Synthetic Biology Facilitates Antimicrobials Discovery
Acknowledgments
Conflicts of Interest
References
- Tong, Y.; Deng, Z. An aurora of natural products-based drug discovery is coming. Synth. Syst. Biotechnol. 2020, 5, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Weber, T.; Lee, S.Y. CRISPR/Cas-based genome engineering in natural product discovery. Nat. Prod. Rep. 2019, 36, 1262–1280. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Koirala, B.; Hernandez, Y.; Zimmerman, M.; Park, S.; Perlin, D.S.; Brady, S.F. A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature 2022, 601, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Q.; Koirala, B.; Hernandez, Y.; Zimmerman, M.; Brady, S.F. Bioinformatic prospecting and synthesis of a bifunctional lipopeptide antibiotic that evades resistance. Science 2022, 376, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Mitcheltree, M.J.; Pisipati, A.; Syroegin, E.A.; Silvestre, K.J.; Klepacki, D.; Mason, J.D.; Terwilliger, D.W.; Testolin, G.; Pote, A.R.; Wu, K.J.Y.; et al. A synthetic antibiotic class overcoming bacterial multidrug resistance. Nature 2021, 599, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Durand-Reville, T.F.; Miller, A.A.; O’Donnell, J.P.; Wu, X.Y.; Sylvester, M.A.; Guler, S.; Iyer, R.; Shapiro, A.B.; Carter, N.M.; Velez-Vega, C.; et al. Rational design of a new antibiotic class for drug-resistant infections. Nature 2021, 597, 698–702. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Meyer, K.J.; Iinishi, A.; Favre-Godal, Q.; Green, R.; Manuse, S.; Caboni, M.; Mori, M.; Niles, S.; Ghiglieri, M.; et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 2019, 576, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.Q.; Wang, Y.X.; Tian, W.S.; Cui, X.X.; Tu, P.F.; Li, J.; Shi, S.P.; Liu, X. Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics 2022, 11, 1380. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.X.; Feng, X.L.; Liu, C.W.; Gao, J.M.; Qi, J.Z. Diverse metabolites and pharmacological effects from the Basidiomycetes Inonotus hispidus. Antibiotics 2022, 11, 1097. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Han, L.; Lu, R.Y.; Wang, Y. Antifungal and immunomodulatory ingredients from traditional Chinese medicine. Antibiotics 2023, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Geng, B.N.; Huang, X.Y.; Wu, Y.L.; He, Q.N.; Yang, S.H. Identification and characterization of genes related to ampicillin antibiotic resistance in Zymomonas mobilis. Antibiotics 2022, 11, 1476. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, Y.Y.; Li, S.S.; Ye, L.; Wang, X.J.; Xiang, W.S. SspH, a novel HATPase family regulator, controls antibiotic biosynthesis in Streptomyces. Antibiotics 2022, 11, 538. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, Y.T.; Zhang, X.J.; Kang, Q.J.; Yan, Y.S.; Bai, L.Q. Comparative transcriptome-based mining of genes involved in the export of polyether antibiotics for titer improvement. Antibiotics 2022, 11, 600. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.X.; Chen, L.; Tang, M.C. Genome mining discovery of a new benzazepine alkaloid pseudofisnin A from the marine fungus Neosartorya pseudofischeri F27-1. Antibiotics 2022, 11, 1444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.S.; Wang, J.B.; Qiao, Y.J.; Lin, B.X.; Deng, Z.X.; Kong, L.X.; You, D.L. Genome mining and metabolic profiling reveal cytotoxic cyclodipeptides in Streptomyces hygrospinosus var. Beijingensis. Antibiotics 2022, 11, 1463. [Google Scholar] [CrossRef] [PubMed]
- Al-Thubaiti, E.H.; El-Megharbel, S.M.; Albogami, B.; Hamza, R.Z. Synthesis, spectroscopic, chemical characterizations, anticancer capacities against HepG-2, antibacterial and antioxidant activities of cefotaxime metal complexes with Ca(II), Cr(III), Zn(II), Cu(II) and Se(IV). Antibiotics 2022, 11, 967. [Google Scholar] [CrossRef] [PubMed]
- El-Megharbel, S.M.; Qahl, S.H.; Alaryani, F.S.; Hamza, R.Z. Synthesis, spectroscopic studies for five new Mg (II), Fe (III), Cu (II), Zn (II) and Se (IV) ceftriaxone antibiotic drug complexes and their possible hepatoprotective and antioxidant capacities. Antibiotics 2022, 11, 547. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, L.; Deng, Z.; Tong, Y. Synthetic Biology Facilitates Antimicrobials Discovery. Antibiotics 2023, 12, 578. https://doi.org/10.3390/antibiotics12030578
Bai L, Deng Z, Tong Y. Synthetic Biology Facilitates Antimicrobials Discovery. Antibiotics. 2023; 12(3):578. https://doi.org/10.3390/antibiotics12030578
Chicago/Turabian StyleBai, Linquan, Zixin Deng, and Yaojun Tong. 2023. "Synthetic Biology Facilitates Antimicrobials Discovery" Antibiotics 12, no. 3: 578. https://doi.org/10.3390/antibiotics12030578
APA StyleBai, L., Deng, Z., & Tong, Y. (2023). Synthetic Biology Facilitates Antimicrobials Discovery. Antibiotics, 12(3), 578. https://doi.org/10.3390/antibiotics12030578