A New Integrative and Mobilizable Element Is a Major Contributor to Tetracycline Resistance in Streptococcus dysgalactiae subsp. equisimilis
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vandamme, P.; Pot, B.; Falsen, E.; Kersters, K.; Devriese, L.A. Taxonomic Study of Lancefield Streptococcal Groups C, G, and L (Streptococcus dysgalactiae) and Proposal of S. dysgalactiae subsp. equisimilis subsp. Nov. Int. J. Syst. Bacteriol. 1996, 46, 774–781. [Google Scholar] [CrossRef]
- Efstratiou, A. Pyogenic Streptococci of Lancefield Groups C and G as Pathogens in Man. J. Appl. Microbiol. 1997, 83, 72S–79S. [Google Scholar] [CrossRef]
- Brandt, C.M.; Spellerberg, B. Human Infections Due to Streptococcus dysgalactiae subspecies equisimilis. Clin. Infect. Dis. 2009, 49, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.; Kilian, M. Delineation of Streptococcus dysgalactiae, Its Subspecies, and Its Clinical and Phylogenetic Relationship to Streptococcus pyogenes. J. Clin. Microbiol. 2012, 50, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Lambertsen, L.M.; Ingels, H.; Schønheyder, H.C.; Hoffmann, S.; Hoffmann, S.; Ingels, H.; Lambertsen, L.; Christensen, J.J.; Dessau, R.; Lomborg, S.; et al. Nationwide Laboratory-Based Surveillance of Invasive Beta-Haemolytic Streptococci in Denmark from 2005 to 2011. Clin. Microbiol. Infect. 2014, 20, O216–O223. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Voluntary Surveillance of Pyogenic and Non-Pyogenic Streptococcal Bacteraemia in England, Wales and Northern Ireland: 2020. Health Prot. Rep. 2021, 15, 1–23. [Google Scholar]
- Wajima, T.; Morozumi, M.; Hanada, S.; Sunaoshi, K.; Chiba, N.; Iwata, S.; Ubukata, K. Molecular Characterization of Invasive Streptococcus dysgalactiae subsp. equisimilis, Japan. Emerg. Infect. Dis. 2016, 22, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Rantala, S.; Vuopio-Varkila, J.; Vuento, R.; Huhtala, H.; Syrjänen, J. Clinical Presentations and Epidemiology of β-Haemolytic Streptococcal Bacteraemia: A Population-Based Study. Clin. Microbiol. Infect. 2009, 15, 286–288. [Google Scholar] [CrossRef]
- Beres, S.B.; Zhu, L.; Pruitt, L.; Olsen, R.J.; Faili, A.; Kayal, S.; Musser, J.M. Integrative Reverse Genetic Analysis Identifies Polymorphisms Contributing to Decreased Antimicrobial Agent Susceptibility in Streptococcus pyogenes. mBio 2022, 13, e0361821. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Guédon, G.; Libante, V.; Coluzzi, C.; Payot, S.; Leblond-Bourget, N. The Obscure World of Integrative and Mobilizable Elements, Highly Widespread Elements That Pirate Bacterial Conjugative Systems. Genes 2017, 8, 337. [Google Scholar] [CrossRef]
- Libante, V.; Nombre, Y.; Coluzzi, C.; Staub, J.; Guédon, G.; Gottschalk, M.; Teatero, S.; Fittipaldi, N.; Leblond-bourget, N.; Payot, S. Chromosomal Conjugative and Mobilizable Elements in Streptococcus suis: Major Actors in the Spreading of Antimicrobial Resistance and Bacteriocin Synthesis Genes. Pathogens 2019, 9, 22. [Google Scholar] [CrossRef]
- Liang, P.; Wang, M.; Gottschalk, M.; Vela, A.I.; Estrada, A.A.; Wang, J.; Du, P.; Luo, M.; Zheng, H.; Wu, Z. Genomic and Pathogenic Investigations of Streptococcus suis Serotype 7 Population Derived from a Human Patient and Pigs. Emerg. Microbes. Infect. 2021, 10, 1960–1974. [Google Scholar] [CrossRef]
- Wang, J.; Qi, K.; Bai, X.; Wu, Z.; Kang, W.; Liang, P.; Zheng, H.; Xu, J. Characterization of Integrative and Conjugative Elements Carrying Antibiotic Resistance Genes of Streptococcus suis Isolated in China. Front. Microbiol. 2022, 13, 1074844. [Google Scholar]
- Lu, B.; Fang, Y.; Huang, L.; Diao, B.; Du, X.; Kan, B.; Cui, Y.; Zhu, F.; Li, D.; Wang, D. Molecular Characterization and Antibiotic Resistance of Clinical Streptococcus dysgalactiae subsp. equisimilis in Beijing, China. Infect. Genet. Evol. 2016, 40, 119–125. [Google Scholar] [CrossRef]
- Rojo-Bezares, B.; Toca, L.; Manuel Azcona-Gutiérrez, J.; Ortega-Unanue, N.; Toledano, P.; Sáenz, Y. Streptococcus dysgalactiae subsp. equisimilis from Invasive and Non-Invasive Infections in Spain: Combining Epidemiology, Molecular Characterization, and Genetic Diversity. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1013–1021. [Google Scholar]
- Mcguinness, W.A.; Malachowa, N.; Deleo, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. [Google Scholar]
- Gherardi, G.; Imperi, M.; Palmieri, C.; Magi, G.; Facinelli, B.; Baldassarri, L.; Pataracchia, M.; Creti, R. Genetic Diversity and Virulence Properties of Streptococcus dysgalactiae subsp. equisimilis from Different Sources. J. Med. Microbiol. 2013, 63, 90–98. [Google Scholar]
- de Souza, J.P.; Santos, A.R.; de Paula, G.R.; Barros, R.R. Antimicrobial Susceptibility and Genetic Relationships among Streptococcus dysgalactiae subsp. equisimilis Isolates in Rio de Janeiro. Infect. Dis. 2016, 48, 676–681. [Google Scholar] [CrossRef]
- Leitner, E.; Zollner-Schwetz, I.; Zarfel, G.; Masoud-Landgraf, L.; Gehrer, M.; Wagner-Eibel, U.; Grisold, A.J.; Feierl, G. Prevalence of Emm Types and Antimicrobial Susceptibility of Streptococcus dysgalactiae subsp. equisimilis in Austria. Int. J. Med. Microbiol. 2015, 305, 918–924. [Google Scholar] [CrossRef]
- Traverso, F.; Blanco, A.; Villalón, P.; Beratz, N.; Sáez Nieto, J.A.; Lopardo, H. Molecular Characterization of Invasive Streptococcus dysgalactiae subsp. equisimilis. Multicenter Study: Argentina 2011–2012. Rev. Argent. Microbiol. 2016, 48, 279–289. [Google Scholar] [CrossRef]
- Loubinoux, J.; Plainvert, C.; Collobert, G.; Touak, G.; Bouvet, A.; Poyart, C. Adult Invasive and Noninvasive Infections Due to Streptococcus dysgalactiae subsp. equisimilis in France from 2006 to 2010. J. Clin. Microbiol. 2013, 51, 2724–2727. [Google Scholar] [CrossRef]
- Ambroset, C.; Coluzzi, C.; Guédon, G.; Devignes, M.D.; Loux, V.; Lacroix, T.; Payot, S.; Leblond-Bourget, N. New Insights into the Classification and Integration Specificity of Streptococcus Integrative Conjugative Elements through Extensive Genome Exploration. Front. Microbiol. 2016, 6, 1483. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.B. Tn916 Family Conjugative Transposons and Dissemination of Antimicrobial Resistance Determinants. Antimicrob. Agents Chemother. 1998, 42, 1871–1877. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Croucher, N.J.; Page, A.J.; Connor, T.R.; Delaney, A.J.; Keane, J.A.; Bentley, S.D.; Parkhill, J.; Harris, S.R. Rapid Phylogenetic Analysis of Large Samples of Recombinant Bacterial Whole Genome Sequences Using Gubbins. Nucleic Acids Res. 2015, 43, e15. [Google Scholar] [CrossRef]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A Fast, Scalable and User-friendly Tool for Maximum Likelihood Phylogenetic Inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef]
Antibiotic | % Susceptible | MIC (50) [mg/L] | MIC (90) [mg/L] |
---|---|---|---|
Penicillin | 100 | <0.03 | <0.03 |
Cefotaxime | 100 | <0.06 | <0.03 |
Erythromycin | 54.2 | <0.25 | >4 |
Clindamycin | 58.3 | <0.25 | >0.5 |
Linezolid | 100 | <1 | - |
Tetracycline | 0 | - | >4 |
Chloramphenicol | 100 | 2 | 2 |
Levofloxacin | 100 * | <1 | <1 |
Vancomycin | 100 | <0.5 | <0.5 |
Trimethoprim-Sulfamethoxazole | 91.7 | <0.5/9.5 | <0.5/9.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López de Egea, G.; González-Díaz, A.; Guédon, G.; Lao, J.; Berbel, D.; Casabella, A.; Marimón, J.M.; Cercenado, E.; Fernández-Delgado, L.; Chiapello, H.; et al. A New Integrative and Mobilizable Element Is a Major Contributor to Tetracycline Resistance in Streptococcus dysgalactiae subsp. equisimilis. Antibiotics 2023, 12, 579. https://doi.org/10.3390/antibiotics12030579
López de Egea G, González-Díaz A, Guédon G, Lao J, Berbel D, Casabella A, Marimón JM, Cercenado E, Fernández-Delgado L, Chiapello H, et al. A New Integrative and Mobilizable Element Is a Major Contributor to Tetracycline Resistance in Streptococcus dysgalactiae subsp. equisimilis. Antibiotics. 2023; 12(3):579. https://doi.org/10.3390/antibiotics12030579
Chicago/Turabian StyleLópez de Egea, Guillem, Aida González-Díaz, Gérard Guédon, Julie Lao, Dàmaris Berbel, Antonio Casabella, José María Marimón, Emilia Cercenado, Lucía Fernández-Delgado, Hélène Chiapello, and et al. 2023. "A New Integrative and Mobilizable Element Is a Major Contributor to Tetracycline Resistance in Streptococcus dysgalactiae subsp. equisimilis" Antibiotics 12, no. 3: 579. https://doi.org/10.3390/antibiotics12030579
APA StyleLópez de Egea, G., González-Díaz, A., Guédon, G., Lao, J., Berbel, D., Casabella, A., Marimón, J. M., Cercenado, E., Fernández-Delgado, L., Chiapello, H., Lacroix, T., Domínguez, M. Á., Leblond-Bourget, N., & Ardanuy, C. (2023). A New Integrative and Mobilizable Element Is a Major Contributor to Tetracycline Resistance in Streptococcus dysgalactiae subsp. equisimilis. Antibiotics, 12(3), 579. https://doi.org/10.3390/antibiotics12030579