.R. Effectiveness of multi-strain versus single-strain probiotics: Current status and recommendations for the future. J. Clin. Gastroenterol. 2018, 52, S35–S40. [Google Scholar] [CrossRef]
- Kwoji, I.D.; Aiyegoro, O.A.; Okpeku, M.; Adeleke, M.A. Multi-strain probiotics: Synergy among isolates enhances biological activities. Biology 2021, 10, 322. [Google Scholar] [CrossRef]
- Bezkorovainy, A. Probiotics: Determinants of survival and growth in the gut. Am. J. Clin. Nutr. 2001, 73, 399s–405s. [Google Scholar] [CrossRef] [PubMed]
- Stasiak-Różańska, L.; Berthold-Pluta, A.; Pluta, A.S.; Dasiewicz, K.; Garbowska, M. Effect of simulated gastrointestinal tract conditions on survivability of probiotic bacteria present in commercial preparations. Int. J. Environ. Res. Public Health 2021, 18, 1108. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Tomar, S.K.; Goswami, P.; Sangwan, V.; Singh, R. Antibiotic resistance among commercially available probiotics. Food Res. Int. 2014, 57, 176–195. [Google Scholar] [CrossRef]
- Zavišić, G.; Popović, M.; Stojkov, S.; Medić, D.; Gusman, V.; Jovanović Lješković, N.; Jovanović Galović, A. Antibiotic resistance and probiotics: Knowledge gaps, market overview and preliminary screening. Antibiotics 2023, 12, 1281. [Google Scholar] [CrossRef]
- Ripert, G.; Racedo, S.M.; Elie, A.-M.; Jacquot, C.; Bressollier, P.; Urdaci, M.C. Secreted compounds of the probiotic Bacillus clausii strain O/C inhibit the cytotoxic effects induced by Clostridium difficile and Bacillus cereus toxins. Antimicrob. Agents Chemother. 2016, 60, 3445–3454. [Google Scholar] [CrossRef]
- Zhu, K.; Hölzel, C.S.; Cui, Y.; Mayer, R.; Wang, Y.; Dietrich, R.; Didier, A.; Bassitta, R.; Märtlbauer, E.; Ding, S. Probiotic Bacillus cereus strains, a potential risk for public health in China. Front. Microbiol. 2016, 7, 718. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, S.; Ding, S.; Shen, J.; Zhu, K. Toxins and mobile antimicrobial resistance genes in Bacillus probiotics constitute a potential risk for One Health. J. Hazard. Mater. 2020, 382, 121266. [Google Scholar] [CrossRef]
- Tazehabadi, M.H.; Algburi, A.; Popov, I.V.; Ermakov, A.M.; Chistyakov, V.A.; Prazdnova, E.V.; Weeks, R.; Chikindas, M.L. Probiotic bacilli inhibit Salmonella biofilm formation without killing planktonic cells. Front. Microbiol. 2021, 12, 615328. [Google Scholar] [CrossRef] [PubMed]
- Cull, C.; Singu, V.K.; Cull, B.J.; Lechtenberg, K.F.; Amachawadi, R.G.; Schutz, J.S.; Bryan, K.A. Efficacy of Lactobacillus animalis and Propionibacterium freudenreichii-based feed additives in reducing Salmonella-associated health and performance effects in commercial beef calves. Antibiotics 2022, 11, 1328. [Google Scholar]
- Wang, L.; Wang, H.; Li, X.; Zhu, M.; Gao, D.; Hu, D.; Xiong, Z.; Li, X.; Qian, P. Bacillus velezensis HBXN2020 alleviates Salmonella typhimurium infection in mice by improving intestinal barrier integrity and reducing inflammation. eLife 2024, 13, RP93423. [Google Scholar] [CrossRef]
- Truusalu, K.; Naaber, P.; Kullisaar, T.; Tamm, H.; Mikelsaar, R.-H.; Zilmer, K.; Rehema, A.; Zilmer, M.; Mikelsaar, M. The influence of antibacterial and antioxidative probiotic lactobacilli on gut mucosa in a mouse model of Salmonella infection. Microb. Ecol. Health Dis. 2004, 16, 180–187. [Google Scholar]
- Junaid, M.; Lu, H.; Din, A.U.; Yu, B.; Liu, Y.; Li, Y.; Liu, K.; Yan, J.; Qi, Z. Deciphering microbiome, transcriptome, and metabolic interactions in the presence of probiotic Lactobacillus acidophilus against Salmonella typhimurium in a murine model. Antibiotics 2024, 13, 352. [Google Scholar] [CrossRef]
- Vinderola, G.; Matar, C.; Perdigón, G. Milk fermented by Lactobacillus helveticus R389 and its non-bacterial fraction confer enhanced protection against Salmonella enteritidis serovar Typhimurium infection in mice. Immunobiology 2007, 212, 107–118. [Google Scholar] [CrossRef]
- Okamoto, A.S.; Andreatti Filho, R.L.; Milbradt, E.L.; Moraes, A.C.I.; Vellano, I.H.B.; Guimarães-Okamoto, P.T.C. Bacterial communication between Lactobacillus spp. isolated from poultry in the inhibition of Salmonella Heidelberg—Proof of concept. Poult. Sci. 2018, 97, 2708–2712. [Google Scholar] [CrossRef]
- Hoepers, P.G.; Nunes, P.L.F.; Almeida-Souza, H.O.; Martins, M.M.; de Oliveira Carvalho, R.D.; Dreyer, C.T.; Aburjaile, F.F.; Sommerfeld, S.; Azevedo, V.; Fonseca, B.B. Harnessing probiotics capability to combat Salmonella Heidelberg and improve intestinal health in broilers. Poult. Sci. 2024, 103, 103739. [Google Scholar] [CrossRef]
- El-Sharkawy, H.; Tahoun, A.; Rizk, A.M.; Suzuki, T.; Elmonir, W.; Nassef, E.; Shukry, M.; Germoush, M.O.; Farrag, F.; Bin-Jumah, M. Evaluation of Bifidobacteria and Lactobacillus probiotics as alternative therapy for Salmonella typhimurium infection in broiler chickens. Animals 2020, 10, 1023. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, K.M.; Bhunia, A.K. Salmonella enterica serovar Typhimurium adhesion and cytotoxicity during epithelial cell stress is reduced by Lactobacillus rhamnosus GG. Gut Pathog. 2009, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- De Keersmaecker, S.C.; Verhoeven, T.L.; Desair, J.; Marchal, K.; Vanderleyden, J.; Nagy, I. Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol. Lett. 2006, 259, 89–96. [Google Scholar] [CrossRef]
- Gill, H.S.; Shu, Q.; Lin, H.; Rutherfurd, K.J.; Cross, M.L. Protection against translocating Salmonella typhimurium infection in mice by feeding the immuno-enhancing probiotic Lactobacillus rhamnosus strain HN001. Med. Microbiol. Immunol. 2001, 190, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Shu, Q.; Lin, H.; Rutherfurd, K.J.; Fenwick, S.G.; Prasad, J.; Gopal, P.K.; Gill, H.S. Dietary Bifidobacterium lactis (HN019) enhances resistance to oral Salmonella typhimurium infection in mice. Microbiol. Immunol. 2000, 44, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.; Alinovi, C.; Couetil, L.; Glickman, L.; Wu, C. A randomized clinical trial using probiotics to prevent Salmonella faecal shedding in hospitalized horses. J. Equine Vet. Sci. 2004, 24, 242–247. [Google Scholar] [CrossRef]
- Tanner, S.A.; Chassard, C.; Rigozzi, E.; Lacroix, C.; Stevens, M.J. Bifidobacterium thermophilum RBL67 impacts on growth and virulence gene expression of Salmonella enterica subsp. enterica serovar Typhimurium. BMC Microbiol. 2016, 16, 46. [Google Scholar]
- Closs Jr, G.; Bhandari, M.; Helmy, Y.A.; Kathayat, D.; Lokesh, D.; Jung, K.; Suazo, I.D.; Srivastava, V.; Deblais, L.; Rajashekara, G. The probiotic Lacticaseibacillus rhamnosus GG supplementation reduces Salmonella load and modulates growth, intestinal morphology, gut microbiota, and immune responses in chickens. Infect. Immun. 2025, 93, e00420-24. [Google Scholar] [CrossRef]
- Sun, C.; Gao, X.; Sun, M.; Wang, Z.; Wang, Y.; Zhao, X.; Jia, F.; Zhang, T.; Ge, C.; Zhang, X. Protective effects of E. coli Nissle 1917 on chickens infected with Salmonella pullorum. Microb. Pathog. 2022, 172, 105768. [Google Scholar] [CrossRef]
- Rashid, M.; Narang, A.; Thakur, S.; Jain, S.K.; Kaur, S. Therapeutic and prophylactic effects of oral administration of probiotic Enterococcus faecium Smr18 in Salmonella enterica-infected mice. Gut Pathog. 2023, 15, 23. [Google Scholar] [CrossRef]
- Lan, D.; Xun, X.; Hu, Y.; Li, N.; Yang, C.; Jiang, X.; Liu, Y. Research on the Effect of Pediococcus pentosaceus on Salmonella enteritidis-Infected Chicken. BioMed Res. Int. 2020, 2020, 6416451. [Google Scholar] [CrossRef]
- Buddhasiri, S.; Sukjoi, C.; Kaewsakhorn, T.; Nambunmee, K.; Nakphaichit, M.; Nitisinprasert, S.; Thiennimitr, P. Anti-inflammatory effect of probiotic LimosiLactobacillus reuteri KUB-AC5 against Salmonella infection in a mouse colitis model. Front. Microbiol. 2021, 12, 716761. [Google Scholar]
- Silva, B.; Sandes, S.; Alvim, L.; Bomfim, M.; Nicoli, J.; Neumann, E.; Nunes, A. Selection of a candidate probiotic strain of Pediococcus pentosaceus from the faecal microbiota of horses by in vitro testing and health claims in a mouse model of Salmonella infection. J. Appl. Microbiol. 2017, 122, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Zhen, W.; Guo, F.; Hu, Z.; Zhang, K.; Kong, L.; Guo, Y.; Wang, Z. Pretreatment with probiotics Enterococcus faecium NCIMB 11181 attenuated Salmonella typhimurium-induced gut injury through modulating intestinal microbiome and immune responses with barrier function in broiler chickens. J. Anim. Sci. Biotechnol. 2022, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Mazkour, S.; Shekarforoush, S.S.; Basiri, S.; Nazifi, S.; Yektaseresht, A.; Honarmand, M. Effects of two probiotic spores of Bacillus species on hematological, biochemical, and inflammatory parameters in Salmonella typhimurium infected rats. Sci. Rep. 2020, 10, 8035. [Google Scholar] [CrossRef] [PubMed]
- Ran, L.; Lei, J.; Liu, H.; Wang, D.; Liu, J.; Yang, F.; Chen, D. Bacillus pumilus SMU5927 protect mice from damage caused by Salmonella Enteritidis colonization. Life Sci. 2025, 361, 123291. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Z.; Gu, X.; Zhao, J.; Guo, T.; Kong, J. Probiotic Bacillus subtilis LF11 protects intestinal epithelium against Salmonella infection. Front. Cell. Infect. Microbiol. 2022, 12, 837886. [Google Scholar] [CrossRef]
- Seo, H.-J.; Kang, S.-S. Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella typhimurium. Food Control 2020, 117, 107361. [Google Scholar] [CrossRef]
- Olsen, M.S.R.; Thøfner, I.; Sandvang, D.; Poulsen, L.L. Research Note: The effect of a probiotic E. faecium 669 mitigating Salmonella Enteritidis colonization of broiler chickens by improved gut integrity. Poult. Sci. 2022, 101, 102029. [Google Scholar] [CrossRef]
- Szabó, I.; Wieler, L.H.; Tedin, K.; Scharek-Tedin, L.; Taras, D.; Hensel, A.; Appel, B.; Nockler, K. Influence of a probiotic strain of Enterococcus faecium on Salmonella enterica serovar Typhimurium DT104 infection in a porcine animal infection model. Appl. Environ. Microbiol. 2009, 75, 2621–2628. [Google Scholar] [CrossRef]
- Siddique, A.; Azim, S.; Ali, A.; Adnan, F.; Arif, M.; Imran, M.; Ganda, E.; Rahman, A. Lactobacillus reuteri and Enterococcus faecium from poultry gut reduce mucin adhesion and biofilm formation of cephalosporin and fluoroquinolone-resistant Salmonella enterica. Animals 2021, 11, 3435. [Google Scholar] [CrossRef]
- Rodríguez-Sorrento, A.; Castillejos, L.; López-Colom, P.; Cifuentes-Orjuela, G.; Rodríguez-Palmero, M.; Moreno-Muñoz, J.A.; Martín-Orúe, S.M. Effects of Bifidobacterium longum subsp. infantis CECT 7210 and Lactobacillus rhamnosus HN001, combined or not with oligofructose-enriched inulin, on weaned pigs orally challenged with Salmonella typhimurium. Front. Microbiol. 2020, 11, 2012. [Google Scholar] [CrossRef]
- Bumbie, G.Z.; Abormegah, L.; Asiedu, P.; Oduro-Owusu, A.D.; Koranteng, A.A.-A.; Ansah, K.O.; Lamptey, V.K.; Chen, C.; Mohamed, T.M.; Tang, Z. Influence of Pediococcus pentosaceus GT001 on Performance, Meat Quality, Immune Function, Antioxidant and Cecum Microbial in Broiler Chickens Challenged by Salmonella typhimurium. Animals 2024, 14, 1676. [Google Scholar] [CrossRef] [PubMed]
- Khursheed, R.; Gulati, M.; Wadhwa, S.; Vishwas, S.; Sharma, D.S.; Corrie, L.; Alam, A.; Alnasser, S.M.; Alkhayl, F.F.A.; Parveen, Z. Multifaceted role of synbiotics as nutraceuticals, therapeutics and carrier for drug delivery. Chem. Biol. Interact. 2022, 368, 110223. [Google Scholar] [CrossRef] [PubMed]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.J.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- De Vrese, M.; Schrezenmeir. Probiotics, prebiotics, and synbiotics. Food Biotechnol. 2008, 111, 1–66. [Google Scholar]
- Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 1–19. [Google Scholar] [CrossRef]
- Clarke, T.B.; Davis, K.M.; Lysenko, E.S.; Zhou, A.Y.; Yu, Y.; Weiser, J.N. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 2010, 16, 228–231. [Google Scholar] [CrossRef]
- Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.; Brummer, R.J. The role of butyrate on colonic function. Aliment. Pharmacol. Ther. 2008, 27, 104–119. [Google Scholar] [CrossRef]
- Micciche, A.C.; Foley, S.L.; Pavlidis, H.O.; McIntyre, D.R.; Ricke, S.C. A review of prebiotics against Salmonella in poultry: Current and future potential for microbiome research applications. Front. Vet. Sci. 2018, 5, 191. [Google Scholar] [CrossRef]
- Ismael, S.S.; Abdullah, B.H.; Abdulla, B.I. The Role of Probiotics and Prebiotics in Preventing Salmonellosis. In Holistic Health: Gut Microbiota and Holistic Health: The Role of Prebiotics and Probiotics; Unique Scientific Publishers: Faisalabad, Pakistan, 2025; pp. 155–160. [Google Scholar]
- Deng, L.; Wang, S. Colonization resistance: The role of gut microbiota in preventing Salmonella invasion and infection. Gut Microbes 2024, 16, 2424914. [Google Scholar] [CrossRef]
- ovee-Oudenhoven, I.; Ten Bruggencate, S.; Lettink-Wissink, M.; Van der Meer, R. Dietary fructo-oligosaccharides and lactulose inhibit intestinal colonisation but stimulate translocation of salmonella in rats. Gut 2003, 52, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.; Heegaard, P.M.; Pedersen, A.L.; Andersen, J.B.; Sørensen, R.B.; Frøkiær, H.; Lahtinen, S.J.; Ouwehand, A.C.; Poulsen, M.; Licht, T.R. Some putative prebiotics increase the severity of Salmonella enterica serovar Typhimurium infection in mice. BMC Microbiol. 2009, 9, 245. [Google Scholar] [CrossRef] [PubMed]
- Donalson, L.; McReynolds, J.; Kim, W.; Chalova, V.; Woodward, C.; Kubena, L.; Nisbet, D.; Ricke, S. The influence of a fructooligosaccharide prebiotic combined with alfalfa molt diets on the gastrointestinal tract fermentation, Salmonella enteritidis infection, and intestinal shedding in laying hens. Poult. Sci. 2008, 87, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.L.; Keita, Å.V.; Parsons, B.N.; Prorok-Hamon, M.; Knight, P.; Winstanley, C.; Niamh, O.; Söderholm, J.D.; Rhodes, J.M.; Campbell, B.J. Soluble plantain fibre blocks adhesion and M-cell translocation of intestinal pathogens. J. Nutr. Biochem. 2013, 24, 97–103. [Google Scholar] [CrossRef]
- Badia, R.; Lizardo, R.; Martínez, P.; Brufau, J. Oligosaccharide structure determines prebiotic role of β-galactomannan against Salmonella enterica ser. Typhimurium in vitro. Gut Microbes 2013, 4, 72–75. [Google Scholar] [CrossRef]
- Letellier, A.; Messier, S.; Lessard, L.; Quessy, S. Assessment of various treatments to reduce carriage of Salmonella in swine. Can. J. Vet. Res. 2000, 64, 27. [Google Scholar]
- Andrés-Barranco, S.; Vico, J.P.; Grilló, M.J.; Mainar-Jaime, R.C. Reduction of subclinical Salmonella infection in fattening pigs after dietary supplementation with a ß-galactomannan oligosaccharide. J. Appl. Microbiol. 2015, 118, 284–294. [Google Scholar] [CrossRef]
- Ribeiro, A.M.L.; Vogt, L.K.; Canal, C.W.; Cardoso, M.d.I.; Labres, R.V.; Streck, A.F.; Bessa, M.C. Effects of prebiotics and probiotics on the colonization and immune response of broiler chickens challenged with Salmonella Enteritidis. Braz. J. Poult. Sci. 2007, 9, 193–200. [Google Scholar] [CrossRef]
- Pieper, R.; Bindelle, J.; Malik, G.; Marshall, J.; Rossnagel, B.G.; Leterme, P.; Van Kessel, A.G. Influence of different carbohydrate composition in barley varieties on Salmonella typhimurium var. Copenhagen colonisation in a “Trojan” challenge model in pigs. Arch. Anim. Nutr. 2012, 66, 163–179. [Google Scholar] [CrossRef]
- Babu, U.S.; Sommers, K.; Harrison, L.M.; Balan, K.V. Effects of fructooligosaccharide-inulin on Salmonella-killing and inflammatory gene expression in chicken macrophages. Vet. Immunol. Immunopathol. 2012, 149, 92–96. [Google Scholar] [CrossRef]
- Martyniak, A.; Medyńska-Przęczek, A.; Wędrychowicz, A.; Skoczeń, S.; Tomasik, P.J. Prebiotics, probiotics, synbiotics, paraprobiotics and postbiotic compounds in IBD. Biomolecules 2021, 11, 1903. [Google Scholar] [CrossRef] [PubMed]
- Vinderola, G.; Sanders, M.E.; Cunningham, M.; Hill, C. Frequently asked questions about the ISAPP postbiotic definition. Front. Microbiol. 2024, 14, 1324565. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, S.; Li, S.; Jiang, W.; Wang, J.; Xiao, J.; Chen, T.; Ma, J.; Khan, M.Z.; Wang, W. Unlocking the power of postbiotics: A revolutionary approach to nutrition for humans and animals. Cell Metab. 2024, 36, 725–744. [Google Scholar] [CrossRef] [PubMed]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A step beyond pre-and probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef]
- Russo, E.; Giudici, F.; Fiorindi, C.; Ficari, F.; Scaringi, S.; Amedei, A. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease. Front. Immunol. 2019, 10, 2754. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Wan, Y.; Hu, T.; Liu, L.; Yang, S.; Gong, Z.; Zeng, Q.; Wei, Y.; Yang, W. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front. Microbiol. 2019, 10, 477. [Google Scholar] [CrossRef]
- Moradi, M.; Kousheh, S.A.; Almasi, H.; Alizadeh, A.; Guimarães, J.T.; Yılmaz, N.; Lotfi, A. Postbiotics produced by lactic acid bacteria: The next frontier in food safety. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3390–3415. [Google Scholar] [CrossRef]
- Benkowski, A.A.; Schmitt, E.; Williams, E.; Copple, C.; Legan, J.D. Postbiotics: Considerations for Safety and Quality Management; International Association of Food Protection: Toronto, ON, Canada, 2023. [Google Scholar]
- Noori, S.M.A.; Behfar, A.; Saadat, A.; Ameri, A.; Yazdi, S.S.A.; Siahpoosh, A. Antimicrobial and antioxidant properties of natural postbiotics derived from five lactic acid bacteria. Jundishapur J. Nat. Pharm. Prod. 2023, 18, e130785. [Google Scholar] [CrossRef]
- Rosales Cavaglieri, L.A.; Isgro, M.C.; Aminahuel, C.; Parada, J.; Poloni, V.L.; Montenegro, M.A.; Alonso, V.; Falcone, R.D.; Cavaglieri, L.R. Exploring the potential of lactic acid bacteria to produce postbiotics with antimicrobial and antioxidant properties: Focus on the probiotic strain Pediococcus pentosaceus RC007 for industrial-scale production. Int. J. Food Sci. Technol. 2025, 60, vvae003. [Google Scholar] [CrossRef]
- Bueno, E.B.T.; Silva, K.d.O.; Mendes, M.E.F.; de Oliveira, L.B.; Menezes, F.P.d.; Imperador, A.C.; Correia, L.F.; Winkelstroter, L.K. Postbiotics Derived from Lactic Acid Bacteria Fermentation: Therapeutic Potential in the Treatment of Muscular Complications in Inflammatory Bowel Disease. Fermentation 2025, 11, 362. [Google Scholar] [CrossRef]
- Yin, F.; Farzan, A.; Wang, Q.; Yu, H.; Yin, Y.; Hou, Y.; Friendship, R.; Gong, J. Reduction of Salmonella enterica serovar Typhimurium DT104 infection in experimentally challenged weaned pigs fed a Lactobacillus-fermented feed. Foodborne Pathog. Dis. 2014, 11, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.; Liang, Y.; Sharon, K.; Sellers, M.; Yoon, I.; Scott, M.; Carroll, J.; Ballou, M. Influence of Saccharomyces cerevisiae fermentation products, SmartCare in milk replacer and Original XPC in calf starter, on the performance and health of preweaned Holstein calves challenged with Salmonella enterica serotype Typhimurium. J. Dairy Sci. 2017, 100, 7154–7164. [Google Scholar] [CrossRef] [PubMed]
- Reddyvari, R.; Amalaradjou, M.A. Postbiotic Wash Treatments: A Novel Post-Harvest Approach to Reduce Salmonella and Enhance Egg Safety. Food Control 2025, 176, 111398. [Google Scholar] [CrossRef]
- Ruvalcaba-Gómez, J.M.; Villagrán, Z.; Valdez-Alarcón, J.J.; Martínez-Núñez, M.; Gomez-Godínez, L.J.; Ruesga-Gutiérrez, E.; Anaya-Esparza, L.M.; Arteaga-Garibay, R.I.; Villarruel-López, A. Non-antibiotics strategies to control Salmonella infection in poultry. Animals 2022, 12, 102. [Google Scholar] [CrossRef]
- Rima, M.; Rima, M.; Fajloun, Z.; Sabatier, J.-M.; Bechinger, B.; Naas, T. Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics 2021, 10, 1095. [Google Scholar] [CrossRef]
- Johnstone, K.F.; Herzberg, M.C. Antimicrobial peptides: Defending the mucosal epithelial barrier. Front. Oral Health 2022, 3, 958480. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, J.; Ma, Z.; Ma, J.; Chen, J. Advances in antimicrobial peptides: Mechanisms, design innovations, and biomedical potential. Molecules 2025, 30, 1529. [Google Scholar] [CrossRef]
- Kathayat, D.; Closs, G., Jr.; Helmy, Y.A.; Deblais, L.; Srivastava, V.; Rajashekara, G. In vitro and in vivo evaluation of Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 against avian pathogenic Escherichia coli and identification of novel probiotic-derived bioactive peptides. Probiotics Antimicrob. Proteins 2022, 14, 1012–1028. [Google Scholar] [CrossRef]
- Malkoski, M.; Dashper, S.G.; O’Brien-Simpson, N.M.; Talbo, G.H.; Macris, M.; Cross, K.J.; Reynolds, E.C. Kappacin, a novel antibacterial peptide from bovine milk. Antimicrob. Agents Chemother. 2001, 45, 2309–2315. [Google Scholar] [CrossRef]
- Papo, N.; Shai, Y. Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 2003, 24, 1693–1703. [Google Scholar] [CrossRef]
- Lohner, K.; Prossnigg, F. Biological activity and structural aspects of PGLa interaction with membrane mimetic systems. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2009, 1788, 1656–1666. [Google Scholar] [CrossRef]
- He, S.-w.; Zhang, J.; Li, N.-q.; Zhou, S.; Yue, B.; Zhang, M. A TFPI-1 peptide that induces degradation of bacterial nucleic acids, and inhibits bacterial and viral infection in half-smooth tongue sole, Cynoglossus semilaevis. Fish Shellfish Immunol. 2017, 60, 466–473. [Google Scholar] [CrossRef]
- Le, C.-F.; Fang, C.-M.; Sekaran, S.D. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob. Agents Chemother. 2017, 61, 10-1128. [Google Scholar] [CrossRef]
- Li, L.; Mo, Q.; Wan, Y.; Zhou, Y.; Li, W.; Li, W. Antimicrobial peptide AP2 ameliorates Salmonella typhimurium infection by modulating gut microbiota. BMC Microbiol. 2025, 25, 64. [Google Scholar] [CrossRef] [PubMed]
- Festa, R.; Ambrosio, R.L.; Lamas, A.; Gratino, L.; Palmieri, G.; Franco, C.M.; Cepeda, A.; Anastasio, A. A study on the antimicrobial and antibiofilm peptide 1018-K6 as potential alternative to antibiotics against food-pathogen Salmonella enterica. Foods 2021, 10, 1372. [Google Scholar] [CrossRef] [PubMed]
- Benincasa, M.; Pelillo, C.; Zorzet, S.; Garrovo, C.; Biffi, S.; Gennaro, R.; Scocchi, M. The proline-rich peptide Bac7 (1-35) reduces mortality from Salmonella typhimurium in a mouse model of infection. BMC Microbiol. 2010, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhang, D.; Cheng, Z.; Niu, Y.; Kong, L.; Lu, Z.; Bie, X. Designed symmetrical β-hairpin peptides for treating multidrug-resistant Salmonella typhimurium infections. Eur. J. Med. Chem. 2022, 243, 114769. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Q.; Dong, M.; Song, H.; Hang, B.; Sun, Y.; Zhang, H.; Hu, J. Evaluation of the efficacy of the antimicrobial peptide HJH-3 in chickens infected with Salmonella pullorum. Front. Microbiol. 2023, 14, 1102789. [Google Scholar] [CrossRef]
- Mangmee, S.; Reamtong, O.; Kalambaheti, T.; Roytrakul, S.; Sonthayanon, P. Antimicrobial peptide modifications against clinically isolated antibiotic-resistant Salmonella. Molecules 2021, 26, 4654. [Google Scholar] [CrossRef]
- Klubthawee, N.; Aunpad, R. A thermostable, modified cathelicidin-derived peptide with enhanced membrane-active activity against Salmonella enterica serovar Typhimurium. Front. Microbiol. 2021, 11, 592220. [Google Scholar] [CrossRef]
- Sengkhui, S.; Klubthawee, N.; Aunpad, R. A novel designed membrane-active peptide for the control of foodborne Salmonella enterica serovar Typhimurium. Sci. Rep. 2023, 13, 3507. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Y.; Hu, J. Intracellular mechanism of antimicrobial peptide HJH-3 against Salmonella pullorum. RSC Adv. 2022, 12, 14485–14491. [Google Scholar] [CrossRef]
- Rosenberger, C.M.; Gallo, R.L.; Finlay, B.B. Interplay between antibacterial effectors: A macrophage antimicrobial peptide impairs intracellular Salmonella replication. Proc. Natl. Acad. Sci. USA 2004, 101, 2422–2427. [Google Scholar] [CrossRef]
- Wang, G.; Song, Q.; Huang, S.; Wang, Y.; Cai, S.; Yu, H.; Ding, X.; Zeng, X.; Zhang, J. Effect of antimicrobial peptide microcin J25 on growth performance, immune regulation, and intestinal microbiota in broiler chickens challenged with Escherichia coli and Salmonella. Animals 2020, 10, 345. [Google Scholar] [CrossRef] [PubMed]
- Yeom, J.-H.; Lee, B.; Kim, D.; Lee, J.-k.; Kim, S.; Bae, J.; Park, Y.; Lee, K. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials 2016, 104, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Tuxpan-Pérez, A.; Ibarra-Valencia, M.A.; Estrada, B.E.; Clement, H.; Corrales-García, L.L.; Espino-Solis, G.P.; Corzo, G. Antimicrobial and immunomodulatory effects of selected chemokine and antimicrobial peptide on cytokine profile during Salmonella typhimurium infection in mouse. Antibiotics 2022, 11, 607. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial properties of plant essential oils against human pathogens and their mode of action: An updated review. Evid. Based Complement. Altern. Med. 2016, 2016, 3012462. [Google Scholar]
- Inouye, S.; Abe, S.; Yamaguchi, H.; Asakura, M. Comparative study of antimicrobial and cytotoxic effects of selected essential oils by gaseous and solution contacts. Int. J. Aromather. 2003, 13, 33–41. [Google Scholar] [CrossRef]
- Aromatics, N.D. A Comprehensive Guide to Essential Oil Extraction Methods. Available online: https://www.newdirectionsaromatics.com/blog/articles/how-essential-oils-are-made.html#maceration (accessed on 7 September 2025).
- Valdivieso-Ugarte, M.; Gomez-Llorente, C.; Plaza-Díaz, J.; Gil, Á. Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: A systematic review. Nutrients 2019, 11, 2786. [Google Scholar] [CrossRef]
- Bouyahya, A.; Abrini, J.; Dakka, N.; Bakri, Y. Essential oils of Origanum compactum increase membrane permeability, disturb cell membrane integrity, and suppress quorum-sensing phenotype in bacteria. J. Pharm. Anal. 2019, 9, 301–311. [Google Scholar] [CrossRef]
- Cáceres, M.; Hidalgo, W.; Stashenko, E.; Torres, R.; Ortiz, C. Essential oils of aromatic plants with antibacterial, anti-biofilm and anti-quorum sensing activities against pathogenic bacteria. Antibiotics 2020, 9, 147. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. The inhibitory effect of plant essential oils on foodborne pathogenic bacteria in food. Crit. Rev. Food Sci. Nutr. 2019, 59, 3281–3292. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Méndez-Vilas, A. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances; Formatex Research Center: Badajoz, Spain, 2011; Volume 1. [Google Scholar]
- Al-Maqtari, Q.A.; Rehman, A.; Mahdi, A.A.; Al-Ansi, W.; Wei, M.; Yanyu, Z.; Phyo, H.M.; Galeboe, O.; Yao, W. Application of essential oils as preservatives in food systems: Challenges and future prospectives—A review. Phytochem. Rev. 2021, 21, 1209–1246. [Google Scholar] [CrossRef]
- O’Brien, T.F. Emergence, spread, and environmental effect of antimicrobial resistance: How use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clin. Infect. Dis. 2002, 34, S78–S84. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Meng, X.; Li, Y.; Zhao, C.-N.; Tang, G.-Y.; Li, H.-B. Antibacterial and antifungal activities of spices. Int. J. Mol. Sci. 2017, 18, 1283. [Google Scholar] [CrossRef] [PubMed]
- Vidaković Knežević, S.; Kocić-Tanackov, S.; Kravić, S.; Knežević, S.; Vranešević, J.; Savić Radovanović, R.; Karabasil, N. In vitro antibacterial activity of some essential oils against Salmonella Enteritidis and Salmonella typhimurium isolated from meat. J. Food Saf. Food Qual. 2021, 72, 4–11. [Google Scholar] [CrossRef]
- Matasyoh, J.; Maiyo, Z.; Ngure, R.; Chepkorir, R. Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chem. 2009, 113, 526–529. [Google Scholar] [CrossRef]
- Moharreri, M.; Vakili, R.; Oskoueian, E. Evaluation of microencapsulated essential oils in broilers challenged with Salmonella enteritidis: A focus on the body’s antioxidant status, gut microbiology, and morphology. Arch. Razi Inst. 2022, 77, 629. [Google Scholar] [PubMed]
- Bisht, D.S.; Menon, K.; Singhal, M.K. Comparative antimicrobial activity of essential oils of Cuminum cyminum L. and Foeniculum vulgare Mill. seeds against Salmonella typhimurium and Escherichia coli. J. Essent. Oil Bear. Plants 2014, 17, 617–622. [Google Scholar] [CrossRef]
- Alali, W.; Hofacre, C.L.; Mathis, G.; Faltys, G. Effect of essential oil compound on shedding and colonization of Salmonella enterica serovar Heidelberg in broilers. Poult. Sci. 2013, 92, 836–841. [Google Scholar] [CrossRef]
- Yilmaz, E.A.; Yalçin, H.; Polat, Z. Antimicrobial effects of laurel extract, laurel essential oil, zahter extract, and zahter essential oil on chicken wings contaminated with Salmonella typhimurium. Vet. Med. Sci. 2024, 10, e1445. [Google Scholar] [CrossRef]
- Seyedtaghiya, M.H.; Fasaei, B.N.; Peighambari, S.M. Antimicrobial and antibiofilm effects of Satureja hortensis essential oil against Escherichia coli and Salmonella isolated from poultry. Iran. J. Microbiol. 2021, 13, 74. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, T.; Chen, J.; Ye, Y. Inhibition of Salmonella Enteritidis by essential oil components and the effect of storage on the quality of chicken. Foods 2023, 12, 2560. [Google Scholar] [CrossRef] [PubMed]
- Listorti, V.; Battistini, R.; Ercolini, C.; Tramuta, C.; Razzuoli, E.; Vencia, W.; Decastelli, L.; Gallina, S.; Masotti, C.; Serracca, L. In vitro susceptibility of multidrug resistant strains of Salmonella to essential oils. Nat. Prod. Commun. 2020, 15, 1934578X19878904. [Google Scholar] [CrossRef]
- Johny, A.K.; Darre, M.; Donoghue, A.; Donoghue, D.; Venkitanarayanan, K. Antibacterial effect of trans-cinnamaldehyde, eugenol, carvacrol, and thymol on Salmonella Enteritidis and Campylobacter jejuni in chicken cecal contents in vitro. J. Appl. Poult. Res. 2010, 19, 237–244. [Google Scholar] [CrossRef]
- Doores, S. Organic acids. In Food Science and Technology; Marcel Dekker: New York, NY, USA, 2005; Volume 145, p. 91. [Google Scholar]
- Coban, H.B. Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst. Eng. 2020, 43, 569–591. [Google Scholar] [CrossRef]
- Guan, N.; Liu, L. Microbial response to acid stress: Mechanisms and applications. Appl. Microbiol. Biotechnol. 2020, 104, 51–65. [Google Scholar] [CrossRef]
- Van Immerseel, F.; Russell, J.; Flythe, M.; Gantois, I.; Timbermont, L.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R. The use of organic acids to combat Salmonella in poultry: A mechanistic explanation of the efficacy. Avian Pathol. 2006, 35, 182–188. [Google Scholar] [CrossRef]
- Polycarpo, G.V.; Andretta, I.; Kipper, M.; Cruz-Polycarpo, V.C.; Dadalt, J.C.; Rodrigues, P.H.M.; Albuquerque, R.d. Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens. Poult. Sci. 2017, 96, 3645–3653. [Google Scholar] [CrossRef]
- Jarquin, R.; Nava, G.; Wolfenden, A.; Donoghue, A.; Hanning, I.; Higgins, S.; Hargis, B. The evaluation of organic acids and probiotic cultures to reduce Salmonella enteriditis horizontal transmission and crop infection in broiler chickens. Int. J. Poult. Sci. 2007, 6, 182–186. [Google Scholar] [CrossRef]
- Fabà, L.; Litjens, R.; Allaart, J.; van den Hil, P.R. Feed additive blends fed to nursery pigs challenged with Salmonella. J. Anim. Sci. 2020, 98, skz382. [Google Scholar] [CrossRef] [PubMed]
- Sausen, L.; Mendes, S.; Refatti Sikorski, R.d.F. Use of an organic acid blend to control the spread of Salmonella Heidelberg and improve broiler performance. Med. Vet. (UFRPE) 2022, 16, 49–58. [Google Scholar] [CrossRef]
- Bernad-Roche, M.; Marín-Alcalá, C.M.; Vico, J.P.; Mainar-Jaime, R.C. Salmonella Control in Fattening Pigs through the Use of Esterified Formic Acid in Drinking Water Shortly before Slaughter. Animals 2023, 13, 2814. [Google Scholar] [CrossRef]
- Van Immerseel, F.; De Buck, J.; Boyen, F.; Bohez, L.; Pasmans, F.; Volf, J.; Sevcik, M.; Rychlik, I.; Haesebrouck, F.; Ducatelle, R. Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with Salmonella enterica serovar Enteritidis. Appl. Environ. Microbiol. 2004, 70, 3582–3587. [Google Scholar] [CrossRef]
- Koyuncu, S.; Andersson, M.G.; Löfström, C.; Skandamis, P.N.; Gounadaki, A.; Zentek, J.; Häggblom, P. Organic acids for control of Salmonella in different feed materials. BMC Vet. Res. 2013, 9, 1–9. [Google Scholar] [CrossRef]
- Saleh, M.; El-Moghazy, A.; Elgohary, A.H.; Saber, W.I.; Helmy, Y.A. Revolutionizing Nanovaccines: A New Era of Immunization. Vaccines 2025, 13, 126. [Google Scholar] [CrossRef]
- Kallerup, R.S.; Foged, C. Classification of vaccines. In Subunit Vaccine Delivery; Springer: New York, NY, USA, 2014; pp. 15–29. [Google Scholar]
- Plotkin, S.A.; Plotkin, S.L. The development of vaccines: How the past led to the future. Nat. Rev. Microbiol. 2011, 9, 889–893. [Google Scholar] [CrossRef]
- Delany, I.; Rappuoli, R.; De Gregorio, E. Vaccines for the 21st century. EMBO Mol. Med. 2014, 6, 708–720. [Google Scholar] [CrossRef]
- Helmy, Y.A.; Fawzy, M.; Elaswad, A.; Sobieh, A.; Kenney, S.P.; Shehata, A.A. The COVID-19 pandemic: A comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J. Clin. Med. 2020, 9, 1225. [Google Scholar] [CrossRef]
- Rappuoli, R.; Pizza, M.; Del Giudice, G.; De Gregorio, E. Vaccines, new opportunities for a new society. Proc. Natl. Acad. Sci. USA 2014, 111, 12288–12293. [Google Scholar] [CrossRef]
- Elaish, M.; Ngunjiri, J.M.; Ali, A.; Xia, M.; Ibrahim, M.; Jang, H.; Hiremath, J.; Dhakal, S.; Helmy, Y.A.; Jiang, X. Supplementation of inactivated influenza vaccine with norovirus P particle-M2e chimeric vaccine enhances protection against heterologous virus challenge in chickens. PLoS ONE 2017, 12, e0171174. [Google Scholar] [CrossRef]
- Fawzy, M.; Helmy, Y.A. The one health approach is necessary for the control of Rift Valley fever infections in Egypt: A comprehensive review. Viruses 2019, 11, 139. [Google Scholar] [CrossRef]
- Zepp, F. Principles of vaccination. In Vaccine Design: Methods and Protocols: Volume 1: Vaccines for Human Diseases; Springer: New York, NY, USA, 2016; pp. 57–84. [Google Scholar]
- Francis, M.J. Recent advances in vaccine technologies. Vet. Clin. North Am. Small Anim. Pract. 2017, 48, 231. [Google Scholar] [CrossRef]
- Bordin, A.I.; Cohen, N.D. Types of vaccines. In Equine Clinical Immunology; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 279–288. ISBN 9781119086512. [Google Scholar]
- Moyle, P.M.; Toth, I. Modern subunit vaccines: Development, components, and research opportunities. ChemMedChem 2013, 8, 360–376. [Google Scholar] [CrossRef]
- Bröker, M.; Berti, F.; Schneider, J.; Vojtek, I. Polysaccharide conjugate vaccine protein carriers as a “neglected valency”–potential and limitations. Vaccine 2017, 35, 3286–3294. [Google Scholar] [CrossRef] [PubMed]
- Angsantikul, P.; Fang, R.H.; Zhang, L. Toxoid vaccination against bacterial infection using cell membrane-coated nanoparticles. Bioconjugate Chem. 2017, 29, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Micoli, F.; MacLennan, C.A. Outer membrane vesicle vaccines. Semin. Immunol. 2020, 50, 101433. [Google Scholar] [CrossRef] [PubMed]
- Robinson, H.L. Nucleic acid vaccines: An overview. Vaccine 1997, 15, 785–787. [Google Scholar]
- Gheibi Hayat, S.M.; Darroudi, M. Nanovaccine: A novel approach in immunization. J. Cell. Physiol. 2019, 234, 12530–12536. [Google Scholar] [CrossRef]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2021, 21, 83–100. [Google Scholar] [CrossRef]
- Tekle, Y.I.; Nielsen, K.M.; Liu, J.; Pettigrew, M.M.; Meyers, L.A.; Galvani, A.P.; Townsend, J.P. Controlling antimicrobial resistance through targeted, vaccine-induced replacement of strains. PLoS ONE 2012, 7, e50688. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.W.; Smith, F.; Zuidhof, S.; Foster, D.M. Characterization of the serologic response induced by vaccination of late-gestation cows with a Salmonella Dublin vaccine. J. Dairy Sci. 2015, 98, 2529–2532. [Google Scholar] [CrossRef] [PubMed]
- Edrington, T.S.; Arthur, T.M.; Loneragan, G.H.; Genovese, K.J.; Hanson, D.L.; Anderson, R.C.; Nisbet, D.J. Evaluation of two commercially-available Salmonella vaccines on Salmonella in the peripheral lymph nodes of experimentally-infected cattle. Ther. Adv. Vaccines Immunother. 2020, 8, 2515135520957760. [Google Scholar] [CrossRef] [PubMed]
- Muniz, E.C.; Verdi, R.; Leão, J.A.; Back, A.; Nascimento, V.P.d. Evaluation of the effectiveness and safety of a genetically modified live vaccine in broilers challenged with Salmonella Heidelberg. Avian Pathol. 2017, 46, 676–682. [Google Scholar] [CrossRef]
- Crouch, C.F.; Nell, T.; Reijnders, M.; Donkers, T.; Pugh, C.; Patel, A.; Davis, P.; van Hulten, M.C.; de Vries, S.P. Safety and efficacy of a novel inactivated trivalent Salmonella enterica vaccine in chickens. Vaccine 2020, 38, 6741–6750. [Google Scholar] [CrossRef]
- Huberman, Y.D.; Velilla, A.V.; Terzolo, H.R. Evaluation of different live Salmonella enteritidis vaccine schedules administered during layer hen rearing to reduce excretion, organ colonization, and egg contamination. Poult. Sci. 2019, 98, 2422–2431. [Google Scholar] [CrossRef]
- Renu, S.; Han, Y.; Dhakal, S.; Lakshmanappa, Y.S.; Ghimire, S.; Feliciano-Ruiz, N.; Senapati, S.; Narasimhan, B.; Selvaraj, R.; Renukaradhya, G.J. Chitosan-adjuvanted Salmonella subunit nanoparticle vaccine for poultry delivered through drinking water and feed. Carbohydr. Polym. 2020, 243, 116434. [Google Scholar] [CrossRef]
- Pavic, A.; Groves, P.J.; Cox, J.M. Utilization of a novel autologous killed tri-vaccine (serogroups B [Typhimurium], C [Mbandaka] and E [Orion]) for Salmonella control in commercial poultry breeders. Avian Pathol. 2010, 39, 31–39. [Google Scholar] [CrossRef]
- Wahid, R.; Simon, R.; Zafar, S.J.; Levine, M.M.; Sztein, M.B. Live oral typhoid vaccine Ty21a induces cross-reactive humoral immune responses against Salmonella enterica serovar Paratyphi A and S. paratyphi B in humans. Clin. Vaccine Immunol. 2012, 19, 825–834. [Google Scholar] [CrossRef]
- Levine, M.M.; Ferreccio, C.; Black, R.E.; Lagos, R.; Martin, O.S.; Blackwelder, W.C. Ty21a live oral typhoid vaccine and prevention of paratyphoid fever caused by Salmonella enterica Serovar Paratyphi B. Clin. Infect. Dis. 2007, 45, S24–S28. [Google Scholar] [CrossRef]
- Micoli, F.; Rondini, S.; Pisoni, I.; Giannelli, C.; Di Cioccio, V.; Costantino, P.; Saul, A.; Martin, L. Production of a conjugate vaccine for Salmonella enterica serovar Typhi from Citrobacter Vi. Vaccine 2012, 30, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Jossi, S.E.; Arcuri, M.; Alshayea, A.; Persaud, R.R.; Marcial-Juárez, E.; Palmieri, E.; Di Benedetto, R.; Pérez-Toledo, M.; Pillaye, J.; Channell, W.M. Vi polysaccharide and conjugated vaccines afford similar early, IgM or IgG-independent control of infection but boosting with conjugated Vi vaccines sustains the efficacy of immune responses. Front. Immunol. 2023, 14, 1139329. [Google Scholar] [CrossRef] [PubMed]
- Urban-Chmiel, R.; Pyzik, E. Selected Mechanisms of Action of Bacteriophages in Bacterial Infections in Animals. Viruses 2025, 17, 101. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Gaitero, M.; Seoane-Blanco, M.; van Raaij, M.J. Structure and function of bacteriophages. In Bacteriophages: Biology, Technology, Therapy; Springer: Cham, Switzerland, 2021; pp. 19–91. [Google Scholar]
- Ly-Chatain, M.H. The factors affecting effectiveness of treatment in phages therapy. Front. Microbiol. 2014, 5, 51. [Google Scholar] [CrossRef]
- Międzybrodzki, R.; Kasprzak, H.; Letkiewicz, S.; Rogóż, P.; Żaczek, M.; Thomas, J.; Górski, A. Pharmacokinetic and pharmacodynamic obstacles for phage therapy from the perspective of clinical practice. Clin. Infect. Dis. 2023, 77, S395–S400. [Google Scholar] [CrossRef]
- Nale, J.Y.; Vinner, G.K.; Lopez, V.C.; Thanki, A.M.; Phothaworn, P.; Thiennimitr, P.; Garcia, A.; AbuOun, M.; Anjum, M.F.; Korbsrisate, S. An optimized bacteriophage cocktail can effectively control Salmonella in vitro and in Galleria mellonella. Front. Microbiol. 2021, 11, 609955. [Google Scholar] [CrossRef]
- Toro, H.; Price, S.; McKee, S.; Hoerr, F.; Krehling, J.; Perdue, M.; Bauermeister, L. Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis. 2005, 49, 118–124. [Google Scholar] [CrossRef]
- Borie, C.; Albala, I.; Sánchez, P.; Sánchez, M.; Ramírez, S.; Navarro, C.; Morales, M.; Retamales, J.; Robeson, J. Bacteriophage treatment reduces Salmonella colonization of infected chickens. Avian Dis. 2008, 52, 64–67. [Google Scholar] [CrossRef]
- Parveen, S.; Schwarz, J.; Hashem, F.; Vimini, B. Reduction of Salmonella in ground chicken using a bacteriophage. Poult. Sci. 2017, 96, 2845–2852. [Google Scholar] [CrossRef] [PubMed]
- Clavijo, V.; Baquero, D.; Hernandez, S.; Farfan, J.; Arias, J.; Arévalo, A.; Donado-Godoy, P.; Vives-Flores, M. Phage cocktail SalmoFREE® reduces Salmonella on a commercial broiler farm. Poult. Sci. 2019, 98, 5054–5063. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, E.A.; Stańczyk, M.; Wojtasik, A.; Kowalska, J.D.; Nowakowska, M.; Łukasiak, M.; Bartnicka, M.; Kazimierczak, J.; Dastych, J. Comprehensive evaluation of the safety and efficacy of BAFASAL® bacteriophage preparation for the reduction of Salmonella in the food chain. Viruses 2020, 12, 742. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Rebenaque, L.; Malik, D.J.; Catalá-Gregori, P.; Marin, C.; Sevilla-Navarro, S. In vitro and in vivo gastrointestinal survival of non-encapsulated and microencapsulated Salmonella bacteriophages: Implications for bacteriophage therapy in poultry. Pharmaceuticals 2021, 14, 434. [Google Scholar] [CrossRef]
- Nale, J.Y.; Ahmed, B.; Haigh, R.; Shan, J.; Phothaworn, P.; Thiennimitr, P.; Garcia, A.; AbuOun, M.; Anjum, M.F.; Korbsrisate, S. Activity of a bacteriophage cocktail to control Salmonella growth ex vivo in Avian, Porcine, and human epithelial cell cultures. Phage 2023, 4, 11–25. [Google Scholar] [CrossRef]
- Vaz, C.S.L.; Voss-Rech, D.; Alves, L.; Coldebella, A.; Brentano, L.; Trevisol, I.M. Effect of time of therapy with wild-type lytic bacteriophages on the reduction of Salmonella Enteritidis in broiler chickens. Vet. Microbiol. 2020, 240, 108527. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, M.; Liao, Y.-T.; Salvador, A.; Wu, V.C. Characterization of two novel Salmonella phages having biocontrol potential against Salmonella spp. in gastrointestinal conditions. Sci. Rep. 2024, 14, 12294. [Google Scholar] [CrossRef]
- Pourabadeh, A.H.; Madani, S.A.; Dorostkar, R.; Rezaeian, M.; Esmaeili, H.; Bolandian, M.; Salavati, A.; Hashemian, S.M.M.; Aghahasani, A. Evaluation of the in vitro and in vivo efficiency of in-feed bacteriophage cocktail application to control Salmonella typhimurium and Salmonella Enteritidis infection in broiler chicks. Avian Pathol. 2024, 53, 174–181. [Google Scholar] [CrossRef]
- Thanki, A.M.; Hooton, S.; Whenham, N.; Salter, M.G.; Bedford, M.R.; O’Neill, H.V.M.; Clokie, M.R. A bacteriophage cocktail delivered in feed significantly reduced Salmonella colonization in challenged broiler chickens. Emerg. Microbes Infect. 2023, 12, 2217947. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Wang, Z.; Wei, J.; Hu, T.; Si, J.; Tao, G.; Zhang, L.; Xie, L.; Abdalla, A.E. A combination therapy of Phages and Antibiotics: Two is better than one. Int. J. Biol. Sci. 2021, 17, 3573. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Aslam, M.A.; Kanwar, R.; Mehmood, Z.; Arshad, M.I.; Hussain, S. Phage-antibiotic synergism against Salmonella typhi isolated from stool samples of typhoid patients. Ir. J. Med. Sci. (1971) 2024, 193, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, M.G.; Al-Hindi, R.R.; Alotibi, I.A.; Azhari, S.A.; Farsi, R.M.; Teklemariam, A.D. Evaluation of phage—Antibiotic combinations in the treatment of extended-spectrum β-lactamase-producing Salmonella enteritidis strain PT1. Heliyon 2023, 9, e13077. [Google Scholar] [CrossRef] [PubMed]
- Callaway, T.R.; Edrington, T.S.; Brabban, A.D.; Anderson, R.C.; Rossman, M.L.; Engler, M.J.; Carr, M.A.; Genovese, K.J.; Keen, J.E.; Looper, M.L. Bacteriophage isolated from feedlot cattle can reduce Escherichia coli O157: H7 populations in ruminant gastrointestinal tracts. Foodborne Pathog. Dis. 2008, 5, 183–191. [Google Scholar] [CrossRef]
- Segundo-Arizmendi, N.; Arellano-Maciel, D.; Rivera-Ramírez, A.; Piña-González, A.M.; López-Leal, G.; Hernández-Baltazar, E. Bacteriophages: A Challenge for Antimicrobial Therapy. Microorganisms 2025, 13, 100. [Google Scholar] [CrossRef]
- Thanki, A.M.; Hooton, S.P.; Thiennimitr, P.; Nale, J.Y. The role of bacteriophages in Salmonella diversity, pathogenicity and control. Front. Microbiol. 2025, 16, 1591189. [Google Scholar] [CrossRef]
- Esteves, N.C.; Bigham, D.N.; Scharf, B.E. Phages on filaments: A genetic screen elucidates the complex interactions between Salmonella enterica flagellin and bacteriophage Chi. PLoS Pathog. 2023, 19, e1011537. [Google Scholar] [CrossRef]
- Wang, J.-W.; Kuo, C.-H.; Kuo, F.-C.; Wang, Y.-K.; Hsu, W.-H.; Yu, F.-J.; Hu, H.-M.; Hsu, P.-I.; Wang, J.-Y.; Wu, D.-C. Fecal microbiota transplantation: Review and update. J. Formos. Med. Assoc. 2019, 118, S23–S31. [Google Scholar] [CrossRef]
- Merrick, B.; Allen, L.; Zain, N.M.M.; Forbes, B.; Shawcross, D.L.; Goldenberg, S.D. Regulation, risk and safety of faecal microbiota transplant. Infect. Prev. Pract. 2020, 2, 100069. [Google Scholar] [CrossRef]
- Ademe, M. Benefits of fecal microbiota transplantation: A comprehensive review. J. Infect. Dev. Ctries. 2020, 14, 1074–1080. [Google Scholar] [CrossRef]
- Nicco, C.; Paule, A.; Konturek, P.; Edeas, M. From donor to patient: Collection, preparation and cryopreservation of fecal samples for fecal microbiota transplantation. Diseases 2020, 8, 9. [Google Scholar] [CrossRef]
- Wang, Y.; Hunt, A.; Danziger, L.; Drwiega, E.N. A comparison of currently available and investigational fecal microbiota transplant products for recurrent clostridioides difficile infection. Antibiotics 2024, 13, 436. [Google Scholar] [CrossRef]
- Torres Soto, M.; Hammond, S.; Elshaboury, R.H.; Johnson, J.; Hohmann, E.L. Recurrent relatively resistant Salmonella infantis infection in 2 immunocompromised hosts cleared with prolonged antibiotics and fecal microbiota transplantation. Open Forum. Infect. Dis. 2019, 6, ofy334. [Google Scholar] [CrossRef]
- Wang, X.; Wu, X.; Cong, X.; Ren, J.; Li, J.; Zhu, J.; Dai, M.; Hrabchenko, N.; Du, Y.; Qi, J. The functional role of fecal microbiota transplantation on Salmonella Enteritidis infection in chicks. Vet. Microbiol. 2022, 269, 109449. [Google Scholar] [CrossRef] [PubMed]
- Baxter, M.; Colville, A. Adverse events in faecal microbiota transplant: A review of the literature. J. Hosp. Infect. 2016, 92, 117–127. [Google Scholar] [CrossRef]
- Farouk, M.M.; El-Molla, A.; Salib, F.A.; Soliman, Y.A.; Shaalan, M. The role of silver nanoparticles in a treatment approach for multidrug-resistant Salmonella species isolates. Int. J. Nanomed. 2020, 15, 6993–7011. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Xiao, Y.; Zhang, S.; Wu, S.; Gao, L.; Shi, S. Fe3O4 nanoparticles attenuated Salmonella infection in chicken liver through reactive oxygen and autophagy via PI3K/Akt/mTOR signaling. Front. Physiol. 2020, 10, 1580. [Google Scholar] [CrossRef] [PubMed]
- Abdalhamed, A.M.; Zeedan, G.S.; Dorgham, S.M.; Ghazy, A.A. In vivo experimentally study the effect of Nigella Sativa silver nanoparticles for treatment of Salmonella species causing diarrhea in ruminants. Microb. Pathog. 2023, 180, 106133. [Google Scholar] [CrossRef]
- Dolatyabi, S.; Renu, S.; Schrock, J.; Renukaradhya, G.J. Chitosan-nanoparticle-based oral Salmonella enteritidis subunit vaccine elicits cross-protection against Salmonella typhimurium in broilers. Poult. Sci. 2024, 103, 103569. [Google Scholar] [CrossRef]
- Zhang, C.; Yao, D.; Su, Z.; Chen, H.; Hao, P.; Liao, Y.; Guo, Y.; Yang, D. Copper/Zinc-modified palygorskite protects against Salmonella typhimurium infection and modulates the intestinal microbiota in chickens. Front. Microbiol. 2021, 12, 739348. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Mohammed, G.M.; Sayed, R.H.; Elshoky, H.A.; Elzorkany, H.E.; Elsaady, S.A. Efficacy improvement of tri-serotypes vaccine for Salmonella using nanomaterial-based adjuvant in chicken. Beni-Suef Univ. J. Basic Appl. Sci. 2024, 13, 18. [Google Scholar] [CrossRef]
- Abdallah, O.M.; Shebl, H.R.; Abdelsalam, E.; Mehrez, S.I. The impact and safety of encapsulated nanomaterials as a new alternative against carbapenem resistant bacteria. a systematic review. World J. Microbiol. Biotechnol. 2024, 40, 72. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Robledo, J.E.; Barrera, M.C.; Tobón, G.J. CRISPR/Cas: From adaptive immune system in prokaryotes to therapeutic weapon against immune-related diseases: CRISPR/Cas9 offers a simple and inexpensive method for disease modeling, genetic screening, and potentially for disease therapy. Int. Rev. Immunol. 2020, 39, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R.; Marraffini, L.A. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol. Cell 2014, 54, 234–244. [Google Scholar] [CrossRef]
- Balcha, F.B.; Neja, S.A. CRISPR-Cas9 mediated phage therapy as an alternative to antibiotics. Anim. Dis. 2023, 3, 4. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Al Fares, M.A.; Almaghaslah, M.; Alpakistany, T.; Al Kaabi, N.A.; Alshamrani, S.A.; Alshehri, A.A.; Almazni, I.A.; Saif, A.; Hakami, A.R. Application of CRISPR-cas system to mitigate superbug infections. Microorganisms 2023, 11, 2404. [Google Scholar] [CrossRef]
- Hwang, I.Y.; Koh, E.; Kim, H.R.; Yew, W.S.; Chang, M.W. Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria. Drug Resist. Updates 2016, 27, 59–71. [Google Scholar] [CrossRef]
- Basit, A.; Tahir, H.; Haider, Z.; Tariq, H.; Ullah, A.; Rehman, S.U. CRISPR/Cas9-based deletion of SpvB gene from Salmonella Gallinarum leads to loss of virulence in chicken. Front. Bioeng. Biotechnol. 2022, 10, 885227. [Google Scholar] [CrossRef]
- Bai, G.; You, L.; Long, L.; Wang, D.; Wang, M.; Wang, J.; Li, J.; Wei, X.; Li, S. The CRISPR genotypes and genetic diversity of different serogroups of nontyphoidal Salmonella in Guizhou Province, 2013–2018. PLoS ONE 2022, 17, e0278321. [Google Scholar] [CrossRef]
- Wei, T.; Cheng, Q.; Farbiak, L.; Anderson, D.G.; Langer, R.; Siegwart, D.J. Delivery of tissue-targeted scalpels: Opportunities and challenges for in vivo CRISPR/Cas-based genome editing. Acs Nano 2020, 14, 9243–9262. [Google Scholar] [CrossRef]
- Modrzejewski, D.; Hartung, F.; Lehnert, H.; Sprink, T.; Kohl, C.; Keilwagen, J.; Wilhelm, R. Which factors affect the occurrence of off-target effects caused by the use of CRISPR/Cas: A systematic review in plants. Front. Plant Sci. 2020, 11, 574959. [Google Scholar] [CrossRef]
- Wu, Y.; Battalapalli, D.; Hakeem, M.J.; Selamneni, V.; Zhang, P.; Draz, M.S.; Ruan, Z. Engineered CRISPR-Cas systems for the detection and control of antibiotic-resistant infections. J. Nanobiotechnol. 2021, 19, 401. [Google Scholar] [CrossRef]
- Wu, Q.; Cui, L.; Liu, Y.; Li, R.; Dai, M.; Xia, Z.; Wu, M. CRISPR-Cas systems target endogenous genes to impact bacterial physiology and alter mammalian immune responses. Mol. Biomed. 2022, 3, 22. [Google Scholar] [CrossRef]


| Probiotics | Salmonella Serovars | Host | Observations | Refs. |
|---|---|---|---|---|
| Bacillus subtilis and Bacillus amyloliquefaciens | S. hadar, S. enteritidis, S. thompson | In vitro | B. subtilis inhibited 51.1%, 48.3%, and 56.9% of biofilm formation of S. hadar, S. enteritidis, and S. thompson, respectively. Additionally, B. amyloliquefaciens inhibited 30.4, 28.6, and 35.5% of biofilm formation of S. hadar, S. enteritidis, and S. thompson, respectively. No significant reduction in planktonic Salmonella cell counts was observed. | [83] |
| Lactobacillus animalis and Propionibacterium freudenreichii | S. typhimurium | Beef calves | Detection of at least one colony-forming unit (CFU) of Salmonella in the feces of commercial beef calves supplemented with L. animalis and P. freudenreichi. | [84] |
| Bacillus. velezensis | S. typhimurium | Mice | B. velezensis HBXN2020 reduced S. typhimurium in mice feces for approximately 1.3-fold (corresponding to a 0.12 log10 reduction) to 15-fold (1.18 log10 reduction) depending on the dosage and timepoint. Additionally, a 1.06, 1.69, 1.14 substantial log reduction in S. typhimurium was observed in the cecum, colon, and ileum of mice, respectively, accompanied by notable regulation of cytokine levels (Tnfa, Il1b, Il6, and Il10). Furthermore, a significant increase in the abundance of beneficial bacteria, including Lactobacillus and Akkermansia, was recorded, p < 0.05. | [85] |
| L. fermentum and L. acidophilus | S. typhimurium | Mice | Significant upregulating the anti-inflammatory cytokines and downregulating the pro-inflammatory cytokine mRNA induced by Salmonella (p ≤ 0.05). Also, there was a reduction in S. typhimurium counts in mice feces when measured on days 9, 12, and 14 post-infection, p < 0.0001. | [86,87] |
| L. helveticus R389 | S. typhimurium | Mice | Elevated luminal levels of specific anti-Salmonella secretory immunoglobulin A (S-IgA), along with a decreased presence of Macrophage Inflammatory Protein-1α (MIP-1α) cells in the lamina propria, were observed. In addition, a reduction in S. typhimurium burden in the liver was noted. | [88] |
| L. plantarum and L. acidophilus | S. heidelberg | Broiler chicken | Substantial reductions in S. heidelberg colonization in the ceca by 64% at 24 h, 42% at 96 h, and 46% at 168 h post-treatment. | [89,90] |
| L. casei and Bifidobacterium breve | S. typhimurium | Broiler chicken | B. breve JCM1192 and L. casei ATTC334 caused a reduction in S. typhimurium colonization in the cecal tonsils by 20% and 10%, respectively. | [91] |
| L. rhamnosus GG | S. typhimurium | In vitro | Thermal stress (41 °C for 1 h) significantly increased S. typhimurium adhesion to Caco-2 cells by 1.7-fold (p = 0.001) and elevated cytotoxicity by 3.5-fold (p = 0.0001) as measured by LDH release. Furthermore, pre-treatment with L. rhamnosus GG markedly reduced both adhesion (p = 0.001) and cytotoxicity (p = 0.001) under stress conditions. | [92,93] |
| L. rhamnosus and B. lactis | S. typhimurium | Mice | An increase in specific anti-Salmonella antibodies was observed in both the serum and intestinal tract of mice, indicating a strengthened immune response against the pathogen. | [94,95] |
| L. plantarum, L. casei, L. acidophilus, and Enterococcus faecium | S. typhimurium | Horses | In a randomized, double-blind clinical trial involving 130 hospitalized horses, the administration of a probiotic mixture (containing L. plantarum, L. casei, L. acidophilus, and E. faecium) reduced the incidence of Salmonella fecal shedding after 48 h of hospitalization by approximately 65%. Interestingly, the calculated relative risk (RR) was 0.35, with a 95% confidence interval (CI) of 0.07–1.68, indicating a substantial but statistically cautious reduction in shedding risk. | [96] |
| B. thermophilum RBL67 | S. typhimurium | In vitro | In co-culture experiments, S. typhimurium N-15 exhibited a reduced final cell count of 8.82 ± 0.08 log10 CFU/mL, compared to 9.10 ± 0.16 log10 CFU/mL in monoculture, indicating that B. thermophilum RBL67 modestly suppressed Salmonella proliferation. Similarly, RBL67 significantly impacted the transcriptome of S. typhimurium through the activation of virulence genes located on Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2). | [97] |
| L. acidophilus, L. rhamnosus, and Bifidobacterium animalis subsp. lactis (Bb12) | S. typhimurium, S. enteritidis | Chickens | Supplementing chickens with L. rhamnosus via drinking water significantly reduced S. typhimurium colonization in the cecum, with bacterial loads decreasing to 5.95 log CFU/g at 7 days post-infection (dpi) and 3.74 log CFU/g at 14 dpi compared to higher levels in the untreated control group. Furthermore, intestinal morphology improved notably, with increased villus height and a higher villus height-to-crypt depth ratio observed in LGG-treated birds, indicating enhanced nutrient absorption and gut integrity. In addition, LGG supplementation also modulated gut microbiota, enriching beneficial genera such as Butyricicoccus, Erysipelatoclostridium, Flavonifractor, and Bacillus. Interestingly, immune responses were positively influenced, showing reduced inflammatory markers and upregulated mucosal immunity. | [98] |
| E. coli Nissle 1917 | S. pullorum | Egg laying chickens | The study examined cellular invasion of S. pullorum in a chicken fibroblast cell model and found that pretreatment with EcN significantly decreased cellular invasion. | [99] |
| E. faecium Smr18 | S. typhi | Mice | E. faecium Smr18 administration significantly increased serum levels of nitrate by 1.63-fold and 3.22-fold in the pre- and post-administration groups, respectively. This increased level of nitric oxide intermediates facilitated the clearance of S. typhi from the host. | [100] |
| Pediococcus pentosaceus | S. enteritidis | Broiler chicken | P. pentosaceus significantly reduced the mortality rate of chickens infected with S. enteritidis by 23.3% compared to 44.4% of the control group (infected but no probiotic). Moreover, the Salmonella count in the caecum of the control group rose quickly, peaking at 3 days post-infection (dpi), while in the experimental group (with P. pentosaceus), the increase was more gradual, and overall, Salmonella counts were significantly lower than those of the control group. | [101] |
| L. reuteri KUB-AC5 | S. typhimurium | Mice | L. reuteri KUB-AC5 significantly reduced the severity of gut inflammation induced by S. typhimurium compared to that of untreated mice. Likewise, AC5 significantly reduced the gene expression of pro-inflammatory cytokines such as Kc, Il-6, and IFN-γ in the mouse colon, cecum, and ileum. Also, the tight junction protein gene Zo-1 expression was upregulated in the gut of AC5-fed mice. | [102] |
| P. pentosaceus | S. typhimurium | Mice | P. pentosaceus modulates the cell-mediated immune responses by up-regulation of the gene expression of the proinflammatory cytokines IFN-γ and TNF-α” in the small intestine. | [103] |
| E. faecium NCIMB 11181 | S. typhimurium | Broiler chicken | A significant inhibition of Salmonella intestinal colonization and translocation was observed (p < 0.05), along with a reduction in intestinal cell apoptosis and gut damage caused by S. typhimurium infection. Similarly, a notable increase in anti-Salmonella antibodies was detected in both the serum of infected birds and the intestinal mucosa (p < 0.05). | [104] |
| B. subtilis and B. coagulans | S. typhimurium | Rats | A significant reduction in Salmonella infiltration into the lymph nodes, liver, and spleen was observed, accompanied by decreased oxidative stress, inflammatory mediators, and alterations in biochemical and hematological parameters. | [105] |
| B. pumilus SMU5927 | S. enteritidis | Mice | B. pumilus enhanced intestinal morphology and strengthened the intestinal barrier function, contributing to improved gut integrity. Additionally, a significant increase (p < 0.05) in the alpha diversity of beneficial intestinal microbiota was observed. | [106] |
| B. subtilis LF11 | S. braenderup | Broiler chicken | A decrease in S. braenderup adhesion and invasion to the NCM460 cells was observed, leading to an increase in NCM460 cell survival. In addition, a significant reduction in IL-8 production was noted, along with the downregulation of gene transcription for proinflammatory cytokines IL-6, IL-8, and TNF-α. | [107] |
| Pediococcus acidilactici | S. typhimurium | In vitro | Both bacteriocin K10 and bacteriocin HW01 significantly inhibited S. typhimurium biofilm formation. | [108] |
| E. faecium 669 | S. enteritidis | Broiler chicken | Enhanced gut integrity with significant reduction in S. enteritidis colonization and shedding in treated broiler chickens’ cecum. | [109] |
| E. faecium | S. typhimurium | weaning piglets | A significant elevation in serum IgM and IgA levels targeting S. typhimurium was observed. | [110] |
| L. reuteri and E. faecium | Multidrug-resistant S. typhimurium and S. enteritidis | In vitro | A decrease in mucin adhesion and biofilm formation was observed in cephalosporin- and fluoroquinolone-resistant S. typhimurium and S. enteritidis. | [111] |
| B. infantis and L. Rhamnosus combined with oligofructose-enriched inulin | S. typhimurium | Weaned Piglets | Both probiotic strains and the prebiotic mixture offered benefits in mitigating S. typhimurium infection in weaned piglets. Along with that, probiotic combination appears to enhance pathogen clearance, while the prebiotic mixture may reduce colonic colonization and modulate the immune response. | [112] |
| P. pentosaceus GT001 | S. typhimurium | Broiler chicken | P. pentosaceus GT001 significantly improved growth performance, immune function, antioxidant status, and microbial balance in broiler chickens challenged with S. typhimurium. Additionally, probiotic-treated birds showed greater body weight gain (p < 0.05), elevated serum levels of T-AOC, SOD, CAT, and GSH-Px, and reduced MDA and liver enzymes compared to infected controls. Immunoglobulin levels (IgA, IgG, IgM) and cytokines (IL-6, IL-10) were also enhanced (p < 0.05), while Salmonella load in the ceca dropped below detectable levels within 14 days. | [113] |
| Prebiotics | Salmonella Serovars | Host | Observations | Ref. |
|---|---|---|---|---|
| FOS combined with Alfalfa | S. enteritidis | Laying Hens | Significant reduction in S. enteritidis colonization in ovaries and livers (p ≤ 0.05). Significant decreases in cecal S. enteritidis counts were also observed. | [126] |
| Non-starch soluble polysaccharide from plantain (Plantain NSP) | S. typhimurium | In vitro | Plantain NSP significantly reduced S. typhimurium adhesion to Caco2 cells (85.0 ± 8.2%, p < 0.01) and inhibited its invasion into these cells (80.2 ± 9.7%). Additionally, it effectively blocked the translocation of S. typhimurium across M-cells and Peyer’s patches, suggesting a protective role in intestinal barrier integrity. | [127] |
| β-galactomannan (βGM), MOS | S. typhimurium | In vitro | Both βGM and Mannan-oligosaccharide decreased the secretion of IL6 and CXCL8 induced by Salmonella, with inhibition of Salmonella adhesion to intestinal epithelial cells. | [128] |
| FOS | S. typhimurium | Pigs | A decrease in the shedding of S. typhimurium was observed, indicating a potential reduction in pathogen transmission and environmental contamination. | [129] |
| β-galactomannan oligosaccharide (β-GMOS) | S. typhimurium | Fattening pigs | Supplementing pig feed with at least 2 kg t−1 of β-GMOS during the fattening period was linked to a decrease in S. typhimurium prevalence, shedding, and seroconversion. | [130] |
| Bio MosTM | S. enteritidis | Broiler chickens | No substantial impact was observed on the performance of broiler chickens challenged with S. enteritidis and also no significant effect on the production of anti-S. enteritidis antibodies. | [131] |
| β-glucan | S. typhimurium var. Copenhagen | Weaning piglets | β-glucan did not effectively prevent S. typhimurium colonization; however, it may contribute to reducing pathogen transmission among pigs (it significantly lowers cecal pathogen load and reduces fecal shedding, which helps minimize transmission among pigs). | [132] |
| FOS & inulin | S. enteritidis | chicken macrophages | A significantly reduced number of viable intracellular S. enteritidis was observed in HD11 cells, accompanied by a substantial decrease in IL-1β expression, indicating a potential modulation of inflammatory response. | [133] |
| FOS, XOS & apple pectin | S. typhimurium | Mice | Supplementation with 10% FOS or XOS resulted in increased translocation of S. typhimurium SL1344 to internal organs in mice, whereas the inclusion of 10% apple pectin led to a higher S. typhimurium count in both intestinal content and feces. | [125] |
| Vaccines | Targeted Salmonella Serovars | Host | Observations | Refs. |
|---|---|---|---|---|
| EnterVene-d; Boehringer Ingelheim Vetmedica Inc., Duluth, GA, USA | S. dublin | Dairy calves | Vaccinated cows had significantly higher S. dublin antibody titers at calving (40.3 ± 9.1) compared to controls, and their calves showed elevated antibody levels (88.5 ± 8.9) after receiving colostrum, compared to calves from unvaccinated cows. | [225] |
| Salmonella Newport extract vaccine, Zoetis Inc., Kalamazoo, MI, USA | S. newport, S. montevideo, and S. anatum | Cattle | A significant decrease in Salmonella prevalence was detected in the sub-iliac and pre-scapular lymph nodes (p = 0.05), as well as across all lymph nodes combined (p = 0.04). | [226] |
| Modified-live S. typhimurium vaccine (PoulvacR ST; Zoetis Inc., Madison, NJ, USA) | S. enteritidis, S. kentucky, S. typhimurium, S. heidelberg, and S. hadar | Chicken | A 50% reduction in S. enteritidis, S. kentucky, S. typhimurium, S. heidelberg, and S. hadar were observed in the liver and spleen of chickens. | [227] |
| Nobilis® Salenvac ETC | S. enteritidis, S. typhimurium, S. infantis, and S. hadar | Chicken | Significant reductions in fecal shedding were observed for S. enteritidis (p = 0.001), S. typhimurium (p = 0.0055), S. infantis (p = 0.0299), and S. hadar (p = 0.0013). Likewise, notable decreases in organ invasion were reported for S. enteritidis (p = 0.001), S. typhimurium (p = 0.001), and S. infantis (p = 0.0014), whereas the reduction for S. hadar was not statistically significant (p = 0.347). | [228] |
| AviPro® Salmonella Vac E, Elanco, Greenfield, IN, USA | S. enteritidis | Chicken | Cloacal shedding of S. enteritidis was reduced to 8.3% compared to 66.7% in the unvaccinated control group during the 29-week challenge. Organ colonization (liver, spleen, ovaries) was also significantly lower in vaccinated hens, with 0–8.3% positive samples versus 58.3–75% in controls. Also, eggshell contamination dropped to 0% in vaccinated birds, while the control group had contamination rates of 16.7% and 25% in trials 4 and 5, respectively. | [229] |
| Chitosan-adjuvanted Salmonella subunit nanoparticle vaccine (OMPs-F-CS NPs) | S. enteritidis | Chicken | Serum IgG levels were approximately 2.5-fold higher in vaccinated groups. There was also a marked upregulation of immune-related cytokines such as IFN-γ, IL-17, and TGF-β in the cecal tonsils of vaccinated birds. Vaccinated birds exhibited a 1.5 to 2 log10 reduction in bacterial load in internal organs (like liver and spleen) and feces compared to controls. | [230] |
| Endovac-Bovi® with Immune Plus® (IMMVAC Inc., Columbia, MO, USA) | S. newport, S. montevideo, and S. anatum | Cattle | A significant reduction in Salmonella prevalence was observed in the right popliteal lymph node (p = 0.03). Additionally, a decrease in Salmonella prevalence was noted across both popliteal lymph nodes (p = 0.09). | [226] |
| Autologous killed tri vaccine | S. typhimurium, S. agona, S. mbandaka, S. infantis, S. orion, and S. zanzibar | Chicken | The vaccine induced a highly significant antibody response (p < 0.001), with 39% of maternal antibodies detected in 16% of egg yolks, indicating the possibility of passive immunity transfer to offspring. | [231] |
| Vivotif® (Typhoid Vaccine Live Oral Ty21a) | S. paratyphi A, B | Human | The vaccine showed an efficacy of 51% in adults and children over five years old, offering meaningful cross-protection against both S. typhi and S. paratyphi. | [232,233] |
| ViCRM197 conjugate vaccine, Novartis, Basel, Switzerland | S. typhi | Human | A marked rise in IgG antibody titers was recorded, correlating with an 89% protective efficacy against typhoid fever, with immunity sustained for a minimum duration of four years. | [234] |
| Vi Conjugate (Vi-rEPA) | S. typhi | Human | A rapid secretion of Vi-specific IgM and IgG antibodies was observed, accompanied by a two-log reduction in S. typhi shedding. | [235] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, M.; Verma, A.; Shaaban, K.A.; Helmy, Y.A. Antibiotic Alternatives and Next-Generation Therapeutics for Salmonella Control: A One Health Approach to Combating Antimicrobial Resistance. Antibiotics 2025, 14, 1054. https://doi.org/10.3390/antibiotics14101054
Saleh M, Verma A, Shaaban KA, Helmy YA. Antibiotic Alternatives and Next-Generation Therapeutics for Salmonella Control: A One Health Approach to Combating Antimicrobial Resistance. Antibiotics. 2025; 14(10):1054. https://doi.org/10.3390/antibiotics14101054
Chicago/Turabian StyleSaleh, Mohamed, Ashutosh Verma, Khaled A. Shaaban, and Yosra A. Helmy. 2025. "Antibiotic Alternatives and Next-Generation Therapeutics for Salmonella Control: A One Health Approach to Combating Antimicrobial Resistance" Antibiotics 14, no. 10: 1054. https://doi.org/10.3390/antibiotics14101054
APA StyleSaleh, M., Verma, A., Shaaban, K. A., & Helmy, Y. A. (2025). Antibiotic Alternatives and Next-Generation Therapeutics for Salmonella Control: A One Health Approach to Combating Antimicrobial Resistance. Antibiotics, 14(10), 1054. https://doi.org/10.3390/antibiotics14101054

