Characteristics of the Mycoplasma pneumoniae Epidemic from 2019 to 2020 in Korea: Macrolide Resistance and Co-Infection Trends
Abstract
:1. Introduction
2. Results
2.1. Respiratory Panel Test Results Accumulated over a Five-Year Period, Including the Recent Outbreak of M. pneumoniae
2.2. Comparison of Demographic and Macrolide Resistance Characteristics of M. pneumoniae-Positive Cases between MPP Epidemic and Non-Epidemic Periods
2.3. Comparison of M. pneumoniae Co-Infections between the MPP Epidemic and Non-Epidemic Periods
2.4. Co-Infection Characteristics of Macrolide-Resistant and Macrolide-Susceptible M. pneumoniae
2.5. Korean National Health Data on MPP from May 2017 to April 2022
3. Discussion
4. Materials and Methods
4.1. Respiratory Panel Test and Co-Infection Analysis
4.2. Detection and Characterization of Macrolide Resistance in M. pneumoniae
4.3. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferwerda, A.; Moll, H.A.; de Groot, R. Respiratory Tract Infections by Mycoplasma pneumoniae in Children: A Review of Diagnostic and Therapeutic Measures. Eur. J. Pediatr. 2001, 160, 483–491. [Google Scholar] [CrossRef]
- Okazaki, N.; Narita, M.; Yamada, S.; Izumikawa, K.; Umetsu, M.; Kenri, T.; Sasaki, Y.; Arakawa, Y.; Sasaki, T. Characteristics of macrolide-resistant Mycoplasma pneumoniae strains isolated from patients and induced with erythromycin in vitro. Microbiol. Immunol. 2001, 45, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Waites, K.B.; Talkington, D.F. Mycoplasma pneumoniae and Its Role as a Human Pathogen. Clin. Microbiol. Rev. 2004, 17, 697–728. [Google Scholar] [CrossRef]
- Atkinson, T.P.; Balish, M.F.; Waites, K.B. Epidemiology, Clinical Manifestations, Pathogenesis and Laboratory Detection of Mycoplasma pneumoniae Infections. FEMS Microbiol. Rev. 2008, 32, 956–973. [Google Scholar] [CrossRef] [PubMed]
- File, T.M. The Science of Selecting Antimicrobials for Community-Acquired Pneumonia (CAP). J. Manag. Care Pharm. 2009, 15, S5–S11. [Google Scholar] [CrossRef] [PubMed]
- Morozumi, M.; Takahashi, T.; Ubukata, K. Macrolide-Resistant Mycoplasma pneumoniae: Characteristics of Isolates and Clinical Aspects of Community-Acquired Pneumonia. J. Infect. Chemother. 2010, 16, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Medjo, B.; Atanaskovic-Markovic, M.; Radic, S.; Nikolic, D.; Lukac, M.; Djukic, S. Mycoplasma pneumoniae as a Causative Agent of Community-Acquired Pneumonia in Children: Clinical Features and Laboratory Diagnosis. Ital. J. Pediatr. 2014, 40, 104. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Sheng, Y.; Zhang, L.; Shen, Z.; Chen, Z. More complications occur in macrolide-resistant than in macrolide-sensitive Mycoplasma pneumoniae pneumonia. Antimicrob. Agents Chemother. 2014, 58, 1034–1038. [Google Scholar] [CrossRef]
- Waites, K.B.; Lysynyansky, I.; Bebear, C.M. Emerging Antimicrobial Resistance in Mycoplasmas of Humans and Animals; Caister Academic Press: Norfolk, UK, 2014; pp. 289–322. [Google Scholar]
- Pereyre, S.; Goret, J.; Bébéar, C. Mycoplasma pneumoniae: Current knowledge on macrolide resistance and treatment. Front. Microbiol. 2016, 7, 974. [Google Scholar] [CrossRef]
- Waites, K.B.; Xiao, L.; Liu, Y.; Balish, M.F.; Atkinson, T.P. Mycoplasma pneumoniae from the respiratory tract and beyond. Clin. Microbiol. Rev. 2017, 30, 747–809. [Google Scholar] [CrossRef]
- Meyer Sauteur, P.M.; Unger, W.W.; Nadal, D.; Berger, C.; Vink, C.; van Rossum, A.M. Infection with and carriage of Mycoplasma pneumoniae in children. Front. Microbiol. 2016, 7, 329. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.J.; Song, D.J.; Shim, J.Y. Mechanism of Resistance Acquisition and Treatment of Macrolide-Resistant Mycoplasma pneumoniae Pneumonia in Children. Korean J. Pediatr. 2017, 60, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Qu, J.X.; Yin, Y.D.; Eldere, J.V. Overview of Antimicrobial Options for Mycoplasma pneumoniae Pneumonia: Focus on Macrolide Resistance. Clin. Respir. J. 2017, 11, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Hsu, W.Y.; Chang, T.H. Macrolide-Resistant Mycoplasma pneumoniae Infections in Pediatric Community-Acquired Pneumonia. Emerg. Infect. Dis. 2020, 26, 1382–1391. [Google Scholar] [CrossRef]
- Lanata, M.M.; Wang, H.; Everhart, K.; Moore-Clingenpeel, M.; Ramilo, O.; Leber, A. Macrolide-Resistant Mycoplasma pneumoniae Infections in Children, Ohio, USA. Emerg. Infect. Dis. 2021, 27, 1588–1597. [Google Scholar] [CrossRef]
- Tsai, T.A.; Tsai, C.K.; Kuo, K.C.; Yu, H.R. Rational Stepwise Approach for Mycoplasma pneumoniae Pneumonia in Children. J. Microbiol. Immunol. Infect. 2021, 54, 557–565. [Google Scholar] [CrossRef]
- Zhang, L.; Zong, Z.Y.; Liu, Y.B.; Ye, H.; Lv, X.J. PCR Versus Serology for Diagnosing Mycoplasma pneumoniae Infection: A Systematic Review & Meta-analysis. Indian J. Med. Res. 2011, 134, 270–280. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc3193707 (accessed on 18 January 2023).
- Kim, J.H.; Kim, J.Y.; Yoo, C.H.; Seo, W.H.; Yoo, Y.; Song, D.J.; Choung, J.T. Macrolide Resistance and Its Impacts on M. pneumoniae Pneumonia in Children: Comparison of Two Recent Epidemics in Korea. Allergy Asthma Immunol. Res. 2017, 9, 340–346. [Google Scholar] [CrossRef]
- Jain, S.; Williams, D.J.; Arnold, S.R.; Ampofo, K.; Bramley, A.M.; Reed, C.; Stockmann, C.; Anderson, E.J.; Grijalva, C.G.; Self, W.H.; et al. Community-Acquired Pneumonia Requiring Hospitalization Among U.S. Children. N. Engl. J. Med. 2015, 372, 835–845. [Google Scholar] [CrossRef]
- Mandell, L.A. Community-Acquired Pneumonia: An Overview. Postgrad. Med. 2015, 127, 607–615. [Google Scholar] [CrossRef]
- Marshall, N.C.; Kariyawasam, R.M.; Zelyas, N.; Kanji, J.N.; Diggle, M.A. Broad Respiratory Testing to Identify SARS-CoV-2 Viral co-Circulation and Inform Diagnostic Stewardship in the COVID-19 Pandemic. Virol. J. 2021, 18, 93. [Google Scholar] [CrossRef]
- Singh, V.; Upadhyay, P.; Reddy, J.; Granger, J. SARS-CoV-2 Respiratory co-Infections: Incidence of Viral and Bacterial co-Pathogens. Int. J. Infect. Dis. 2021, 105, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Quinn, J.; Pinsky, B.; Shah, N.H.; Brown, I. Rates of co-Infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA 2020, 323, 2085–2086. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.A.; Gao, L.B.; Chen, X.J.; Xu, Y. Fourty-Nine Years Old Woman co-Infected with SARS-CoV-2 and Mycoplasma: A Case Report. World J. Clin. Cases 2020, 8, 6080–6085. [Google Scholar] [CrossRef] [PubMed]
- Oliva, A.; Siccardi, G.; Migliarini, A.; Cancelli, F.; Carnevalini, M.; D’andria, M.; Attilia, I.; Danese, V.C.; Cecchetti, V.; Romiti, R.; et al. Co-infection of SARS-CoV-2 with Chlamydia or Mycoplasma pneumoniae: A Case Series and Review of the Literature. Infection 2020, 48, 871–877. [Google Scholar] [CrossRef]
- Blasco, M.L.; Buesa, J.; Colomina, J.; Forner, M.J.; Galindo, M.J.; Navarro, J.; Noceda, J.; Redón, J.; Signes-Costa, J.; Navarro, D. Co-detection of Respiratory Pathogens in Patients Hospitalized with Coronavirus Viral disease-2019 Pneumonia. J. Med. Virol. 2020, 92, 1799–1801. [Google Scholar] [CrossRef]
- Easom, N.; Moss, P.; Barlow, G.; Samson, A.; Taynton, T.; Adams, K.; Ivan, M.; Burns, P.; Gajee, K.; Eastick, K.; et al. Sixty-Eight Consecutive Patients Assessed for COVID-19 Infection: Experience from a UK Regional Infectious Diseases Unit. Influenza Other Respir. Viruses 2020, 14, 374–379. [Google Scholar] [CrossRef]
- Wu, Q.; Xing, Y.; Shi, L.; Li, W.; Gao, Y.; Pan, S.; Wang, Y.; Wang, W.; Xing, Q. Coinfection and Other Clinical Characteristics of COVID-19 in Children. Pediatrics 2020, 146, e20200961. [Google Scholar] [CrossRef]
- Zhang, J.J.; Dong, X.; Cao, Y.Y.; Yuan, Y.D.; Yang, Y.B.; Yan, Y.Q.; Akdis, C.A.; Gao, Y.D. Clinical Characteristics of 140 Patients Infected with SARS-CoV-2 in Wuhan, China. Allergy 2020, 75, 1730–1741. [Google Scholar] [CrossRef]
- Chen, H.R.; Zou, H.; Xue, M.; Chen, Z.B.; Chen, W.X. A Case of Childhood COVID-19 Infection with Pleural Effusion Complicated by Possible Secondary Mycoplasma pneumoniae Infection. Pediatr. Infect. Dis. J. 2020, 39, e135–e137. [Google Scholar] [CrossRef]
- Gayam, V.; Konala, V.M.; Naramala, S.; Garlapati, P.R.; Merghani, M.A.; Regmi, N.; Balla, M.; Adapa, S. Presenting Characteristics, Comorbidities, and Outcomes of Patients coinfected with COVID-19 and Mycoplasma pneumoniae in the USA. J. Med. Virol. 2020, 92, 2181–2187. [Google Scholar] [CrossRef]
- Kyoung, D.S.; Kim, H.S. Understanding and Utilizing Claim Data from the Korean National Health Insurance Service (NHIS) and Health Insurance Review & Assessment (HIRA) Database for Research. J. Lipid Atheroscler. 2022, 11, 103–110. [Google Scholar] [CrossRef] [PubMed]
- HIRA Open Data Portal. Available online: https://opendata.hira.or.kr (accessed on 11 January 2023).
- HIRA Website. Available online: https://www.hira.or.kr (accessed on 11 January 2023).
- Lucier, T.S.; Heitzman, K.; Liu, S.K.; Hu, P.C. Transition Mutations in the 23S RRNA of Erythromycin-Resistant Isolates of Mycoplasma pneumoniae. Antimicrob. Agents Chemother. 1995, 39, 2770–2773. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Yu, X.; Liu, Y.; Yin, Y.; Gu, L.; Cao, B.; Wang, C. Specific Multilocus Variable-Number Tandem-Repeat Analysis Genotypes of Mycoplasma pneumoniae Are Associated with Diseases Severity and Macrolide Susceptibility. PLoS ONE 2013, 8, e82174. [Google Scholar] [CrossRef]
- Chironna, M.; Loconsole, D.; De Robertis, A.L.; Morea, A.; Scalini, E.; Quarto, M.; Tafuri, S.; Germinario, C.; Manzionna, M. Clonal spread of a unique strain of macrolide-resistant Mycoplasma pneumoniae within a single family in Italy. Medicine 2016, 95, e3160. [Google Scholar] [CrossRef]
- Ho, P.L.; Law, P.Y.; Chan, B.W.; Wong, C.W.; To, K.K.; Chiu, S.S.; Cheng, V.C.; Yam, W.C. Emergence of Macrolide-Resistant Mycoplasma pneumoniae in Hong Kong Is Linked to Increasing Macrolide Resistance in Multilocus Variable-Number Tandem-Repeat Analysis Type 4-5-7-2. J. Clin. Microbiol. 2015, 53, 3560–3564. [Google Scholar] [CrossRef] [PubMed]
- Dumke, R.; Catrein, I.; Herrmann, R.; Jacobs, E. Preference, Adaptation and Survival of Mycoplasma pneumoniae Subtypes in an Animal Model. Int. J. Med. Microbiol. 2004, 294, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Lv, M.; Tao, X.; Huang, H.; Zhang, B.; Zhang, Z.; Zhang, J. Antibiotic Sensitivity of 40 Mycoplasma pneumoniae Isolates and Molecular Analysis of Macrolide-Resistant Isolates from Beijing, China. Antimicrob. Agents Chemother. 2012, 56, 1108–1109. [Google Scholar] [CrossRef]
- Techasaensiri, C.; Tagliabue, C.; Cagle, M.; Iranpour, P.; Katz, K.; Kannan, T.R.; Coalson, J.J.; Baseman, J.B.; Hardy, R.D. Variation in Colonization, ADP-Ribosylating and Vacuolating Cytotoxin, and Pulmonary Disease Severity among Mycoplasma pneumoniae Strains. Am. J. Respir. Crit. Care Med. 2010, 182, 797–804. [Google Scholar] [CrossRef]
- Muir, M.T.; Cohn, S.M.; Louden, C.; Kannan, T.R.; Baseman, J.B. Novel Toxin Assays Implicate Mycoplasma pneumoniae in Prolonged Ventilator Course and Hypoxemia. Chest 2011, 139, 305–310. [Google Scholar] [CrossRef]
- Shim, J.Y. Current perspectives on atypical pneumonia in children. Clin. Exp. Pediatr. 2020, 63, 469–476. [Google Scholar] [CrossRef]
- Shadoud, L.; Almahmoud, I.; Jarraud, S.; Etienne, J.; Larrat, S.; Schwebel, C.; Timsit, J.-F.; Schneider, D.; Maurin, M. Hidden selection of bacterial resistance to fluoroquinolones in vivo: The case of Legionella pneumophila and humans. EBioMedicine 2015, 2, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. IMAI District Clinician Manual: Hospital Care Adolescents and Adults: Guidelines for the Management of Illnesses with Limited-Resources; World Health Organization: Geneva, Switzerland, 2012.
- World Health Organization. Clinical Management of COVID-19: Interim Guidance; World Health Organization: Geneva, Switzerland, 2020.
- World Health Organization. Available online: http://covid-nma.com/vaccines/mapping (accessed on 7 February 2023).
- World Health Organization. Status of COVID-19 Vaccines within WHO EUL/PQ Evaluation Process. Available online: http://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_01March2021.pdf (accessed on 31 January 2023).
- Tong, L.; Huang, S.; Zheng, C.; Zhang, Y.; Chen, Z. Refractory Mycoplasma pneumoniae Pneumonia in Children: Early Recognition and Management. J. Clin. Med. 2022, 11, 2824. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.F.; Liu, F.Q.; Chen, X.; Yang, J.; Wang, K.; Guo, C.Y. The treatment of macrolide-resistant Mycoplasma pneumoniae pneumonia in children. J. Clin. Pharm. Ther. 2021, 46, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Yamazaki, T.; Narita, M.; Okazaki, N.; Suzuki, I.; Andoh, T.; Matsuoka, M.; Kenri, T.; Arakawa, Y.; Sasaki, T. Clinical Evaluation of Macrolideresistant Mycoplasma pneumoniae. Antimicrob. Agents Chemother. 2006, 50, 709–712. [Google Scholar] [CrossRef]
- Matsubara, K.; Morozumi, M.; Okada, T.; Matsushima, T.; Komiyama, O.; Shoji, M.; Ebihara, T.; Ubukata, K.; Sato, Y.; Akita, H.; et al. A Comparative Clinical Study of Macrolide-Sensitive and Macrolideresistant Mycoplasma pneumoniae Infections in Pediatric Patients. J. Infect. Chemother. 2009, 15, 380–383. [Google Scholar] [CrossRef]
- Kawai, Y.; Miyashita, N.; Yamaguchi, T.; Saitoh, A.; Kondoh, E.; Fujimoto, H.; Teranishi, H.; Inoue, M.; Wakabayashi, T.; Akaike, H.; et al. Clinical Efficacy of Macrolide Antibiotics against Genetically Determined Macrolide-Resistant Mycoplasma pneumoniae Pneumonia in Paediatric Patients. Respirology 2012, 17, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Zhao, C.J.; Yin, Y.D.; Zhao, F.; Song, S.F.; Bai, L.; Zhang, J.Z.; Liu, Y.M.; Zhang, Y.Y.; Wang, H.; et al. High Prevalence of Macrolide Resistance in Mycoplasma pneumoniae Isolates from Adult and Adolescent Patients with Respiratory Tract Infection in China. Clin. Infect. Dis. 2010, 51, 189–194. [Google Scholar] [CrossRef]
- Wu, H.M.; Wong, K.S.; Huang, Y.C.; Lai, S.H.; Tsao, K.C.; Lin, Y.J.; Lin, T.Y. Macrolide-Resistant Mycoplasma pneumoniae in Children in Taiwan. J. Infect. Chemother. 2013, 19, 782–786. [Google Scholar] [CrossRef]
- Cardinale, F.; Chironna, M.; Chinellato, I.; Principi, N.; Esposito, S. Clinical Relevance of Mycoplasma pneumoniae Macrolide Resistance in Children. J. Clin. Microbiol. 2013, 51, 723–724. [Google Scholar] [CrossRef]
- Yoo, S.J.; Kim, H.B.; Choi, S.H.; Lee, S.O.; Kim, S.H.; Hong, S.B.; Sung, H.; Kim, M.N. Differences in the Frequency of 23S rRNA Gene Mutations in Mycoplasma pneumoniae between Children and Adults with Community-Acquired Pneumonia: Clinical Impact of Mutations Conferring Macrolide Resistance. Antimicrob. Agents Chemother. 2012, 56, 6393–6396. [Google Scholar] [CrossRef]
- Ma, Z.; Zheng, Y.; Deng, J.; Ma, X.; Liu, H. Characterization of Macrolide Resistance of Mycoplasma pneumoniae in Children in Shenzhen, China. Pediatr. Pulmonol. 2014, 49, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Narita, M.; Sera, N.; Maeda, E.; Yoshitomi, H.; Ohya, H.; Araki, Y.; Kakuma, T.; Fukuoh, A.; Matsumoto, K. Gene and Cytokine Profile Analysis of Macrolide-Resistant Mycoplasma pneumoniae Infection in Fukuoka, Japan. BMC Infect. Dis. 2013, 13, 591. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Hong, S.S.; Lee, I.S.; Chi, H.Y.; Kim, S.O.; Kim, H.N.; Hong, S.P. Comparative Clinical Evaluation of NeoPlex RB-8 with Seeplex pneumoBacter ACE for Simultaneous Detection of Eight Respiratory Bacterial Pathogens. J. Clin. Microbiol. 2020, 58. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Oh, S.H.; Yun, K.A.; Sung, H.; Kim, M.N. Comparison of Anyplex II RV16 with the xTAG Respiratory Viral Panel and Seeplex RV15 for Detection of Respiratory Viruses. J. Clin. Microbiol. 2013, 51, 1137–1141. [Google Scholar] [CrossRef] [PubMed]
- Parrott, G.; Kinjo, T.; Nabeya, D.; Uehara, A.; Nahar, S.; Miyagi, K.; Haranaga, S.; Tateyama, M.; Fujita, J. Evaluation of Anyplex™ II RV16 and RB5 Real-Time RT-PCR Compared to Seeplex® RV15 OneStep ACE and PneumoBacter ACE for the Simultaneous Detection of Upper Respiratory Pathogens. J. Infect. Chemother. 2017, 23, 859–861. [Google Scholar] [CrossRef] [PubMed]
- Vandendriessche, S.; Padalko, E.; Wollants, E.; Verfaillie, C.; Verhasselt, B.; Coorevits, L. Evaluation of the Seegene Allplex™ Respiratory Panel for Diagnosis of Acute Respiratory Tract Infections. Acta Clin. Belg. 2019, 74, 379–385. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.K.; Rheem, I.; Kim, J. Evaluation of Seeplex Pneumobacter Multiplex PCR Kit for the Detection of Respiratory Bacterial Pathogens in Pediatric Patients. Korean J. Lab. Med. 2009, 29, 307–313. [Google Scholar] [CrossRef]
- Lim, H.J.; Kang, E.R.; Park, M.Y.; Kim, B.K.; Kim, M.J.; Jung, S.; Roh, K.H.; Sung, N.; Yang, J.H.; Lee, M.W.; et al. Development of a Multiplex Real-Time PCR Assay for the Simultaneous Detection of Four Bacterial Pathogens Causing Pneumonia. PLoS ONE 2021, 16, e0253402. [Google Scholar] [CrossRef]
Identified Strains | Total Positives from May 2017 to April 2022 (%) | MP in the Epidemic Period from May 2019 to April 2020 (%) | Non-MP in the Epidemic Period (%) |
---|---|---|---|
No. of bacteria panels tested | 376,946 | 108,798 | 268,148 |
S. pneumoniae | 216,433 (57.42) | 54,597 (50.18) | 161,836 (60.35) |
H. influenzae | 128,448 (34.08) | 49,068 (45.10) | 79,380 (29.60) |
M. pneumoniae | 21,331 (5.66) | 17,950 (16.50) | 3381 (1.27) |
C. pneumoniae | 1483 (0.39) | 587 (0.54) | 896 (0.33) |
B. pertussis/parapertusis | 511 (0.14) | 157 (0.14) | 354 (0.13) |
L. pneumophila | 185 (0.05) | 59 (0.05) | 126 (0.05) |
No. of virus panels tested | 270,261 | 78,780 | 191,481 |
CoV OC43/229E/NL63 | 13,451 (4.98) | 5060 (6.42) | 8039 (4.20) |
ADV | 41,152 (15.23) | 14,464 (18.36) | 26,342 (13.76) |
RSV A/B | 47,951 (17.74) | 11,866 (15.06) | 36,026 (18.81) |
PIV type 1/2/3/4 | 39,220 (14.51) | 11,359 (14.42) | 27,657 (14.44) |
Inf A/B | 16,906 (6.26) | 5736 (7.28) | 11,170 (5.83) |
HMPV | 12,030 (4.45) | 4727 (6.00) | 7298 (3.81) |
BoV | 36,245 (13.41) | 9315 (11.82) | 26,614 (13.90) |
HEV | 16,727 (6.19) | 7900 (10.03) | 8818 (4.61) |
HRV | 100,158 (37.06) | 30,459 (38.66) | 67,938 (35.48) |
Period | MRMP/MP-Positive (%) | A2063G Sole | A2064G Sole | Combined Mutation |
---|---|---|---|---|
May 2017–April 2018 | 290/561 (51.69) | 285 | 5 | 0 |
May 2018–April 2019 | 1621/2579 (62.85) | 1600 | 21 | 0 |
May 2019–April 2020 | 12,767/17,906 (71.30) | 12,712 | 51 | 4 |
May 2020–April 2021 | 106/168 (63.10) | 104 | 2 | 0 |
May 2021–April 2022 | 2/8 (25.00) | 2 | 0 | 0 |
Total | 14,786/21,222 (69.67) | 14,703 | 79 | 4 |
Identified Strains | Total Positives from May 2017 to April 2022 (%) | MP in the Epidemic Period from May 2019 to April 2020 (%) | Non-MP in the Epidemic Period (%) |
---|---|---|---|
No. of M. pneumoniae single infection | 2442 (11.51) | 2179 (12.17) | 263 (7.93) |
No. of M. pneumoniae co-infection | 18,780 (88.49) | 15,727 (87.83) | 3053 (92.07) |
S. pneumoniae | 10,527 (49.60) | 8200 (45.79) | 2327 (70.17) |
H. influenzae | 9453 (44.54) | 8348 (46.62) | 1105 (33.32) |
C. pneumoniae | 158 (0.74) | 136 (0.76) | 22 (0.66) |
B. pertussis/parapertusis | 23 (0.11) | 17 (0.09) | 6 (0.18) |
L. pneumophila | 2 (0.01) | 2 (0.01) | 0 (0) |
CoV OC43/229E/NL63 | 834 (3.93) | 704 (3.93) | 130 (3.92) |
ADV | 1347 (6.35) | 1103 (6.16) | 244 (7.36) |
RSV A/B | 1091 (5.14) | 916 (5.12) | 175 (5.28) |
PIV type 1/2/3/4 | 819 (3.86) | 728 (4.07) | 91 (2.74) |
Inf A/B | 529 (2.49) | 467 (2.61) | 62 (1.87) |
HMPV | 101 (0.48) | 87 (0.49) | 14 (0.42) |
BoV | 811 (3.82) | 616 (3.44) | 195 (5.88) |
HEV | 1085 (5.11) | 940 (5.25) | 145 (4.37) |
HRV | 5789 (27.28) | 4967 (27.74) | 822 (24.79) |
Identified Strains | MRMP (%) | MSMP (%) |
---|---|---|
M. pneumoniae single infection | 1597 (10.80) | 845 (13.13) |
M. pneumoniae co-infection | 13,189 (89.20) | 5591 (86.87) |
S. pneumoniae | 7448 (50.37) | 3079 (47.84) |
H. influenzae | 6651 (44.98) | 2802 (43.54) |
C. pneumoniae | 116 (0.78) | 42 (0.65) |
B. pertussis/parapertusis | 17 (0.11) | 6 (0.09) |
L. pneumophila | 1 (0.01) | 1 (0.02) |
CoV OC43/229E/NL63 | 634 (4.29) | 200 (3.11) |
ADV | 954 (6.45) | 393 (6.11) |
RSV A/B | 802 (5.42) | 289 (4.49) |
PIV type 1/2/3/4 | 603 (4.08) | 216 (3.36) |
Inf A/B | 358 (2.42) | 171 (2.66) |
HMPV | 69 (0.47) | 32 (0.50) |
BoV | 597 (4.04) | 214 (3.33) |
HEV | 845 (5.71) | 240 (3.73) |
HRV | 4212 (28.49) | 1577 (24.50) |
Periods | Patient Numbers Reported | Medical Budget Expenditure Reimbursed by the Korean Government Insurance Program (Thousand Won) | |||||
---|---|---|---|---|---|---|---|
Total | Outpatient Cases | Hospitalization Cases | Total | Per Patient | Outpatient Cases | Hospitalization Cases | |
Total | 224,830 | 165,108 | 78,431 | 91,880,621 | 409 | 5,509,959 | 86,370,661 |
73.44% | 34.88% | 6.00% | 94.00% | ||||
May 2017–Apr 2018 | 47,451 | 34,175 | 15,778 | 14,815,328 | 312 | 1,031,125 | 13,784,204 |
21,11% | 72.02% | 33.25% | 16.12% | 6.96% | 93.04% | ||
May 2018–Apr 2019 | 51,533 | 37,910 | 16,967 | 18,701,170 | 363 | 1,165,592 | 17,535,579 |
22.92% | 73.56% | 32.92% | 20.35% | 6.23% | 93.77% | ||
May 2019–Apr 2020 | 88,066 | 61,027 | 38,991 | 49,112,376 | 558 * | 2,130,684 | 46,981,691 |
39.17% | 69.30% | 44.27% * | 53.45% | 4.34% | 95.66% | ||
May 2020–Apr 2021 | 17,056 | 13,949 | 3642 | 5,123,715 | 300 | 472,864 | 4,650,850 |
7.59% | 81.78% | 21.35% | 5.58% | 9.23% | 90.77% | ||
May 2021–Apr 2022 | 20,724 | 18,047 | 3053 | 4,128,032 | 199 | 709,694 | 3,418,337 |
9.22% | 87.08% | 14.73% | 4.49% | 17.19% | 82.81% | ||
p < 0.001 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, S.; Koo, S.; Yang, Y.-J.; Lim, H.-J. Characteristics of the Mycoplasma pneumoniae Epidemic from 2019 to 2020 in Korea: Macrolide Resistance and Co-Infection Trends. Antibiotics 2023, 12, 1623. https://doi.org/10.3390/antibiotics12111623
Shin S, Koo S, Yang Y-J, Lim H-J. Characteristics of the Mycoplasma pneumoniae Epidemic from 2019 to 2020 in Korea: Macrolide Resistance and Co-Infection Trends. Antibiotics. 2023; 12(11):1623. https://doi.org/10.3390/antibiotics12111623
Chicago/Turabian StyleShin, Soyoun, Sunhoe Koo, Yong-Jin Yang, and Ho-Jae Lim. 2023. "Characteristics of the Mycoplasma pneumoniae Epidemic from 2019 to 2020 in Korea: Macrolide Resistance and Co-Infection Trends" Antibiotics 12, no. 11: 1623. https://doi.org/10.3390/antibiotics12111623
APA StyleShin, S., Koo, S., Yang, Y. -J., & Lim, H. -J. (2023). Characteristics of the Mycoplasma pneumoniae Epidemic from 2019 to 2020 in Korea: Macrolide Resistance and Co-Infection Trends. Antibiotics, 12(11), 1623. https://doi.org/10.3390/antibiotics12111623