Use of Newer and Repurposed Antibiotics against Gram-Negative Bacteria in Neonates
Abstract
:1. Introduction
2. Novel β-Lactam-β-Lactamase Inhibitor (BL-BLI) Agents
2.1. Ceftazidime–Avibactam
2.2. Ceftolozane/Tazobactam
2.3. Imipenem/Cilastatin–Relabactam
2.4. Meropenem–Vaborbactam
3. Cefiderocol
4. Other Novel or Repurposed Antibacterial Agents
4.1. Colistin
4.2. Tigecycline
4.3. Fosfomycin
5. Conclusions
6. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef] [Green Version]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [CrossRef] [PubMed]
- WHO. Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 21 April 2023).
- Antimicrobial Resistance Surveillance in Europe 2022–2020 Data. 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2022-2020-data (accessed on 22 April 2023).
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215 (Suppl. 1), S28–S36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Boxtel, R.; Wattel, A.A.; Arenas, J.; Goessens, W.H.F.; Tommassen, J. Acquisition of Carbapenem Resistance by Plasmid-Encoded-AmpC-Expressing Escherichia coli. Antimicrob. Agents Chemother. 2017, 61, e01413–e01416. [Google Scholar] [CrossRef] [Green Version]
- Chaurasia, S.; Sivanandan, S.; Agarwal, R.; Ellis, S.; Sharland, M.; Sankar, M.J. Neonatal sepsis in South Asia: Huge burden and spiralling antimicrobial resistance. BMJ 2019, 364, k5314. [Google Scholar] [CrossRef] [Green Version]
- Sands, K.; Carvalho, M.J.; Portal, E.; Thomson, K.; Dyer, C.; Akpulu, C.; Andrews, R.; Ferreira, A.; Gillespie, D.; Hender, T.; et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat. Microbiol. 2021, 6, 512–523. [Google Scholar] [CrossRef]
- Li, G.; Bielicki, J.A.; Ahmed, A.N.U.; Islam, M.S.; Berezin, E.N.; Gallacci, C.B.; Guinsburg, R.; da Silva Figueiredo, C.E.; Vieira, R.S.; Silva, A.R.; et al. Towards understanding global patterns of antimicrobial use and resistance in neonatal sepsis: Insights from the NeoAMR network. Arch. Dis. Child. 2020, 105, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Flannery, D.D.; Chiotos, K.; Gerber, J.S.; Puopolo, K.M. Neonatal multidrug-resistant gram-negative infection: Epidemiology, mechanisms of resistance, and management. Pediatr. Res. 2022, 91, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, V.; Quizhpe Peralta, A.; Galindo, T.; Turlej-Rogacka, A.; Iversen, A.; Giske, C.G.; Navér, L. High proportion of intestinal colonization with successful epidemic clones of ESBL-producing Enterobacteriaceae in a neonatal intensive care unit in Ecuador. PLoS ONE 2013, 8, e76597. [Google Scholar] [CrossRef]
- Mijac, V.; Brkic, S.; Milic, M.; Siljic, M.; Cirkovic, V.; Perovic, V.; Markovic, M.; Cirkovic, I.; Stanojevic, M. Intestinal Colonization of Preterm Neonates with Carbapenem Resistant Enterobacteria at Hospital Discharge. Antibiotics 2023, 12, 284. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.; Haller, S.; Eckmanns, T.; Harder, T. Routine screening for colonization by Gram-negative bacteria in neonates at intensive care units for the prediction of sepsis: Systematic review and meta-analysis. J. Hosp. Infect. 2018, 99, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Wattal, C.; Kler, N.; Oberoi, J.K.; Fursule, A.; Kumar, A.; Thakur, A. Neonatal Sepsis: Mortality and Morbidity in Neonatal Sepsis due to Multidrug-Resistant (MDR) Organisms: Part 1. Indian J Pediatr. 2020, 87, 117–121. [Google Scholar] [CrossRef]
- Donà, D.; Sharland, M.; Heath, P.T.; Folgori, L. Strategic Trials to Define the Best Available Treatment for Neonatal and Pediatric Sepsis Caused by Carbapenem-resistant Organisms. Pediatr. Infect. Dis. J. 2019, 38, 825–827. [Google Scholar] [CrossRef]
- Chiotos, K.; Hayes, M.; Gerber, J.S.; Tamma, P.D. Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in Children. J. Pediatric. Infect. Dis. Soc. 2019, 9, 56–66. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef]
- Chiusaroli, L.; Liberati, C.; Caseti, M.; Rulli, L.; Barbieri, E.; Giaquinto, C.; Donà, D. Therapeutic Options and Outcomes for the Treatment of Neonates and Preterms with Gram-Negative Multidrug-Resistant Bacteria: A Systematic Review. Antibiotics 2022, 11, 1088. [Google Scholar] [CrossRef] [PubMed]
- Kontou, A.; Sarafidis, K.; Roilides, E. Antimicrobial dosing in neonates. Expert Rev. Clin. Pharmacol. 2017, 10, 239–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA. Pediatric Labeling Changes. 16 May 2023. Available online: https://www.fda.gov/science-research/pediatrics/pediatric-labeling-changes (accessed on 11 June 2023).
- Ehmann, D.E.; Jahić, H.; Ross, P.L.; Gu, R.F.; Hu, J.; Kern, G.; Walkup, G.K.; Fisher, S.L. Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor. Proc. Natl. Acad. Sci. USA 2012, 109, 11663–11668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnefoy, A.; Dupuis-Hamelin, C.; Steier, V.; Delachaume, C.; Seys, C.; Stachyra, T.; Fairley, M.; Guitton, M.; Lampilas, M. In vitro activity of AVE1330A, an innovative broad-spectrum non-beta-lactam beta-lactamase inhibitor. J. Antimicrob. Chemother. 2004, 54, 410–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davido, B.; Fellous, L.; Lawrence, C.; Maxime, V.; Rottman, M.; Dinh, A. Ceftazidime-Avibactam and Aztreonam, an Interesting Strategy To Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e01008-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, S.; Hujer, A.M.; Rojas, L.J.; Papp-Wallace, K.M.; Humphries, R.M.; Spellberg, B.; Hujer, K.M.; Marshall, E.K.; Rudin, S.D.; Perez, F.; et al. Can Ceftazidime-Avibactam and Aztreonam Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae? Antimicrob. Agents Chemother. 2017, 61, e02243-16. [Google Scholar] [CrossRef] [Green Version]
- Zavicefta-Epar-Product-Information_En.PDF. Available online: https://www.ema.europa.eu/en/documents/product-information/zavicefta-epar-product-information_en.pdf (accessed on 15 September 2022).
- Avycaz_Pi.PDF. Available online: https://www.rxabbvie.com/pdf/avycaz_pi.pdf (accessed on 15 September 2022).
- Plc, A. Allergan Announces FDA Approval of AVYCAZ® (Ceftazidime and Avibactam) for Pediatric Patients. Available online: https://www.prnewswire.com/news-releases/allergan-announces-fda-approval-of-avycaz-ceftazidime-and-avibactam-for-pediatric-patients-300813714.html (accessed on 18 September 2022).
- Dietl, B.; Martínez, L.M.; Calbo, E.; Garau, J. Update on the Role of Ceftazidime-Avibactam in the Management of Carbapenemase-Producing Enterobacterales. Future Microbiology. 15 December 2020. Available online: https://pubmed.ncbi.nlm.nih.gov/32301348/ (accessed on 16 September 2022).
- Sy, S.K.B.; Zhuang, L.; Sy, S.; Derendorf, H. Clinical Pharmacokinetics and Pharmacodynamics of Ceftazidime-Avibactam Combination: A Model-Informed Strategy for its Clinical Development. Clin. Pharmacokinet. 2019, 58, 545–564. [Google Scholar] [CrossRef]
- van Duin, D.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.S.; Armstrong, J.; Arrieta, A.; Bishai, R.; Das, S.; Delair, S.; Edeki, T.; Holmes, W.C.; Li, J.; Moffett, K.S.; et al. Phase I Study Assessing the Pharmacokinetic Profile, Safety, and Tolerability of a Single Dose of Ceftazidime-Avibactam in Hospitalized Pediatric Patients. Antimicrob. Agents Chemother. 2016, 60, 6252–6259. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Li, J.; Armstrong, J.; Learoyd, M.; Edeki, T. Randomized Pharmacokinetic and Drug-Drug Interaction Studies of Ceftazidime, Avibactam, and Metronidazole in Healthy Subjects. Pharmacol Res Perspect 2015, 3, e00172. [Google Scholar] [CrossRef]
- Franzese, R.C.; McFadyen, L.; Watson, K.J.; Riccobene, T.; Carrothers, T.J.; Vourvahis, M.; Chan, P.L.; Raber, S.; Bradley, J.S.; Lovern, M. Population Pharmacokinetic Modeling and Probability of Pharmacodynamic Target Attainment for Ceftazidime-Avibactam in Pediatric Patients Aged 3 Months and Older. Clin. Pharmacol. Ther. 2022, 111, 635–645. [Google Scholar] [CrossRef]
- Esposito, P.; Sbrana, F.; Di Toro, A.; Gombos, S.; Tascini, C. Ceftazidine-avibactam salvage therapy in newborn with KPC-producing Klebsiella pneumoniae invasive infections. Minerva Anestesiol. 2019, 85, 804–805. [Google Scholar] [CrossRef] [PubMed]
- Asfour, M.S.S.; Alaklobi, F.A.; Abdelrahim, A.; Taha, M.Y.; Asfour, R.S.; Khalil, T.M.; Al-Mouqdad, M.M. Intravenous Ceftazidime-Avibactam in Extremely Premature Neonates With Carbapenem-Resistant Enterobacteriaceae: Two Case Reports. J. Pediatr. Pharmacol. Ther. 2022, 27, 192–197. [Google Scholar] [CrossRef]
- Nascimento, A.D.S.; Passaro, M.F.; Silva, P.S.D.S.; Rodriguez, S.F.; Martins, M.K.; Oliveira, S.C.P.; Moriel, P.; Visacri, M.B. Off-Label Use of Ceftazidime-Avibactam in a Premature Infant With Multidrug-Resistant Klebsiella pneumoniae Infection: A Case Report. J. Pharm. Pract. 2022. [CrossRef] [PubMed]
- Coskun, Y.; Atici, S. Successful Treatment of Pandrug-resistant Klebsiella pneumoniae Infection With Ceftazidime-avibactam in a Preterm Infant: A Case Report. Pediatr. Infect. Dis. J. 2020, 39, 854–856. [Google Scholar] [CrossRef] [PubMed]
- Iosifidis, E.; Chorafa, E.; Agakidou, E.; Kontou, A.; Violaki, A.; Volakli, E.; Christou, E.-I.; Zarras, C.; Drossou-Agakidou, V.; Sdougka, M.; et al. Use of Ceftazidime-avibactam for the Treatment of Extensively drug-resistant or Pan drug-resistant Klebsiella pneumoniae in Neonates and Children <5 Years of Age. Pediatr. Infect. Dis. J. 2019, 38, 812–815. [Google Scholar] [PubMed]
- Antoni, M.D.; Kontou, A.; Ftergioti, A.; Pantzartzi, K.; Kourti, M.; Agakidou, E.; Zarras, C.; Iosifidis, E.; Sarafidis, K.; Roilides, E. Off-Label Use of Ceftazidime-Avibactam in Premature Neonates: A Real-Life Experience. 33rd European Congress, 2023; abstract submitted. [Google Scholar]
- Pfizer. A Phase 2A, 2-Part, Open-Label, Non-Randomized, Multicenter, Single and Multiple Dose Trial to Evaluate Pharmacokinetics, Safety and Tolerability of Ceftazidime and Avibactam in Neonates and Infants from Birth to Less Than 3 Months of Age with Suspected or Confirmed Infections due to Gram-Negative Pathogens Requiring Intravenous Antibiotic Treatment. Clinicaltrials.Gov; 2022. Report No.: Study/NCT04126031. Available online: https://clinicaltrials.gov/ct2/show/study/NCT04126031 (accessed on 14 September 2022).
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef]
- Galani, I.; Karaiskos, I.; Souli, M.; Papoutsaki, V.; Galani, L.; Gkoufa, A.; Antoniadou, A.; Giamarellou, H. Outbreak of KPC-2-producing Klebsiella pneumoniae endowed with ceftazidime-avibactam resistance mediated through a VEB-1-mutant (VEB-25), Greece, September to October 2019. Eurosurveillance 2020, 25, 2000028. [Google Scholar] [CrossRef] [Green Version]
- Di Bella, S.; Giacobbe, D.R.; Maraolo, A.E.; Viaggi, V.; Luzzati, R.; Bassetti, M.; Luzzaro, F.; Principe, L. Resistance to ceftazidime/avibactam in infections and colonisations by KPC-producing Enterobacterales: A systematic review of observational clinical studies. J. Glob. Antimicrob. Resist. 2021, 25, 268–281. [Google Scholar] [CrossRef]
- Moyá, B.; Zamorano, L.; Juan, C.; Ge, Y.; Oliver, A. Affinity of the new cephalosporin CXA-101 to penicillin-binding proteins of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2010, 54, 3933–3937. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.C.; Fiorenza, M.A.; Estrada, S.J. Ceftolozane/Tazobactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination. Pharmacotherapy 2015, 35, 701–715. [Google Scholar] [CrossRef]
- Lizza, B.D.; Betthauser, K.D.; Ritchie, D.J.; Micek, S.T.; Kollef, M.H. New Perspectives on Antimicrobial Agents: Ceftolozane-Tazobactam. Antimicrob. Agents Chemother. 2021, 65, e0231820. [Google Scholar] [CrossRef]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef] [PubMed]
- 206829lbl.PDF. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/206829lbl.pdf (accessed on 17 October 2022).
- FDA. FDA Approves New Treatment for Hospital-Acquired and Ventilator-Associated Bacterial Pneumonia. 2020. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-hospital-acquired-and-ventilator-associated-bacterial-pneumonia (accessed on 17 October 2022).
- Zerbaxa-Epar-Product-Information_En.PDF. Available online: https://www.ema.europa.eu/en/documents/product-information/zerbaxa-epar-product-information_en.pdf (accessed on 17 October 2022).
- Ang, J.Y.; Arrieta, A.; Bradley, J.S.; Zhang, Z.; Yu, B.; Rizk, M.L.; Johnson, M.G.; Rhee, E.G. Ceftolozane/Tazobactam in Neonates and Young Infants: The Challenges of Collecting Pharmacokinetics and Safety Data in This Vulnerable Patient Population. Am. J. Perinatol. 2021, 38, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Ang, J.Y.; Arrieta, A.C.; Larson, K.B.; Rizk, M.L.; Caro, L.; Yang, S.; Yu, B.; Johnson, M.G.; Rhee, E.G. Pharmacokinetics and Safety of Single Intravenous Doses of Ceftolozane/Tazobactam in Children With Proven or Suspected Gram-Negative Infection. Pediatr Infect Dis J 2018, 37, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Roilides, E.; Ashouri, N.; Bradley, J.S.; Johnson, M.G.; Lonchar, J.M.; Su, F.-H.M.; Huntington, J.A.; Popejoy, M.W.; Bensaci, M.; De Anda, C.; et al. Safety and Efficacy of Ceftolozane/Tazobactam Versus Meropenem in Neonates and Children With Complicated Urinary Tract Infection, Including Pyelonephritis: A Phase 2, Randomized Clinical Trial. Pediatr. Infect. Dis. J. 2023, 42, 292–298. [Google Scholar] [CrossRef]
- O’Donnell, J.N.; Lodise, T.P. New Perspectives on Antimicrobial Agents: Imipenem-Relebactam. Antimicrob. Agents Chemother. 2022, 66, e0025622. [Google Scholar] [CrossRef]
- 212819s000lbl.pdf. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212819s000lbl.pdf (accessed on 11 June 2023).
- Merck Sharp & Dohme LLC. A Multi-National Phase 3, Randomized, Double-Blind, Active Comparator-Controlled Clinical Trial to Study the Safety, Tolerability, and Efficacy of Imipenem/Cilastatin/Relebactam (MK-7655A) Versus Piperacillin/Tazobactam in Subjects with Hospital-Acquired Bacterial Pneumonia or Ventilator-Associated Bacterial Pneumonia. clinicaltrials.gov; 2022. Report No.: Study/NCT03583333. Available online: https://clinicaltrials.gov/ct2/show/study/NCT03583333 (accessed on 8 June 2023).
- Motsch, J.; Murta de Oliveira, C.; Stus, V.; Köksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M.; Brown, M.L.; Khan, I.; et al. RESTORE-IMI 1: A Multicenter, Randomized, Double-blind Trial Comparing Efficacy and Safety of Imipenem/Relebactam vs Colistin Plus Imipenem in Patients With Imipenem-nonsusceptible Bacterial Infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.S.; Makieieva, N.; Tøndel, C.; Roilides, E.; Kelly, M.S.; Patel, M.; Vaddady, P.; Maniar, A.; Zhang, Y.; Paschke, A.; et al. 1159. Pharmacokinetics, Safety, and Tolerability of Imipenem/Cilastatin/Relebactam in Pediatric Participants With Confirmed or Suspected Gram-negative Bacterial Infections: A Phase 1b, Open-label, Single-Dose Clinical Trial. Open Forum Infect. Dis. 2021, 8 (Suppl. 1), S671. [Google Scholar] [CrossRef]
- Merck Sharp & Dohme LLC. A Phase 2/3 Open-label, Randomized, Active-Controlled Clinical Study to Evaluate the Safety, Tolerability, Efficacy and Pharmacokinetics of MK-7655A in Pediatric Participants From Birth to Less Than 18 Years of Age With Confirmed or Suspected Gram-Negative Bacterial Infection. clinicaltrials.gov; 2023. Report No.: NCT03969901. Available online: https://clinicaltrials.gov/ct2/show/NCT03969901 (accessed on 8 June 2023).
- Lomovskaya, O.; Sun, D.; Rubio-Aparicio, D.; Nelson, K.; Tsivkovski, R.; Griffith, D.C.; Dudley, M.N. Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae. Antimicrob. Agents Chemother. 2017, 61, e01443-17. [Google Scholar] [CrossRef] [Green Version]
- Tsivkovski, R.; Lomovskaya, O. Biochemical Activity of Vaborbactam. Antimicrob. Agents Chemother. 2020, 64, e01935-19. [Google Scholar] [CrossRef] [Green Version]
- Novelli, A.; Del Giacomo, P.; Rossolini, G.M.; Tumbarello, M. Meropenem/vaborbactam: A next generation β-lactam β-lactamase inhibitor combination. Expert Rev. Anti. Infect. Ther. 2020, 18, 643–655. [Google Scholar] [CrossRef]
- Wilson, W.R.; Kline, E.G.; Jones, C.E.; Morder, K.T.; Mettus, R.T.; Doi, Y.; Nguyen, M.H.; Clancy, C.J.; Shields, R.K. Effects of KPC Variant and Porin Genotype on the In Vitro Activity of Meropenem-Vaborbactam against Carbapenem-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, e02048-18. [Google Scholar] [CrossRef] [Green Version]
- Tumbarello, M.; Raffaelli, F.; Cascio, A.; Falcone, M.; Signorini, L.; Mussini, C.; De Rosa, F.G.; Losito, A.R.; De Pascale, G.; Pascale, R.; et al. Compassionate use of meropenem/vaborbactam for infections caused by KPC-producing Klebsiella pneumoniae: A multicentre study. JAC Antimicrob. Resist. 2022, 4, dlac022. [Google Scholar] [CrossRef]
- VABOMERE (Meropenem and Vaborbactam) for Injection.PDF. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209776lbl.pdf (accessed on 24 September 2022).
- Vaborem-Epar-Product-Information_en.pdf. Available online: https://www.ema.europa.eu/en/documents/product-information/vaborem-epar-product-information_en.pdf (accessed on 24 September 2022).
- v_12.0_Breakpoint_Tables.pdf. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf (accessed on 4 October 2022).
- Hanretty, A.M.; Kaur, I.; Evangelista, A.T.; Moore, W.S.; Enache, A.; Chopra, A.; Cies, J.J. Pharmacokinetics of the Meropenem Component of Meropenem-Vaborbactam in the Treatment of KPC-Producing Klebsiella pneumoniae Bloodstream Infection in a Pediatric Patient. Pharmacotherapy 2018, 38, e87–e91. [Google Scholar] [CrossRef]
- Gainey, A.B.; Burch, A.; Brownstein, M.J.; Brown, D.E.; Fackler, J.; Bs, B.H.; Biswas, B.; Bivens, B.N.; Malagon, F.; Daniels, R. Combining bacteriophages with cefiderocol and meropenem/vaborbactam to treat a pan-drug resistant Achromobacter species infection in a pediatric cystic fibrosis patient. Pediatr. Pulmonol. 2020, 55, 2990–2994. [Google Scholar] [CrossRef]
- Rempex (a wholly owned subsidiary of Melinta Therapeutics, Inc.). An Open Label, Dose-finding, Pharmacokinetics, Safety, and Tolerability Study of a Single Dose Infusion of VABOMERE (Meropenem-Vaborbactam) in Pediatric Subjects from Birth to Less Than 18 Years of Age with Serious Bacterial Infections. clinicaltrials.gov; 2021. Report No.: NCT02687906. Available online: https://clinicaltrials.gov/ct2/show/NCT02687906 (accessed on 29 September 2022).
- Diak, I.L.; Merrem, I.V. (meropenem for injection). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/050706s037lbl.pdf (accessed on 30 April 2023).
- Lutsar, I.; Chazallon, C.; Trafojer, U.; De Cabre, V.M.; Auriti, C.; Bertaina, C.; Calo Carducci, F.I.; Canpolat, F.E.; Esposito, S.; Fournier, I.; et al. Meropenem vs standard of care for treatment of neonatal late onset sepsis (NeoMero1): A randomised controlled trial. PLoS ONE 2020, 15, e0229380. [Google Scholar] [CrossRef] [Green Version]
- Germovsek, E.; Lutsar, I.; Kipper, K.; O Karlsson, M.; Planche, T.; Chazallon, C.; Meyer, L.; Trafojer, U.M.T.; Metsvaht, T.; Fournier, I.; et al. Plasma and CSF pharmacokinetics of meropenem in neonates and young infants: Results from the NeoMero studies. J. Antimicrob. Chemother. 2018, 73, 1908–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganguly, S.; Edginton, A.N.; Gerhart, J.G.; Cohen-Wolkowiez, M.; Greenberg, R.G.; Gonzalez, D. Physiologically Based Pharmacokinetic Modeling of Meropenem in Preterm and Term Infants. Clin. Pharmacokinet. 2021, 60, 1591–1604. [Google Scholar] [CrossRef]
- 2019 Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline. Available online: https://www.who.int/publications-detail-redirect/9789240000193 (accessed on 8 June 2023).
- Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; et al. In Vitro Antibacterial Properties of Cefiderocol, a Novel Siderophore Cephalosporin, against Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2018, 62, e01454-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCreary, E.K.; Heil, E.L.; Tamma, P.D. New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrob. Agents Chemother. 2021, 65, e0217120. [Google Scholar] [CrossRef] [PubMed]
- Shortridge, D.; Streit, J.M.; Mendes, R.; Castanheira, M. In Vitro Activity of Cefiderocol against U.S. and European Gram-Negative Clinical Isolates Collected in 2020 as Part of the SENTRY Antimicrobial Surveillance Program. Microbiol. Spectr. 2022, 10, e0271221. [Google Scholar] [CrossRef]
- Wang, C.; Yang, D.; Wang, Y.; Ni, W. Cefiderocol for the Treatment of Multidrug-Resistant Gram-Negative Bacteria: A Systematic Review of Currently Available Evidence. Front. Pharmacol. 2022, 13, 896971. [Google Scholar] [CrossRef]
- Portsmouth, S.; van Veenhuyzen, D.; Echols, R.; Machida, M.; Ferreira, J.C.A.; Ariyasu, M.; Tenke, P.; Nagata, T.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2018, 18, 1319–1328. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- FDA Approves FETROJA for Treatment of UTI in Patients 18 Yrs or Older | ACCP. Available online: https://accp1.org/Members/ACCP1/5Publications_and_News/FDA-Approves-FETROJA-Treatment-UTI-Patients-18-Years-Older.aspx (accessed on 10 June 2023).
- Katsube, T.; Echols, R.; Wajima, T. 739. Prediction of Cefiderocol Pharmacokinetics and Probability of Target Attainment in Pediatric Subjects for Proposing Dose Regimens. Open Forum Infect. Dis. 2019, 6 (Suppl. 2), S330–S331. [Google Scholar]
- Shionogi. An Open-Label Study with a Nonrandomized Single-Dose Phase in Subjects with Suspected or Confirmed Aerobic Gram-Negative Bacterial Infections Followed By a Randomized, Multiple-Dose, Active-Controlled Phase in Subjects with Suspected or Confirmed Complicated Urinary Tract Infection (cUTI), Hospital-Acquired Bacterial Pneumonia (HABP) or Ventilator-Associated Bacterial Pneumonia (VABP) to Assess the Safety, Tolerability, and Pharmacokinetics of Cefiderocol in Hospitalized Pediatric Subjects 3 Months to < 18 Years of Age. clinicaltrials.gov; 2023. Report No.: Study/NCT04215991. Available online: https://clinicaltrials.gov/ct2/show/study/NCT04215991 (accessed on 6 June 2023).
- Shionogi. A Single Arm, Open-Label Study to Assess the Safety, Tolerability, and Pharmacokinetics of Single and Multiple Doses of Cefiderocol in Hospitalized Paediatric Subjects 3 Months to <18 Years of Age with Suspected or Confirmed Aerobic Gram-negative Bacterial Infections. clinicaltrials.gov; 2023. Report No.: Study/NCT04335539. Available online: https://clinicaltrials.gov/ct2/show/study/NCT04335539 (accessed on 6 June 2023).
- Monari, C.; Spagnuolo, F.; Pisaturo, M.; Ascione, S.; Donnarumma, G.; Calò, F.; Caredda, E.; Montella, F.; Maietta, A.; Montaldo, P.; et al. Bloodstream Infection Due to a VIM-Metallo-β-Lactamase-Producing Klebsiella pneumoniae Treated with Cefiderocol in a Preterm Newborn. Infect. Dis. Ther. 2023, 12, 727–734. [Google Scholar] [CrossRef]
- Bawankule, S.; Nabar, N.; Joshi, P.; Singhal, T. Cefiderocol as Salvage Therapy for Carbapenem-Resistant Klebsiella pneumoniae Sepsis in an Extremely Preterm Neonate. Indian J Pediatr. 2023, 90, 310. [Google Scholar] [CrossRef] [PubMed]
- Bergen, P.J.; Li, J.; Rayner, C.R.; Nation, R.L. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2006, 50, 1953–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matzneller, P.; Strommer, S.; Drucker, C.; Petroczi, K.; Schörgenhofer, C.; Lackner, E.; Jilma, B.; Zeitlinger, M. Colistin Reduces LPS-Triggered Inflammation in a Human Sepsis Model In Vivo: A Randomized Controlled Trial. Clin. Pharmacol. Ther. 2017, 101, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Nakwan, N.; Usaha, S.; Chokephaibulkit, K.; Villani, P.; Regazzi, M.; Imberti, R. Pharmacokinetics of Colistin Following a Single Dose of Intravenous Colistimethate Sodium in Critically Ill Neonates. Pediatr. Infect. Dis J. 2016, 35, 1211–1214. [Google Scholar] [CrossRef]
- Antachopoulos, C.; Geladari, A.; Landersdorfer, C.B.; Volakli, E.; Ilia, S.; Gikas, E.; Gika, H.; Sdougka, M.; Nation, R.L.; Roilides, E. Population Pharmacokinetics and Outcomes of Critically Ill Pediatric Patients Treated with Intravenous Colistin at Higher Than Recommended Doses. Antimicrob. Agents Chemother. 2021, 65, e00002-21. [Google Scholar] [CrossRef]
- Chin, M.K.Y.B.; Hsia, Y.; Goossens, H.; Versporten, A.M.; Bielicki, J.; Sharland, M.; Donà, D. Evidence of Dose Variability and Dosing Below the FDA and EMA Recommendations for Intravenous Colistin (Polymyxin E) Use in Children and Neonates. Pediatr. Infect. Dis. J. 2020, 39, 1032–1034. [Google Scholar] [CrossRef]
- Kang, C.H.; Tsai, C.M.; Wu, T.H.; Wu, H.Y.; Chung, M.Y.; Chen, C.C.; Huang, Y.C.; Liu, S.F.; Liao, D.L.; Niu, C.-K.; et al. Colistin inhalation monotherapy for ventilator-associated pneumonia of Acinetobacter baumannii in prematurity. Pediatr. Pulmonol. 2014, 49, 381–388. [Google Scholar] [CrossRef]
- Antachopoulos, C.; Karvanen, M.; Iosifidis, E.; Jansson, B.; Plachouras, D.; Cars, O.; Roilides, E. Serum and cerebrospinal fluid levels of colistin in pediatric patients. Antimicrob. Agents Chemother. 2010, 54, 3985–3987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakwan, N.; Chokephaibulkit, K.; Imberti, R. The Use of Colistin for the Treatment of Multidrug-resistant Gram-negative Infections in Neonates and Infants: A Review of the Literature. Pediatr. Infect. Dis. J. 2019, 38, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Stein, G.E.; Babinchak, T. Tigecycline: An update. Diagn. Microbiol. Infect. Dis. 2013, 75, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, S.; Zekiy, A.O.; Krutova, M.; Gholami, M.; Kouhsari, E.; Sholeh, M.; Ghafouri, Z.; Maleki, F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: Narrative review. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1003–1022. [Google Scholar] [CrossRef]
- Sader, H.S.; Castanheira, M.; Flamm, R.K.; Mendes, R.E.; Farrell, D.J.; Jones, R.N. Tigecycline activity tested against carbapenem-resistant Enterobacteriaceae from 18 European nations: Results from the SENTRY surveillance program (2010-2013). Diagn. Microbiol. Infect. Dis. 2015, 83, 183–186. [Google Scholar] [CrossRef]
- Khare, V. Study on MICs of Tigecycline in Clinical Isolates of Carbapenem Resistant Enterobacteriaceae (CRE) at a Tertiary Care Centre in North India. JCDR. 2017. Available online: http://jcdr.net/article_fulltext.asp?issn=0973-709x&year=2017&volume=11&issue=3&page=DC18&issn=0973-709x&id=9629 (accessed on 30 August 2022).
- Sheu, C.C.; Chang, Y.T.; Lin, S.Y.; Chen, Y.H.; Hsueh, P.R.; Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Frontiers in Microbiology. 2019. Available online: https://www.frontiersin.org/articles/10.3389/fmicb.2019.00080 (accessed on 30 August 2022).
- Ni, W.; Han, Y.; Liu, J.; Wei, C.; Zhao, J.; Cui, J.; Wang, R.; Liu, Y. Tigecycline Treatment for Carbapenem-Resistant Enterobacteriaceae Infections: A Systematic Review and Meta-Analysis. Medicine 2016, 95, e3126. [Google Scholar] [CrossRef]
- Tygacil-Epar-Product-Information_en.pdf. Available online: https://www.ema.europa.eu/en/documents/product-information/tygacil-epar-product-information_en.pdf (accessed on 30 August 2022).
- FDA. Research C for DE and. FDA Drug Safety Communication: FDA Warns of Increased Risk of Death with IV Antibacterial Tygacil (Tigecycline) and Approves New Boxed Warning. 21 June 2019. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-increased-risk-death-iv-antibacterial-tygacil-tigecycline (accessed on 27 February 2023).
- Mastrolia, M.V.; Galli, L.; De Martino, M.; Chiappini, E. Use of tigecycline in pediatric clinical practice. Expert Rev. Anti. Infect. Ther. 2017, 15, 605–612. [Google Scholar] [CrossRef]
- Iosifidis, E.; Violaki, A.; Michalopoulou, E.; Volakli, E.; Diamanti, E.; Koliouskas, D.; Antachopoulos, C.; Drossou-Agakidou, V.; Sdougka, M.; Roilides, E. Use of Tigecycline in Pediatric Patients With Infections Predominantly Due to Extensively Drug-Resistant Gram-Negative Bacteria. J. Pediatric. Infect. Dis. Soc. 2017, 6, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharland, M.; Rodvold, K.A.; Tucker, H.R.; Baillon-Plot, N.; Tawadrous, M.; Hickman, M.A.; Raber, S.; Korth-Bradley, J.M.; Díaz-Ponce, H.; Wible, M. Safety and Efficacy of Tigecycline to Treat Multidrug-resistant Infections in Pediatrics: An Evidence Synthesis. Pediatr. Infect. Dis. J. 2019, 38, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Purdy, J.; Jouve, S.; Yan, J.L.; Balter, I.; Dartois, N.; Cooper, C.A.; Korth-Bradley, J. Pharmacokinetics and safety profile of tigecycline in children aged 8 to 11 years with selected serious infections: A multicenter, open-label, ascending-dose study. Clin. Ther. 2012, 34, 496–507.e1. [Google Scholar] [CrossRef]
- Falagas, M.; Karageorgopoulos, D.; Dimopoulos, G. Clinical Significance of the Pharmacokinetic and Pharmacodynamic Characteristics of Tigecycline. CDM 2009, 10, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Mukker, J.K.; Singh, R.P.; Derendorf, H. Determination of Atypical Nonlinear Plasma–Protein-Binding Behavior of Tigecycline Using an In Vitro Microdialysis Technique. J. Pharm. Sci. 2014, 103, 1013–1019. [Google Scholar] [CrossRef]
- Rodvold, K.A.; Gotfried, M.H.; Cwik, M.; Korth-Bradley, J.M.; Dukart, G.; Ellis-Grosse, E.J. Serum, tissue and body fluid concentrations of tigecycline after a single 100 mg dose. J. Antimicrob. Chemother. 2006, 58, 1221–1229. [Google Scholar] [CrossRef]
- McGovern, P.C.; Wible, M.; El-Tahtawy, A.; Biswas, P.; Meyer, R.D. All-cause mortality imbalance in the tigecycline phase 3 and 4 clinical trials. Int. J. Antimicrob. Agents 2013, 41, 463–467. [Google Scholar] [CrossRef] [Green Version]
- Leng, B.; Yan, G.; Wang, C.; Shen, C.; Zhang, W.; Wang, W. Dose optimisation based on pharmacokinetic/pharmacodynamic target of tigecycline. J. Glob. Antimicrob. Resist. 2021, 25, 315–322. [Google Scholar] [CrossRef]
- Zha, L.; Pan, L.; Guo, J.; French, N.; Villanueva, E.V.; Tefsen, B. Effectiveness and Safety of High Dose Tigecycline for the Treatment of Severe Infections: A Systematic Review and Meta-Analysis. Adv Ther. 2020, 37, 1049–1064. [Google Scholar] [CrossRef]
- Ramirez, J.; Dartois, N.; Gandjini, H.; Yan, J.L.; Korth-Bradley, J.; McGovern, P.C. Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem-cilastatin for treatment of hospital-acquired pneumonia. Antimicrob. Agents Chemother. 2013, 57, 1756–1762. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.Y.; Yang, J.F.; Ni, Y.H.; Ye, W.F.; Wang, J.; Wu, M.L. Retrospective analysis of tigecycline shows that it may be an option for children with severe infections. Acta Paediatr. 2016, 105, e480–e484. [Google Scholar] [CrossRef]
- İpek, M.; Gunel, M.; Ozbek, E. Tigecycline Use in Neonates: 5-Year Experience of a Tertiary Center. J. Pediatr. Infect. Dis. 2019, 14, 103–107. [Google Scholar]
- Zhu, Z.; Yu, Q.; Qi, G.; Yang, J.; Ni, Y.; Ruan, W.; Fang, L. Tigecycline-Induced Tooth Discoloration in Children Younger than Eight Years. Antimicrob. Agents Chemother. 2021, 65, e00854-21. [Google Scholar] [CrossRef]
- Critically Important Antimicrobials for Human Medicine: 6th Revision. Available online: https://www.who.int/publications-detail-redirect/9789241515528 (accessed on 21 April 2023).
- Castañeda-García, A.; Blázquez, J.; Rodríguez-Rojas, A. Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics 2013, 2, 217–236. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Giannopoulou, K.P.; Kokolakis, G.N.; Rafailidis, P.I. Fosfomycin: Use beyond urinary tract and gastrointestinal infections. Clin. Infect. Dis. 2008, 46, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Karageorgopoulos, D.E.; Wang, R.; Yu, X.H.; Falagas, M.E. Fosfomycin: Evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J. Antimicrob. Chemother. 2012, 67, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Kowalska-Krochmal, B.; Mączyńska, B.; Rurańska-Smutnicka, D.; Secewicz, A.; Krochmal, G.; Bartelak, M.; Górzyńska, A.; Laufer, K.; Woronowicz, K.; Łubniewska, J.; et al. Assessment of the Susceptibility of Clinical Gram-Negative and Gram-Positive Bacterial Strains to Fosfomycin and Significance of This Antibiotic in Infection Treatment. Pathogens 2022, 11, 1441. [Google Scholar] [CrossRef]
- Dimopoulos, G.; Koulenti, D.; Parker, S.L.; Roberts, J.A.; Arvaniti, K.; Poulakou, G. Intravenous fosfomycin for the treatment of multidrug-resistant pathogens: What is the evidence on dosing regimens? Expert Rev. Anti. Infect. Ther. 2019, 17, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.C.M.; Waichungo, J.; Gordon, N.C.; Sharland, M.; Murunga, S.; Kamau, A.; Berkley, J.A. The potential of fosfomycin for multi-drug resistant sepsis: An analysis of in vitro activity against invasive paediatric Gram-negative bacteria. J. Med. Microbiol. 2019, 68, 711–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, K.M.; Dyer, C.; Liu, F.; Sands, K.; Portal, E.; Carvalho, M.J.; Barrell, M.; Boostrom, I.; Dunachie, S.; Farzana, R.; et al. Effects of antibiotic resistance, drug target attainment, bacterial pathogenicity and virulence, and antibiotic access and affordability on outcomes in neonatal sepsis: An international microbiology and drug evaluation prospective substudy (BARNARDS). Lancet Infect. Dis. 2021, 21, 1677–1688. [Google Scholar] [CrossRef] [PubMed]
- Obiero, C.W.; Williams, P.; Murunga, S.; Thitiri, J.; Omollo, R.; Walker, A.S.; Egondi, T.; Nyaoke, B.; Correia, E.; Kane, Z.; et al. Randomised controlled trial of fosfomycin in neonatal sepsis: Pharmacokinetics and safety in relation to sodium overload. Arch. Dis. Child. 2022, 107, 802–810. [Google Scholar] [CrossRef]
- Kane, Z.; Gastine, S.; Obiero, C.; Williams, P.; Murunga, S.; Thitiri, J.; Ellis, S.; Correia, E.; Nyaoke, B.; Kipper, K.; et al. IV and oral fosfomycin pharmacokinetics in neonates with suspected clinical sepsis. J. Antimicrob. Chemother. 2021, 76, 1855–1864. [Google Scholar] [CrossRef] [PubMed]
- Manolis, E.; Pons, G. Proposals for model-based paediatric medicinal development within the current European Union regulatory framework. Br. J. Clin. Pharmacol. 2009, 68, 493–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allegaert, K.; van den Anker, J. Neonates are not just little children and need more finesse in dosing of antibiotics. Acta Clin. Belg. 2019, 74, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Jacqz-Aigrain, E.; Kaguelidou, F.; van den Anker, J.N. How to optimize the evaluation and use of antibiotics in neonates. Pediatr. Clin. N. Am. 2012, 59, 1117–1128. [Google Scholar] [CrossRef] [Green Version]
- Smits, A.; Annaert, P.; Cavallaro, G.; De Cock, P.A.J.G.; de Wildt, S.N.; Kindblom, J.M.; Lagler, F.B.; Moreno, C.; Pokorna, P.; Schreuder, M.F.; et al. Current knowledge, challenges and innovations in developmental pharmacology: A combined conect4children Expert Group and European Society for Developmental, Perinatal and Paediatric Pharmacology White Paper. Br. J. Clin. Pharmacol. 2022, 88, 4965–4984. [Google Scholar] [CrossRef]
Drug/PK Parameter a | Healthy Adults | ≥12 to <18 yr | ≥6 to <12 yr | ≥2 to <6 yr | ≥3 m to <2 yr | Neonates to Infants <3 m |
---|---|---|---|---|---|---|
Ceftazidime | No PK data An ongoing phase II study (NCT04126031) will provide additional data on CAZ-AVI PK in neonates and young infants with bloodstream infections | |||||
Cmax (mg/liter) | 88.1 (14.0) | 79.8 (41.8) | 81.3 (17.8) | 80.1 (14.7) | 91.7 (19.6) | |
AUC0-∞ (h mg/liter) | 289 (15.4) 1 | 230.6 (30.7) | 221.2 (17.4) | 255.32 (43.9) 2 | 286.27 (37.13) 2 | |
t1/2 (h) b | 3.5 (1.3) | 1.7 (0.9–2.8) | 1.6 (0.9–1.8) | |||
Vss (liters) | 22.2 (42.0) | 13 (17.8) | ||||
CL (liter/h) | 7.0 (1.1) | 8.7 (45.5) | 5.6 (16) | |||
CL/W (liter/kg/h) | 0.16 (37.9) | 0.226 (20) | ||||
Avibactam | ||||||
Cmax (mg/liter) | 15.2 (14.1) | 15.1 (52.4) | 14.1 (23) | 13.7 (22.4) | 16.3 (22.6) | |
AUC0-∞ (h mg/liter) | 42.1 (16) 1 | 36.4 (33.6) | 34.8 (22.6) | 43.25 (12.14) 2 | 48.99 (10.64) 2 | |
t1/2 (h) b | 2.3 (0.8) | 1.6 (0.9–2.8) | 1.7 (0.9-2.0) | |||
Vss (liters) | 31 (53.3) | 19.3 (27) | ||||
CL (liter/h) | 12 (1.8) | 13.7 (52.6) | 8.9 (30.2) | |||
CL/W (liter/kg/h) | 0.267 (44.2) | 0.359 (35.8) |
PK Parameters | Group 1 12 to <18y (1.5 g) | Group 2 7 to <12y (18/9 mg/kg) | Group 3 2 to <7y (30/15 mg/kg) | Group 4 3m to <2y (30/15 mg/kg) | Group 5, GA > 32w PNA = 7d to <3m (20/10 mg/kg) | Group 6, GA ≤ 32w PNA = 7d to <3m (20/10 mg/kg) | Adults (1.5 g) |
---|---|---|---|---|---|---|---|
Ceftolozane | |||||||
AUC0-∞ | 133 (104–171) | 107 (85.7–135) | 186 (135–255) | 202 (158–259) | 164 (131–205) | 137 (99.6–189) | 172 (13.8) |
Cmax | 63.5 (50.2–80.4) | 56.2 (45.3–69.7) | 96.6 (71.2–131) | 96.6 (71.2–131) | 45.0 (36.3–55.9) | 45.2 (33.3–61.2) | 69.1 (11.3) |
t1/2 | 1.45 (16.7) | 1.29 (9.6) | 1.48 (35.5) | 1.63 (69.0) | 2.21 (37.6) | 3.14 (0.9) | 2.77 (30.0) |
CL | 0.146 (27.0) | 0.168 (21.3) | 0.162 (31.1) | 0.149 (43.2) | 0.118 (36.0) | 0.147 (6.8) | 0.837 |
Vss | 0.274 (25.7) | 0.296 (22.0) | 0.312 (19.5) | 0.340 (21.1) | 0.394 (12.6) | 0.388 (26.9) | 0.209 |
Tazobactam | |||||||
AUC0-∞ | 17.5 (12.6–24.2) | 10.2 (6.68–15.5) | 28.9 (19.0–43.9) | 29.9 (21.6–41.4) | 24.9 (18.0–34.4) | 22.3 (14.7–34.0) | 24.4 (17.9) |
Cmax | 14.0 (8.59–22.9) | 9.25 (5.92–14.5) | 24.8 (13.2–46.6) | 22.4 (13.8–36.6) | 11.7 (7.48–18.3) | 12.1 (6.43–22.7) | 18.4 (15.9) |
t1/2 | 0.702 (38.7) | 0.544 (3.1) | 0.770 (34.2) | 0.815 (85.1) | 1.09 (32.0) | 0.875 (20.4) | 0.91 (26.2) |
CL | 0.556 (53.9) | 0.886 (23.1) | 0.519 (44.8) | 0.502 (34.7) | 0.385 (34.1) | 0.452 (24.9) | 0.294 |
Vss | 0.474 (69.6) | 0.740 (30.2) | 0.513 (49.2) | 0.574 (36.2) | 0.668 (19.8) | 0.667 (29.3) | 0.259 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kontou, A.; Kourti, M.; Iosifidis, E.; Sarafidis, K.; Roilides, E. Use of Newer and Repurposed Antibiotics against Gram-Negative Bacteria in Neonates. Antibiotics 2023, 12, 1072. https://doi.org/10.3390/antibiotics12061072
Kontou A, Kourti M, Iosifidis E, Sarafidis K, Roilides E. Use of Newer and Repurposed Antibiotics against Gram-Negative Bacteria in Neonates. Antibiotics. 2023; 12(6):1072. https://doi.org/10.3390/antibiotics12061072
Chicago/Turabian StyleKontou, Angeliki, Maria Kourti, Elias Iosifidis, Kosmas Sarafidis, and Emmanuel Roilides. 2023. "Use of Newer and Repurposed Antibiotics against Gram-Negative Bacteria in Neonates" Antibiotics 12, no. 6: 1072. https://doi.org/10.3390/antibiotics12061072
APA StyleKontou, A., Kourti, M., Iosifidis, E., Sarafidis, K., & Roilides, E. (2023). Use of Newer and Repurposed Antibiotics against Gram-Negative Bacteria in Neonates. Antibiotics, 12(6), 1072. https://doi.org/10.3390/antibiotics12061072