Antifungal Capacity of Poolish-Type Sourdough Supplemented with Lactiplantibacillus plantarum and Its Aqueous Extracts In Vitro and Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Conditions and Aqueous Extract Preparation
2.2. Determination of pH, Titratable Acidity, and Reducing Sugars of Aqueous Extracts (AE)
2.3. Antifungal Activity of Aqueous Extracts
2.3.1. Mold Inhibition in Liquid Media
2.3.2. Inhibition of Radial Mold Growth
2.4. Lactic and Acetic Acids Analysis in Aqueous Extracts
2.5. Baking Procedure
2.6. Determination of pH, Moisture, and aw of the Bread
2.7. Antifungal Activity in Bread
2.8. Statistical Analysis
3. Results and Discussion
3.1. pH, Titratable Acidity, and Reducing Sugars of AE
3.2. Antifungal Activity by OD630nm and Microbial Counts
3.3. Inhibition of Radial Mold Growth
3.4. Quantification of Lactic and Acetic Acids in Aqueous Extracts
3.5. Antifungal Activity of Poolish-Type Sourdough Fermented with Lactiplantibacillus plantarum on Bread
3.6. Bread pH, Moisture Content, and aw during the Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerez, C.L.; Torres, M.J.; Font de Valdez, G.; Rollán, G. Control of Spoilage Fungi by Lactic Acid Bacteria. Biol. Control 2013, 64, 231–237. [Google Scholar] [CrossRef]
- Samapundo, S.; Devlieghere, F.; Vroman, A.; Eeckhout, M. Antifungal Activity of Fermentates and Their Potential to Replace Propionate in Bread. LWT-Food Sci. Technol. 2017, 76, 101–107. [Google Scholar] [CrossRef]
- Siepmann, F.B.; Sousa de Almeida, B.; Waszczynskyj, N.; Spier, M.R. Influence of Temperature and of Starter Culture on Biochemical Characteristics and the Aromatic Compounds Evolution on Type II Sourdough and Wheat Bread. LWT 2019, 108, 199–206. [Google Scholar] [CrossRef]
- De Vuyst, L.; Van Kerrebroeck, S.; Harth, H.; Huys, G.; Daniel, H.-M.; Weckx, S. Microbial Ecology of Sourdough Fermentations: Diverse or Uniform? Food Microbiol. 2014, 37, 11–29. [Google Scholar] [CrossRef]
- Lai, H.M.; Lin, T.C. Bakery Products: Science and Technology; Wiley Blackwell: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Chavan, R.S.; Chavan, S.R. Sourdough Technology-A Traditional Way for Wholesome Foods: A Review. Compr. Rev. Food Sci. Food Saf. 2011, 10, 169–182. [Google Scholar] [CrossRef]
- Lavermicocca, P.; Valerio, F.; Evidente, A.; Lazzaroni, S.; Corsetti, A.; Gobbetti, M. Purification and Characterization of Novel Antifungal Compounds from the Sourdough Lactobacillus Plantarum Strain 21B. Appl. Environ. Microbiol. 2000, 66, 4084–4090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manini, F.; Casiraghi, M.C.; Poutanen, K.; Brasca, M.; Erba, D.; Plumed-Ferrer, C. Characterization of Lactic Acid Bacteria Isolated from Wheat Bran Sourdough. LWT-Food Sci. Technol. 2016, 66, 275–283. [Google Scholar] [CrossRef]
- Mani-López, E.; Arrioja-Bretón, D.; López-Malo, A. The Impacts of Antimicrobial and Antifungal Activity of Cell-free Supernatants from Lactic Acid Bacteria in Vitro and Foods. Compr. Rev. Food Sci. Food Saf. 2022, 21, 604–641. [Google Scholar] [CrossRef]
- Axel, C.; Brosnan, B.; Zannini, E.; Furey, A.; Coffey, A.; Arendt, E.K. Antifungal Sourdough Lactic Acid Bacteria as Biopreservation Tool in Quinoa and Rice Bread. Int. J. Food Microbiol. 2016, 239, 86–94. [Google Scholar] [CrossRef]
- Coda, R.; Cassone, A.; Rizzello, C.G.; Nionelli, L.; Cardinali, G.; Gobbetti, M. Antifungal Activity of Wickerhamomyces anomalus and Lactobacillus plantarum during Sourdough Fermentation: Identification of Novel Compounds and Long-Term Effect during Storage of Wheat Bread. Appl. Environ. Microbiol. 2011, 77, 3484–3492. [Google Scholar] [CrossRef] [Green Version]
- Luz, C.; D’Opazo, V.; Mañes, J.; Meca, G. Antifungal Activity and Shelf Life Extension of Loaf Bread Produced with Sourdough Fermented by Lactobacillus Strains. J. Food Process. Preserv. 2019, 43, e14126. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Cassone, A.; Coda, R.; Gobbetti, M. Antifungal Activity of Sourdough Fermented Wheat Germ Used as an Ingredient for Bread Making. Food Chem. 2011, 127, 952–959. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- American Association of Cereal Chemists (Ed.) Approved Methods of the American Association of Cereal Chemists, 10th ed.; AACC: St. Paul, MN, USA, 2000. [Google Scholar]
- Latimer, G.W.; AOAC International (Eds.) Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Gaithersburg, MD, USA, 2019; Volume 3. [Google Scholar]
- Arrioja-Bretón, D.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial Activity and Storage Stability of Cell-Free Supernatants from Lactic Acid Bacteria and Their Applications with Fresh Beef. Food Control 2020, 115, 107286. [Google Scholar] [CrossRef]
- Kosegarten, C.E.; Ramírez-Corona, N.; Mani-López, E.; Palou, E.; López-Malo, A. Description of Aspergillus flavus Growth under the Influence of Different Factors (Water Activity, Incubation Temperature, Protein and Fat Concentration, pH, and Cinnamon Essential Oil Concentration) by Kinetic, Probability of Growth, and Time-to-Detection Models. Int. J. Food Microbiol. 2017, 240, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Settanni, L.; Ventimiglia, G.; Alfonzo, A.; Corona, O.; Miceli, A.; Moschetti, G. An Integrated Technological Approach to the Selection of Lactic Acid Bacteria of Flour Origin for Sourdough Production. Food Res. Int. 2013, 54, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Minervini, F.; De Angelis, M.; Di Cagno, R.; Gobbetti, M. Ecological Parameters Influencing Microbial Diversity and Stability of Traditional Sourdough. Int. J. Food Microbiol. 2014, 171, 136–146. [Google Scholar] [CrossRef]
- Belz, M.C.E.; Axel, C.; Arendt, E.K.; Lynch, K.M.; Brosnan, B.; Sheehan, E.M.; Coffey, A.; Zannini, E. Improvement of Taste and Shelf Life of Yeasted Low-Salt Bread Containing Functional Sourdoughs Using Lactobacillus amylovorus DSM 19280 and Weisella cibaria MG1. Int. J. Food Microbiol. 2019, 302, 69–79. [Google Scholar] [CrossRef]
- Cizeikiene, D.; Juodeikiene, G.; Paskevicius, A.; Bartkiene, E. Antimicrobial Activity of Lactic Acid Bacteria against Pathogenic and Spoilage Microorganism Isolated from Food and Their Control in Wheat Bread. Food Control 2013, 31, 539–545. [Google Scholar] [CrossRef]
- Gerez, C.L.; Torino, M.I.; Rollán, G.; Font de Valdez, G. Prevention of Bread Mould Spoilage by Using Lactic Acid Bacteria with Antifungal Properties. Food Control 2009, 20, 144–148. [Google Scholar] [CrossRef]
- Demirbaş, F.; İspirli, H.; Kurnaz, A.A.; Yilmaz, M.T.; Dertli, E. Antimicrobial and Functional Properties of Lactic Acid Bacteria Isolated from Sourdoughs. LWT-Food Sci. Technol. 2017, 79, 361–366. [Google Scholar] [CrossRef]
- Piper, P.; Calderon, C.O.; Mollapour, M. Weak acid adaptation: The stress response that confers yeasts with resistance to organic acid food preservatives. Microbiology 2001, 147, 2635–2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrioja-Bretón, D.; Mani-López, E.; Bach, H.; López-Malo, A. Antimicrobial Activity of Protein-Containing Fractions Isolated from Lactobacillus plantarum NRRL B-4496 Culture. Braz. J. Microbiol. 2020, 51, 1289–1296. [Google Scholar] [CrossRef]
- Russo, P.; Arena, M.P.; Fiocco, D.; Capozzi, V.; Drider, D.; Spano, G. Lactobacillus plantarum with Broad Antifungal Activity: A Promising Approach to Increase Safety and Shelf-Life of Cereal-Based Products. Int. J. Food Microbiol. 2017, 247, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Dagnas, S.; Gauvry, E.; Onno, B.; Membré, J.M. Quantifying Effect of Lactic, Acetic, and Propionic Acids on Growth of Molds Isolated from Spoiled Bakery Products. J. Food Prot. 2015, 78, 1689–1698. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M.G. Lactic Metabolism Revisited: Metabolism of Lactic Acid Bacteria in Food Fermentations and Food Spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Rocchetti, M.T.; Russo, P.; Capozzi, V.; Drider, D.; Spano, G.; Fiocco, D. Bioprospecting Antimicrobials from Lactiplantibacillus plantarum: Key Factors Underlying its Probiotic Action. Int. J. Mol. Sci. 2021, 22, 12076. [Google Scholar] [CrossRef]
- EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards); Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; et al. Statement on the Update of the List of QPS-recommended Biological Agents Intentionally Added to Food or Feed as Notified to EFSA 12: Suitability of Taxonomic Units Notified to EFSA until March 2020. EFSA J. 2020, 18, 6174. [Google Scholar] [CrossRef]
- Bárcenas, M.E.; Rosell, C.M. Effect of HPMC Addition on the Microstructure, Quality and Aging of Wheat Bread. Food Hydrocoll. 2005, 19, 1037–1043. [Google Scholar] [CrossRef]
- Samson, R.A.; van Reenen-Hoekstra, E.S. (Eds.) Introduction to Food-Borne Fungi, 4th ed.; Centraalbureau voor Schimmelcultures: Baarn, The Netherlands, 1995. [Google Scholar]
pH | Titratable Acidity (%) | Reducing Sugars (g/g100 sample) | |
---|---|---|---|
Control | 4.62 ± 0.05 a | 0.36 ± 0.06 b | 0.15 ± 0.01 c |
PD 24 h | 3.76 ± 0.04 b | 1.27 ± 0.09 a | 1.48 ± 0.04 b |
PD 48 h | 3.64 ± 0.01 c | 1.40 ± 0.08 a | 2.10 ± 0.07 a |
PD 72 h | 3.63 ± 0.02 c | 1.40 ± 0.09 a | 2.12 ± 0.20 a |
Aspergillus niger | |||||
A | µ (h−1) | λ (h) | RMSE | R2 | |
Control | 2.51 ± 0.018 | 0.063 ± 0.003 | 12.06 ± 1.3 | 0.01 | 0.995 |
Control CP | 2.41 ± 0.040 | 0.029 ± 0.003 | 7.58 ± 3.8 | 0.03 | 0.983 |
20% | 2.46 ± 0.026 | 0.057 ± 0.004 | 13.3 ± 1.9 | 0.02 | 0.991 |
26% | 2.43 ± 0.032 | 0.055 ± 0.005 | 13.8 ± 2.5 | 0.02 | 0.987 |
33% | 2.17 ± 0.029 | 0.035 ± 0.003 | 10.0 ± 2.8 | 0.02 | 0.988 |
50% | 2.69 ± 0.028 | 0.033 ± 0.001 | 13.6 ± 2.1 | 0.02 | 0.995 |
Penicillium chrysogenum | |||||
A | µ (h−1) | λ (h) | RMSE | R2 | |
Control | 2.62 ± 0.013 | 0.072 ± 0.003 | 14.07 ± 0.87 | 0.01 | 0.998 |
Control CP | 2.66 ± 0.018 | 0.076 ± 0.004 | 16.41 ± 1.30 | 0.01 | 0.996 |
20% | 2.51 ± 0.031 | 0.030 ± 0.002 | 13.80 ± 2.5 | 0.02 | 0.993 |
26% | 2.46 ± 0.035 | 0.026 ± 0.001 | 10.30 ± 2.90 | 0.02 | 0.992 |
33% | 2.47 ± 0.033 | 0.028 ± 0.002 | 17.14 ± 2.65 | 0.02 | 0.993 |
50% | 2.50 ± 0.020 | 0.017 ± 0.005 | 24.42 ± 2.28 | 0.01 | 0.997 |
Penicillium corylophilum | |||||
A | µ (h−1) | λ (h) | RMSE | R2 | |
Control | 2.63 ± 0.016 | 0.081 ± 0.004 | 15.65 ± 1.06 | 0.01 | 0.997 |
Control CP | 2.62 ± 0.018 | 0.079 ± 0.005 | 16.89 ± 1.30 | 0.01 | 0.996 |
20% | 2.50 ± 0.034 | 0.030 ± 0.002 | 12.96 ± 2.75 | 0.02 | 0.992 |
26% | 2.47 ± 0036 | 0.025 ± 0.002 | 12.79 ± 2.88 | 0.02 | 0.992 |
33% | 2.45 ± 0.036 | 0.026 ± 0.002 | 10.60 ± 2.98 | 0.02 | 0.991 |
50% | 2.66 ± 0.022 | 0.018 ± 0.001 | 17.20 ± 2.49 | 0.01 | 0.996 |
Sourdough | Lactic Acid (mM) | Acetic Acid (mM) |
---|---|---|
PD24 | 77.35 ± 5.69 b | 19.93 ± 0.33 b |
PD48 | 187.83 ± 4.80 a | 35.49 ± 1.97 a |
PD72 | 185.17 ± 1.33 a | 36.08 ± 0.96 a |
% of Breads with Mold Growth | ||
---|---|---|
Time (day) | Control | BPD48h |
3 | 0 | 0 |
4 | 64 | 0 |
5 | 82 | 0 |
7 | 100 | 0 |
8 | 100 | 0 |
9 | 100 | 0 |
10 | 100 | 50 |
12 | - | 50 |
14 | - | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Figueroa, R.H.; Mani-López, E.; López-Malo, A. Antifungal Capacity of Poolish-Type Sourdough Supplemented with Lactiplantibacillus plantarum and Its Aqueous Extracts In Vitro and Bread. Antibiotics 2022, 11, 1813. https://doi.org/10.3390/antibiotics11121813
Hernández-Figueroa RH, Mani-López E, López-Malo A. Antifungal Capacity of Poolish-Type Sourdough Supplemented with Lactiplantibacillus plantarum and Its Aqueous Extracts In Vitro and Bread. Antibiotics. 2022; 11(12):1813. https://doi.org/10.3390/antibiotics11121813
Chicago/Turabian StyleHernández-Figueroa, Ricardo H., Emma Mani-López, and Aurelio López-Malo. 2022. "Antifungal Capacity of Poolish-Type Sourdough Supplemented with Lactiplantibacillus plantarum and Its Aqueous Extracts In Vitro and Bread" Antibiotics 11, no. 12: 1813. https://doi.org/10.3390/antibiotics11121813
APA StyleHernández-Figueroa, R. H., Mani-López, E., & López-Malo, A. (2022). Antifungal Capacity of Poolish-Type Sourdough Supplemented with Lactiplantibacillus plantarum and Its Aqueous Extracts In Vitro and Bread. Antibiotics, 11(12), 1813. https://doi.org/10.3390/antibiotics11121813