Stability of Antimicrobials in Elastomeric Pumps: A Systematic Review
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Eligibility Criteria
- The study drug was an antimicrobial agent, including antibiotics, antivirals, and antifungals.
- The aim of the study was the evaluation of the physicochemical stability of the antimicrobial agent stored in an elastomeric device.
- 3.
- Studies that evaluated admixtures of multiple drugs in the same solution.
- 4.
- Studies that measured the serum disposition of the antimicrobial agent in patients.
- 5.
- Conference abstracts.
4.2. Information Sources
4.3. Study Selection
4.4. Data Collection and Analysis
- Antimicrobial drug studied.
- Author details and year of publication.
- Conditions:
- ○
- Composition of the elastomeric device used.
- ○
- Concentration of the drug studied.
- ○
- Diluent used.
- ○
- Temperature and duration of storage.
- Chemical stability demonstrated under each condition: concentration of all samples remained higher than 90% of the original concentration.
- Physical stability demonstrated under each condition: particle formation, changes in color or clearness, and pH analysis.
- Comments, included buffers of other additives used.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Paladino, J.A.; Poretz, D. Outpatient Parenteral Antimicrobial Therapy Today. Clin. Infect. Dis. 2010, 51, S198–S208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamad, Y.; Dodda, S.; Frank, A.; Beggs, J.; Sleckman, C.; Kleinschmidt, G.; Lane, M.A.; Burnett, Y. Perspectives of Patients on Outpatient Parenteral Antimicrobial Therapy: Experiences and Adherence. Open Forum Infect. Dis. 2020, 7, ofaa205. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, E.D.; Czoski Murray, C.; Meads, D.; Minton, J.; Wright, J.; Twiddy, M. Clinical and Cost-Effectiveness, Safety and Acceptability of Community Intravenous Antibiotic Service Models: CIVAS Systematic Review. BMJ Open 2017, 7, e013560. [Google Scholar] [CrossRef] [Green Version]
- Muldoon, E.G.; Snydman, D.R.; Penland, E.C.; Allison, G.M. Are We Ready for an Outpatient Parenteral Antimicrobial Therapy Bundle? A Critical Appraisal of the Evidence. Clin. Infect. Dis. 2013, 57, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Bugeja, S.J.; Stewart, D.; Vosper, H. Clinical Benefits and Costs of an Outpatient Parenteral Antimicrobial Therapy Service. Res. Soc. Adm. Pharm. 2021, 17, 1758–1763. [Google Scholar] [CrossRef]
- Diamantis, S.; Longuet, P.; Lesprit, P.; Gauzit, R. Terms of Use of Outpatient Parenteral Antibiotic Therapy. Infect. Dis. Now 2021, 51, 14–38. [Google Scholar] [CrossRef]
- Hobbs, J.G.; Ryan, M.K.; Ritchie, B.; Sluggett, J.K.; Sluggett, A.J.; Ralton, L.; Reynolds, K.J. Protocol for a Randomised Crossover Trial to Evaluate Patient and Nurse Satisfaction with Electronic and Elastomeric Portable Infusion Pumps for the Continuous Administration of Antibiotic Therapy in the Home: The Comparing Home Infusion Devices (CHID) Study. BMJ Open 2017, 7, e016763. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Matsuzaka, K.; Nakayama, T.; Otsuka, M.; Sagara, A.; Sato, F.; Yumoto, T. Impact of Air Temperature and Drug Concentration on Liquid Emission from Elastomeric Pumps. J. Pharm. Health Care Sci. 2021, 7, 1. [Google Scholar] [CrossRef]
- Mohseni, M.; Ebneshahidi, A. The Flow Rate Accuracy of Elastomeric Infusion Pumps After Repeated Filling. Anesth. Pain Med. 2014, 4, e14989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remerand, F.; Vuitton, A.S.; Palud, M.; Buchet, S.; Pourrat, X.; Baud, A.; Laffon, M.; Fusciardi, J. Elastomeric Pump Reliability in Postoperative Regional Anesthesia: A Survey of 430 Consecutive Devices. Anesth. Analg. 2008, 107, 2079–2084. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.L.N.; Patel, S.; Horner, C.; Gilchrist, M.; Seaton, R.A. Outpatient Parenteral Antimicrobial Therapy: Updated Recommendations from the UK. J. Antimicrob. Chemother. 2019, 74, 3125–3127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perks, S.J.; Lanskey, C.; Robinson, N.; Pain, T.; Franklin, R. Systematic Review of Stability Data Pertaining to Selected Antibiotics Used for Extended Infusions in Outpatient Parenteral Antimicrobial Therapy (OPAT) at Standard Room Temperature and in Warmer Climates. Eur. J. Hosp. Pharm. 2020, 27, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Seaton, R.A.; Barr, D.A. Outpatient Parenteral Antibiotic Therapy: Principles and Practice. Eur. J. Intern. Med. 2013, 24, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.V.; Stiles, M.L.; Prince, S.J.; Smeeding, J. Stability of 14 Drugs in the Latex Reservoir of an Elastomeric Infusion Device. Am. J. Health Syst. Pharm. 1996, 53, 2740–2743. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Enoki, Y.; Uno, S.; Uwamino, Y.; Iketani, O.; Hasegawa, N.; Matsumoto, K. Stability of Benzylpenicillin Potassium and Ampicillin in an Elastomeric Infusion Pump. J. Infect. Chemother. 2018, 24, 856–859. [Google Scholar] [CrossRef] [PubMed]
- Arensdorff, L.; Boillat-Blanco, N.; Decosterd, L.; Buclin, T.; de Vallière, S. Adequate Plasma Drug Concentrations Suggest That Amoxicillin Can Be Administered by Continuous Infusion Using Elastomeric Pumps. J. Antimicrob. Chemother. 2017, 72, 2613–2615. [Google Scholar] [CrossRef] [PubMed]
- Arlicot, N.; Marie, A.; Cade, C.; Laffon, M.; Antier, D. Stability of Amoxicillin in Portable Pumps Is Drug Concentration Dependent. Pharmazie 2011, 66, 631–632. [Google Scholar]
- Binson, G.; Grignon, C.; Le Moal, G.; Lazaro, P.; Lelong, J.; Roblot, F.; Venisse, N.; Dupuis, A. Overcoming Stability Challenges during Continuous Intravenous Administration of High-Dose Amoxicillin Using Portable Elastomeric Pumps. PLoS ONE 2019, 14, e0221391. [Google Scholar] [CrossRef] [Green Version]
- Garg, S.; Kauffmann, K.; Othman, A.; Ticehurst, R. Stability assessment of extemporaneous formulation of amoxicillin for parenteral antimicrobial therapy. Curr. Pharm. Anal. 2012, 8, 375–380. [Google Scholar] [CrossRef]
- Allwood, M.C.; Stonkute, D.; Wallace, A.; Wilkinson, A.-S.; Hills, T.; Jamieson, C. BSAC Drug Stability Working Party Assessment of the Stability of Citrate-Buffered Flucloxacillin for Injection When Stored in Two Commercially Available Ambulatory Elastomeric Devices: INfusor LV (Baxter) and Accufuser (Woo Young Medical): A Study Compliant with the NHS Yellow Cover Document (YCD) Requirements. Eur. J. Hosp. Pharm. 2020, 27, 90–94. [Google Scholar] [CrossRef]
- Carroll, J.A. Stability of Flucloxacillin in Elastomeric Infusion Devices. J. Pharm. Pract. Res. 2005, 35, 90–93. [Google Scholar] [CrossRef]
- To, T.-P.; Ching, M.S.; Ellis, A.G.; Williams, L.; Garrett, M.K. Stability of Intravenous Flucloxacillin Solutions Used for Hospital-in-the-Home. J. Pharm. Pract. Res. 2010, 40, 101–105. [Google Scholar] [CrossRef]
- Voumard, R.; Van Neyghem, N.; Cochet, C.; Gardiol, C.; Decosterd, L.; Buclin, T.; de Valliere, S. Antibiotic Stability Related to Temperature Variations in Elastomeric Pumps Used for Outpatient Parenteral Antimicrobial Therapy (OPAT). J. Antimicrob. Chemother. 2017, 72, 1462–1465. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Friciu, M.; Aubin, S.; Leclair, G. Stability of Penicillin G Sodium Diluted with 0.9% Sodium Chloride Injection or 5% Dextrose Injection and Stored in Polyvinyl Chloride Bag Containers and Elastomeric Pump Containers. Am. J. Health Syst. Pharm. 2014, 71, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Akahane, M.; Enoki, Y.; Saiki, R.; Hayashi, Y.; Hiraoka, K.; Honma, K.; Itagaki, M.; Gotoda, M.; Shinoda, K.; Hanyu, S.; et al. Stability of Antimicrobial Agents in an Elastomeric Infusion Pump Used for Outpatient Parenteral Antimicrobial Therapy. Int. J. Infect. Dis. 2021, 103, 464–468. [Google Scholar] [CrossRef] [PubMed]
- De Calbiac, P.; Lamoureux, F.; Pourrat, X.; Bretault, L.; Marchand, S.; Grassin, J.; Antier, D. Treatment of bronchial superinfections: Data related to stability of antibiotics in portable pumps. Therapie 2006, 61, 139–144. [Google Scholar] [PubMed]
- Jamieson, C.; Ozolina, L.; Seaton, R.A.; Gilchrist, M.; Hills, T.; Drummond, F.; Wilkinson, A.S.; BSAC Drug Stability Testing Working Group. Assessment of the Stability of Citrate-Buffered Piperacillin/Tazobactam for Continuous Infusion When Stored in Two Commercially Available Elastomeric Devices for Outpatient Parenteral Antimicrobial Chemotherapy: A Study Compliant with the NHS Yellow Cover Document Requirements. Eur. J. Hosp. Pharm. 2020. [Google Scholar] [CrossRef]
- Carryn, S.; Couwenbergh, N.; Tulkens, P.M. Long-Term Stability of Temocillin in Elastomeric Pumps for Outpatient Antibiotic Therapy in Cystic Fibrosis Patients. J. Antimicrob. Chemother. 2010, 65, 2045–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R.P.; Jacob, J.; Sedeeq, M.; Ming, L.C.; Wanandy, T.; Zaidi, S.T.R.; Peterson, G.M. Stability of Cefazolin in Polyisoprene Elastomeric Infusion Devices. Clin. Ther. 2018, 40, 664–667. [Google Scholar] [CrossRef]
- Walker, S.E.; Iazzetta, J.; Law, S.; Biniecki, K. Stability of Commonly Used Antibiotic Solutions in an Elastomeric Infusion Device. Can. J. Hosp. Pharm. 2010, 63, 212–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Madfai, F.; Zaidi, S.T.R.; Ming, L.C.; Wanandy, T.; Patel, R.P. Physical and Chemical Stability of Ceftaroline in an Elastomeric Infusion Device. Eur. J. Hosp. Pharm. 2018, 25, e115–e119. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Parekh, S.; Dedhiya, M. In-Use Stability of Ceftaroline Fosamil in Elastomeric Home Infusion Systems and MINI-BAG Plus Containers. Int. J. Pharm. Compd. 2015, 19, 432–436. [Google Scholar] [PubMed]
- Bednar, D.A.; Klutman, N.E.; Henry, D.W.; Fox, J.L.; Strayer, A.H. Stability of Ceftazidime (with Arginine) in an Elastomeric Infusion Device. Am. J. Health Syst. Pharm. 1995, 52, 1912–1914. [Google Scholar] [CrossRef] [PubMed]
- Stendal, T.L.; Klem, W.; Tønnesen, H.H.; Kjønniksen, I. Drug Stability and Pyridine Generation in Ceftazidime Injection Stored in an Elastomeric Infusion Device. Am. J. Health Syst. Pharm. 1998, 55, 683–685. [Google Scholar] [CrossRef]
- Raby, E.; Naicker, S.; Sime, F.B.; Manning, L.; Wallis, S.C.; Pandey, S.; Roberts, J.A. Ceftolozane-Tazobactam in an Elastomeric Infusion Device for Ambulatory Care: An in Vitro Stability Study. Eur. J. Hosp. Pharm. 2020, 27, e84–e86. [Google Scholar] [CrossRef]
- Terracciano, J.; Rhee, E.G.; Walsh, J. Chemical Stability of Ceftolozane/Tazobactam in Polyvinylchloride Bags and Elastomeric Pumps. Curr. Res. Clin. Exp. 2017, 84, 22–25. [Google Scholar] [CrossRef] [PubMed]
- Crandon, J.L.; Sutherland, C.; Nicolau, D.P. Stability of Doripenem in Polyvinyl Chloride Bags and Elastomeric Pumps. Am. J. Health Syst. Pharm. 2010, 67, 1539–1544. [Google Scholar] [CrossRef] [PubMed]
- Phipps, D.; Peacock, F.; Smith, L. Stability of Ertapenem in an Elastomeric Infusion Device. Int. J. Pharm. Compd. 2011, 15, 252. [Google Scholar]
- Foy, F.; Luna, G.; Martinez, J.; Nizich, Z.; Seet, J.; Lie, K.; Sunderland, B.; Czarniak, P. An Investigation of the Stability of Meropenem in Elastomeric Infusion Devices. Drug Des. Dev. 2019, 13, 2655–2665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.L.; Bauer, S.M.; Nicolau, D.P. Stability of Meropenem in Polyvinyl Chloride Bags and an Elastomeric Infusion Device. Am. J. Health Syst Pharm 2004, 61, 1682–1685. [Google Scholar] [CrossRef]
- Chen, I.H.; Martin, E.K.; Nicolau, D.P.; Kuti, J.L. Assessment of Meropenem and Vaborbactam Room Temperature and Refrigerated Stability in Polyvinyl Chloride Bags and Elastomeric Devices. Clin. Ther. 2020, 42, 606–613. [Google Scholar] [CrossRef]
- Sand, P.; Aladeen, T.; Kirkegaard, P.; LaChance, D.; Slover, C. Chemical Stability of Telavancin in Elastomeric Pumps. Curr. Res. Clin. Exp. 2015, 77, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Post, T.E.; Kamerling, I.M.C.; van Rossen, R.C.J.M.; Burggraaf, J.; Stevens, J.; Dijkmans, A.C.; Heijerman, H.G.M.; Touw, D.J.; van Velzen, A.J.; Wilms, E.B. Colistin Methanesulfonate Infusion Solutions Are Stable over Time and Suitable for Home Administration. Eur. J. Hosp. Pharm. 2018, 25, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, A.; van Leeuwen, R.W.F.; de Vries Schultink, A.H.M.; Koch, B.C.P. Stability of Colistimethate Sodium in a Disposable Elastomeric Infusion Device. Int. J. Pharm. 2015, 486, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Tsiouris, M.; Ulmer, M.; Yurcho, J.F.; Hooper, K.L.; Gui, M. Stability and Compatibility of Reconstituted Caspofungin in Select Elastomeric Infusion Devices. Int. J. Pharm. Compd. 2010, 14, 436–439. [Google Scholar] [PubMed]
- Harmanjeet, H.; Zaidi, S.T.R.; Ming, L.C.; Wanandy, T.; Patel, R.P. Physicochemical Stability of Voriconazole in Elastomeric Devices. Eur. J. Hosp. Pharm. 2018, 25, e88–e92. [Google Scholar] [CrossRef]
- Saillen, L.; Arensdorff, L.; Moulin, E.; Voumard, R.; Cochet, C.; Boillat-Blanco, N.; Gardiol, C.; de Vallière, S. Patient Satisfaction in an Outpatient Parenteral Antimicrobial Therapy (OPAT) Unit Practising Predominantly Self-Administration of Antibiotics with Elastomeric Pumps. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 1387–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skryabina, E.A.; Dunn, T.S. Disposable Infusion Pumps. Am. J. Health Syst. Pharm. 2006, 63, 1260–1268. [Google Scholar] [CrossRef]
- Chung, I.S.; Cho, H.S.; Kim, J.A.; Lee, K.H. The Flow Rate of the Elastomeric Balloon Infusor Is Influenced by the Internal Pressure of the Infusor. J. Korean Med. Sci. 2001, 16, 702–706. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, M.; Rae, N.; Nathwani, D. Outcomes from Global Adult Outpatient Parenteral Antimicrobial Therapy Programmes: A Review of the Last Decade. Int. J. Antimicrob. Agents 2014, 43, 7–16. [Google Scholar] [CrossRef]
- Schrank, G.M.; Wright, S.B.; Branch-Elliman, W.; LaSalvia, M.T. A Retrospective Analysis of Adverse Events among Patients Receiving Daptomycin versus Vancomycin during Outpatient Parenteral Antimicrobial Therapy. Infect. Control. Hosp. Epidemiol. 2018, 39, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Cervera, C.; Sanroma, P.; González-Ramallo, V.; García de la María, C.; Sanclemente, G.; Sopena, N.; Pajarón, M.; Segado, A.; Mirón, M.; Antón, F.; et al. Safety and Efficacy of Daptomycin in Outpatient Parenteral Antimicrobial Therapy: A Prospective and Multicenter Cohort Study (DAPTODOM Trial). Infect. Dis. 2017, 49, 200–207. [Google Scholar] [CrossRef]
- Burnett, Y.J.; Spec, A.; Ahmed, M.M.; Powderly, W.G.; Hamad, Y. Experience with Liposomal Amphotericin B in Outpatient Parenteral Antimicrobial Therapy. Antimicrob. Agents Chemother. 2021, 65, e01876-20. [Google Scholar] [CrossRef] [PubMed]
- Gil-Navarro, M.V.; Luque-Marquez, R.; Báez-Gutiérrez, N.; Álvarez-Marín, R.; Navarro-Amuedo, M.D.; Praena-Segovia, J.; Carmona-Caballero, J.M.; Fraile-Ramos, E.; López-Cortés, L.E. Antifungal Treatment Administered in OPAT Programs Is a Safe and Effective Option in Selected Patients. Enferm. Infect. Microbiol. Clin. 2020, 38, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.; Shanu, S.; Jamieson, C.; Santillo, M. Systematic Review of the Stability of Antimicrobial Agents in Elastomeric Devices for Outpatient Parenteral Antimicrobial Therapy Services Based on NHS Yellow Cover Document Standards. Eur. J. Hosp. Pharm. 2021. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.; Hills, T.; Santillo, M.; Gilchrist, M.; on behalf of the Drug Stability Working Group of the BSAC UK OPAT Initiative. Extended Stability of Antimicrobial Agents in Administration Devices. J. Antimicrob. Chemother. 2017, 72, dkw556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamantis, S.; Dawudi, Y.; Cassard, B.; Longuet, P.; Lesprit, P.; Gauzit, R. Home Intravenous Antibiotherapy and the Proper Use of Elastomeric Pumps: Systematic Review of the Literature and Proposals for Improved Use. Infect. Dis. Now 2021, 51, 39–49. [Google Scholar] [CrossRef]
- Welch, V.; Petticrew, M.; Tugwell, P.; Moher, D.; O’Neill, J.; Waters, E.; White, H.; PRISMA-Equity Bellagio group. PRISMA-Equity 2012 Extension: Reporting Guidelines for Systematic Reviews with a Focus on Health Equity. PLoS Med. 2012, 9, e1001333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Drug | Reference | Composition of the Elastomeric Device | Concentration (mg/mL) | Diluent | Temperature and Duration of Storage | Chemical Stability | Physical Stability | Comments |
---|---|---|---|---|---|---|---|---|
Ampicillin | [14] | Latex | 20 | NS | 5 °C: 3 d 25 °C: 8 h | Yes | Not studied | |
[15] | Polyisoprene | 50 | Acetate ringer solution | 4 °C: 10 d 25 °C: 24 h 31.1 °C: 24 h | No | Not studied | ||
Amoxicillin | [16] | Polyisoprene | 25 | NS | 5 °C: 48 h | Yes | Not studied | Also measured effectiveness of plasma amoxicillin concentrations |
[17] | Polyisoprene | 20, 40, and 60 | NS | 20 °C: 48 h 25 °C: 48 h | Yes (only at 20 and 40 mg/mL) | Yes (not precipitate or color changes) | No chemical stability at 60 mg/mL | |
[18] | Polyisoprene or silicone | 25, 50, 125, and 250 | Sterile water | 5 °C: 24 h 25 °C: 12 h | Yes (just the lowest concentration, 25 mg/mL) | Not studied | No chemical stability at high concentrations and at high temperatures (more than 30 °C) | |
[19] | Polyisoprene | 25, 50, and 83.3 | NS | 4 °C: 48 h 25 °C: 48 h | Yes | Not studied | ||
Benzylpenicillin | [15] | Polyisoprene | 100,000 units/mL | Acetate ringer solution | 4 °C: 10 d 25 °C: 24 h 31.1 °C: 24 h | Yes | Not studied | |
Flucloxacillin | [20] | Silicone and polyisoprene | 10 and 50 | 0.3% w/v | 5 °C: 14 d, then 24 h at 32 °C | Yes | Not studied | Citrate-buffered saline pH 7 |
[21] | Polyisoprene | 50 | NS | 5 °C: 6 d 5 °C: 6 d, then 24 h at 31 °C | Yes | Not studied | It was not chemically stable when the temperature was raised to 37 °C for 7 h after 6 d at 5 °C and 24 h at 31 °C | |
[22] | Polyisoprene | 50 | NS or water for injection with or without phosphate buffer (0.384 M; pH 7) | 4 °C: 6 d 4 °C: 6 d, then 24 h at 37 °C. | Yes | Not studied | At 37 °C, the unbuffered solution was not chemically stable | |
[23] | Polyisoprene | 33 | NS | 26.2 °C: 24 h 30.9 °C: 24 h | No | Not studied | Study under real-life situations | |
Mezlocillin | [14] | Latex | 20 | 5D | 5 °C: 7 d 20 °C: 4 w 25 °C: 48 h | Yes | Not studied | |
Nafcillin | [14] | Latex | 20 | NS or 5D | −20 °C: 12 w 5 °C: 4 d 25 °C: 24 h | Yes | Not studied | |
Penicillin G sodium | [24] | Polyisoprene | 2500 and 50,000 units/mL | NS or 5D | 5 °C: 21 d | Yes | No (pH consistently decreased, from 6.4 to 5.5; no change in appearance) | After 28 d, 2500 units/mL with NS was not chemically stable |
Piperacillin | [14] | Latex | 30 | NS or 5D | −20 °C: 4 w 5 °C: 7 d 25 °C: 24 h | Yes | Not studied | |
Piperacillin/ tazobactam | [25] | Polyisoprene | 67/8 | NS or 5D | 31.1 °C: 24 h | Yes | Yes (pH) | |
[26] | Polyisoprene | 9/1.15 50/6.2 90/11.25 | NS | 35 °C: 72 h | No | No (pH changed although not precipitate or color changes) | ||
[27] | Polyisoprene | 22/3 80/10 | NS | 5 °C: 13 d, then 24 h at 32 °C | Yes | Not studied | Use of a citrate-buffered saline diluent pH 7 | |
[23] | Polyisoprene | 50/6.25 | NS | 26.2 °C: 24 h 30.9 °C: 24 h | Yes | Not studied | Study under real-life situations | |
Temocillin | [28] | Polyisoprene | 10 and 20 | Water for injection | 4 °C: 4 w 4 °C: 4 w, then 24 h at 25 °C | Yes | Not studied |
Drug | Reference | Composition of the Elastomeric Device | Concentration (mg/mL) | Diluent | Temperature and Duration of Storage | Chemical Stability | Physical Stability | Comments |
---|---|---|---|---|---|---|---|---|
Cefazoline | [14] | Latex | 20 | NS or 5D | −20 °C: 12 w 5 °C: 7 d 25 °C: 24 h | Yes | Not studied | |
[25] | Polyisoprene | 25 | NS or 5D | 31.1 °C: 24 h | Yes | Yes (pH) | ||
[29] | Polyisoprene | 12.5 and 25 | NS or 5D | 4 °C: 72 h, then stored at 35 °C for 12 h, followed by 25 °C for 12 h. | Yes | Yes (pH unchanged, clear/no haziness, no particles). | ||
[23] | Polyisoprene | 25 | NS | 26.2 °C: 24 h 30.9 °C: 24 h | Yes | Not studied | Study under real-life situations | |
[30] | Silicone | 5 and 40 | NS or 5D | 4 °C: 26 d 23 °C: 3 d | Yes | Not studied | ||
Cefepime | [23] | Polyisoprene | 12.5 | NS | 26.2 °C: 24 h 30.9 °C: 24 h | Yes | Not studied | Study under real-life situations |
Cefmetazole | [25] | Polyisoprene | 33 | NS or 5D | 31.1 °C: 24 h | Yes | Yes (pH) | |
Ceftaroline | [31] | Polyisoprene | 6 | NS or 5D | 4 °C: 44 h 25 °C: 24 h 30 °C: 12 h 35 °C: 12 h with NS and 6 h with 5D | Yes | Yes (no particle formation, color change, or pH change) | |
[32] | Polyisoprene or silicone | 12 | NS or 5D | 2 °C–8 °C: 24 h, then 6 h at 25 °C. | Yes | Yes (clear, colorless, and free of visible particulates; no major change in pH) | ||
Ceftazidime | [14] | Latex | 20 | NS or 5D | −20 °C: 12 w 5 °C: 7 d 25 °C: 18 h | Yes | Not studied | |
[33] | Polyisoprene | 60 and 120 | NS | 4 °C: 48 h, then 27 °C for 24 h. 4 °C: 144 h, then 27 °C for 24 h. 27 °C: 24 h. | No | Yes (clear, colorless, and free of visible particulates) | ||
[34] | Polyisoprene | 60 | NS | –20 °C: 14 d 4 °C: 14 d | Yes | Not studied | The degradation product pyridine was detected at all storage times | |
[30] | Silicone | NS: 5 and 60 5D: 5 and 40 | NS or 5D | 23 °C: 1 d 4 °C: 4 d | Yes | Not studied | ||
Ceftolozane-tazobactam | [35] | Polyisoprene | 1.25/0.63 12.5/6.25 25/12.5 | NS | 4 °C: 7 d 25 °C: 24 h 37 °C: 24 h | Yes | Not studied | Tazobactam was more stable than ceftolozane |
[36] | Polyisoprene | 1 g/0.5 g 100 mg/50 mg | NS or 5D | 5 °C: 10 d 25 °C: 24 h | Yes | Yes (clear and free of visible particulates; no changes in pH) | ||
Ceftriaxone | [14] | Latex | 20 | NS or 5D | −20 °C: 26 w 5 °C: 10 d 25 °C: 3 d | Yes | Not studied | |
[30] | Silicone | 5 and 40 | NS or 5D | 4 °C: 14 d 23 °C: 2 d | Yes | Not studied |
Drug | Reference | Composition of the Elastomeric Device | Concentration (mg/mL) | Diluent | Temperature and Duration of Storage | Chemical Stability | Physical Stability | Comments |
---|---|---|---|---|---|---|---|---|
Doripenem | [25] | Polyisoprene | 12.5 | NS or 5D | 31.1 °C: 24 h | No | Yes (pH) | |
[37] | Polyisoprene | 5 and 10 | NS or 5D | −20 °C: 28 d 4 °C: 10 d in NS and 7 d in 5 d 25 °C: 24 h in NS and 16 h in 5D | Yes | No | A white precipitate, which returned to solution by shaking, was noted after thawing the frozen containers | |
Ertapenem | [38] | Polyisoprene | 10 | NS | 5 °C: 72 h | Yes | Not studied | |
Imipenem- cilastatin | [14] | Latex | 5 | NS or 5D | 5 °C: 1 d 25 °C: 4 h | Yes | Not studied | |
Meropenem | [25] | Polyisoprene | 12.5 | NS or 5D | 31.1 °C: 24 h | No | Yes (pH) | |
[39] | Polyisoprene | 6, 12, 20, and 25 | NS | 5 °C: 6 d 5 °C: 48 h, then 4 d at 25 °C | Yes (just the lowest concentration, 6 mg/mL) | Yes (pH) | At higher concentrations (25 mg/mL), no chemical stability | |
[40] | Polyisoprene | 4, 10, and 20 | NS | 5 °C: 5 d | Yes | Not studied | The lowest concentration (4 mg/mL) showed chemical stability for 7 d | |
Meropenem/ vaborbactam | [41] | Polyisoprene | 5.7/5.7 | NS | 4 °C: 120 h 24 °C: 12 h | Yes | Not studied |
Drug | Reference | Composition of the Elastomeric Device | Concentration (mg/mL) | Diluent | Temperature and Duration of Storage | Chemical Stability | Physical Stability | Comments |
---|---|---|---|---|---|---|---|---|
Gentamicin | [14] | Latex | 0.8 | NS | 25 °C: 24 h | Yes | Not studied | |
Tobramycin | [14] | Latex | 0.8 | NS | 25 °C: 24 h | Yes | Not studied |
Drug | Reference | Composition of the Elastomeric Device | Concentration (mg/mL) | Diluent | Temperature and Duration of Storage | Chemical Stability | Physical Stability | Comments |
---|---|---|---|---|---|---|---|---|
Telavancin | [42] | Polyisoprene | 0.6 and 8.0 | NS, 5D, orsterilized water | 5 °C: 8 d | Yes | Yes (pH) | Sterilized water (0.6 mg/mL) and NS (8.0 mg/mL) were followed by Ringer’s lactate solution |
Vancomycin | [14] | Latex | 5 | NS or 5D | −20 °C: 9 w 5 °C: 14 d 25 °C: 24 h | Yes | Not studied | |
[30] | Silicone | 1 and 5 | NS or 5D | 4 °C: 27.8 d 23 °C: 7.5 d | Yes | Not studied |
Drug | Reference | Composition of the Elastomeric Device | Concentration (mg/mL) | Diluent | Temperature and Duration of Storage | Chemical Stability | Physical Stability | Comments |
---|---|---|---|---|---|---|---|---|
Clindamycin | [30] | Silicone | 1 and 12 | NS or 5D | 4 °C: 27.8 d 23 °C: 7.5 d | Yes | Not studied | |
Colistin methanesulfonate | [43] | Polyisoprene | 2 MU | NS | 5 °C: 8 d 22 °C: 8 d | Yes | Yes (pH) | |
Colistimethate sodium | [44] | Polyisoprene | 0.8 | NS | 4 °C: 7 d | Yes | Not studied |
Drug | Reference | Composition of the Elastomeric Device | Concentration (mg/mL) | Diluent | Temperature and Duration of Storage | Chemical Stability | Physical Stability | Comments |
---|---|---|---|---|---|---|---|---|
Caspofungin | [45] | Polyisoprene or silicone | 0.2, 0.28, and 0.5 | NS | 5 °C: 14 d 25 °C: 60 h | Yes, in the polyisoprene infuser | Not studied | Not chemically stable in the silicone infuser |
Voriconazol | [46] | Polyisoprene | 2 | NS or 5D | 4 °C: 96 h 25 °C: 4 h 35 °C: 4 h | Yes | Not studied |
Drug | Reference | Composition of the Elastomeric Device | Concentration (mg/mL) | Diluent | Temperature and Duration of Storage | Chemical Stability | Physical Stability | Comments |
---|---|---|---|---|---|---|---|---|
Ganciclovir | [14] | Latex | 5 | NS | 5 °C: 5 d 25 °C: 24 h | Yes | Not studied |
Healthcare Database | Search Strategy |
---|---|
PubMed | (stability) AND (elastomer OR elastomeric) AND (anti-infective agent OR antibiotic OR antimicrobial) |
EMBASE | (‘stability’/exp) AND (‘elastomer’/exp OR ‘elastomeric’/exp) AND (‘anti-infective agent’/exp OR ‘antibiotic’/exp OR ‘antimicrobial’/exp) |
Web of Science | TS = (stability AND (elastomer OR elastomeric) AND (anti-infective agent OR antibiotic OR antimicrobial)) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Rubio, B.; del Valle-Moreno, P.; Herrera-Hidalgo, L.; Gutiérrez-Valencia, A.; Luque-Márquez, R.; López-Cortés, L.E.; Gutiérrez-Urbón, J.M.; Luque-Pardos, S.; Fernández-Polo, A.; Gil-Navarro, M.V. Stability of Antimicrobials in Elastomeric Pumps: A Systematic Review. Antibiotics 2022, 11, 45. https://doi.org/10.3390/antibiotics11010045
Fernández-Rubio B, del Valle-Moreno P, Herrera-Hidalgo L, Gutiérrez-Valencia A, Luque-Márquez R, López-Cortés LE, Gutiérrez-Urbón JM, Luque-Pardos S, Fernández-Polo A, Gil-Navarro MV. Stability of Antimicrobials in Elastomeric Pumps: A Systematic Review. Antibiotics. 2022; 11(1):45. https://doi.org/10.3390/antibiotics11010045
Chicago/Turabian StyleFernández-Rubio, Beatriz, Paula del Valle-Moreno, Laura Herrera-Hidalgo, Alicia Gutiérrez-Valencia, Rafael Luque-Márquez, Luis E. López-Cortés, José María Gutiérrez-Urbón, Sonia Luque-Pardos, Aurora Fernández-Polo, and María V. Gil-Navarro. 2022. "Stability of Antimicrobials in Elastomeric Pumps: A Systematic Review" Antibiotics 11, no. 1: 45. https://doi.org/10.3390/antibiotics11010045
APA StyleFernández-Rubio, B., del Valle-Moreno, P., Herrera-Hidalgo, L., Gutiérrez-Valencia, A., Luque-Márquez, R., López-Cortés, L. E., Gutiérrez-Urbón, J. M., Luque-Pardos, S., Fernández-Polo, A., & Gil-Navarro, M. V. (2022). Stability of Antimicrobials in Elastomeric Pumps: A Systematic Review. Antibiotics, 11(1), 45. https://doi.org/10.3390/antibiotics11010045