An Analysis of the Infections and Determination of Empiric Antibiotic Therapy in Cats and Dogs with Cancer-Associated Infections
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Surveillance and Reporting
2.3. Microbiological Methods of Identification
2.4. Antibiotic Susceptibility Testing
2.5. Data Analysis
3. Results
3.1. Analysis of the Population
3.2. Common Causes of Infection
3.3. Susceptibility to Antibiotics
3.4. Infections Caused by Opportunistic Microorganisms
3.5. Infections Caused by Staphylococcus sp.
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rolston, K.V.I. Infections in Cancer Patients with Solid Tumors: A Review. Infect. Dis. Ther. 2017, 6, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Singer, C.; Kaplan, M.H.; Armstrong, D. Bacteremia and fungemia complicating neoplastic disease: A study of 364 cases. Am. J. Med. 1977, 62, 731. [Google Scholar] [CrossRef]
- Budreckis, D.M.; Byrne, B.A.; Pollard, R.E.; Rebhun, R.B.; Rodriguez, C.O.; Skorupski, K.A. Bacterial Urinary Tract Infections Associ-ated with Transitional Cell Carcinoma in Dogs. J. Vet. Intern. Med. 2015, 29, 828. [Google Scholar] [CrossRef] [PubMed]
- Bodey, G.P.; Buckley, M.; Sathe, Y.S.; Freireich, E.J. Quantitative Relationships Between Circulating Leukocytes and Infection in Patients with Acute Leukemia. Ann. Intern. Med. 1966, 64, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Hyams, J.S.; Donaldson, M.H.; A Metcalf, J.; Root, R.K. Inhibition of human granulocyte function by methotrexate. Cancer Res. 1978, 38, 650–655. [Google Scholar]
- Klastersky, J.; Paesmans, M.; Rubenstein, E.B.; Boyer, M.; Elting, L.; Feld, R.; Gallagher, J.; Herrstedt, J.; Rapoport, B.; Rolston, K.; et al. The multinational association for supportive care in Cancer risk index: A multinational scoring system for identifying low-risk febrile neutropenic cancer patients. J. Clin. Oncol. 2000, 18, 3038. [Google Scholar] [CrossRef] [PubMed]
- Hurst, V.; Sutter, V.L. Survival of Pseudomonas aeruginosa in the Hospital Environment. J. Infect. Dis. 1966, 116, 151–154. [Google Scholar] [CrossRef]
- Bodey, G. Candidiasis in cancer patients. Am. J. Med. 1984, 77, 13. [Google Scholar]
- Armstrong, D.; Young, L.S.; Meyer, R.D.; Blevins, A.H. Infectious Complications of Neoplastic Disease. Med. Clin. N. Am. 1971, 55, 729–745. [Google Scholar] [CrossRef]
- Johanson, W.G.; Pierce, A.K.; Sanford, J.P. Changing Pharyngeal Bacterial Flora of Hospitalized Patients. N. Engl. J. Med. 1969, 281, 1137–1140. [Google Scholar] [CrossRef] [PubMed]
- Dale, D.C.; Fauci, A.S.; Wolff, S.M. Alternate-day prednisone: Leukocyte kinetics and susceptibility to infections. N. Engl. J. Med. 1974, 291, 1154. [Google Scholar] [CrossRef]
- Skinner, M.D.; Schwartz, R.S. Immunosuppressive therapy. N. Engl. J. Med. 1972, 287, 221. [Google Scholar] [CrossRef]
- Balow, J.; Hurley, D.L.; Fauci, A.S. Cyclophosphamide suppression of established cell-mediated immunity. Quantitative vs. qualitative changes in lymphocyte populations. J. Clin. Investig. 1975, 56, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Bisson, J.L.; Argyle, D.J.; Argyle, S.A. Antibiotic prophylaxis in veterinary cancer chemotherapy: A review and recommendations. Veter. Comp. Oncol. 2018, 16, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.R.; Phaler, A.; Tenover, F.C.; Yolken, R.H. (Eds.) Manual of Clinical Microbiology, 9th ed.; ASM: Washington, DC, USA, 2007. [Google Scholar]
- Baden, L.R.; Bensinger, W.; Angarone, M.; Casper, C.; Dubberke, E.R.; Freifeld, A.G.; Garzon, R.; Greene, J.N.; Greer, J.P.; Ito, J.I.; et al. Prevention and Treatment of Cancer-Related Infections. J. Natl. Compr. Cancer Netw. 2012, 10, 1412–1445. [Google Scholar] [CrossRef] [Green Version]
- Safdar, A.; Armstrong, D. Infections in patients with hematologic neoplasms and hematopoietic stem cell transplantation: Neu-tropenia, humoral and splenic defects. Clin. Infect. Dis. 2011, 53, 798. [Google Scholar] [CrossRef] [Green Version]
- Beachy, E.H. Bacterial adherence: Adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces. J. Infect. Dis. 1981, 143, 325. [Google Scholar] [CrossRef]
- Rolston, K.V.I. Challenges in the Treatment of Infections Caused by Gram-Positive and Gram-Negative Bacteria in Patients with Cancer and Neutropenia. Clin. Infect. Dis. 2005, 40, S246–S252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argudín, M.A.; Deplano, A.; Meghraoui, A.; Dodémont, M.; Heinrichs, A.; Denis, O.; Nonhoff, C.; Roisin, S. Bacteria from Animals as a Pool of Antimicrobial Resistance Genes. Antibiotics 2017, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Bannoehr, J.; Guardabassi, L. Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet. Dermatol. 2012, 23, 253. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Yang, C.; Park, H. Emergence of biofilm-producing Staphylococcus pseudintermedius isolated from healthy dogs in South Korea. Vet. Q. 2015, 35, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoen, H.R.C.; Rose, S.J.; Ramsey, S.A.; de Morais, H.; Bermudez, L.E. Analysis of Staphylococcu infectious in a veterinary teaching hospital from 2012 to 2015. Comp. Immunol. Microbiol. Infect. Dis. 2019, 66, 101332. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Walker, M.; Rousseau, J.; Weese, J.S. Characterization of the biofilm forming ability of Staphylococcus pseudintermedius from dogs. BMC Veter Res. 2013, 9, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanselman, B.A.; Kruth, S.A.; Rousseau, J.; Weese, J.S. Coagulase positive staphylococcus colonization of humans and their household pets. Can. Vet. J. 2009, 50, 954. [Google Scholar]
- Maali, Y.; Badiou, C.; Martins-Simoes, P.; Hodille, E.; Bes, M.; Lina, G.; Diot, A.; Laurwnt, F.; Trouillet-Assant, S. Under-standing the virulence of Staphylococcus pseudintermedius: A major role of pore-forming toxin. Front. Cell Infect. Microbiol. 2018, 8, 221. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, K.; van Duijkeren, E.; Wagenaar, J.A.; Schwarz, S. Molecular basis of rifampin resistance in methicillin-resistant Staphy-lococcus pseuditermedius isolates from dogs. J. Antimicrob. Chemother. 2011, 66, 1236. [Google Scholar] [CrossRef] [Green Version]
- Verbrugghe, E.; Boyen, F.; Gaastra, W.; Bekhuis, L.; Leyman, B.; Parys, A.; Haesebrouck, F.; Pasmans, F. The complex interplay be-tween stress and bacterial infections in animals. Vet. Microbiol. 2012, 155, 115. [Google Scholar] [CrossRef]
- Haag, A.F.; Fitzgerald, J.R.; Penades, J.R. Staphylococcus aureus in animals. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
Infection Site | Bacteria | Number of Cases |
---|---|---|
Respiratory (BALF) | Enterococcus sp. | 1 |
Escherichia coli | 4 | |
Pasteurella multocida | 5 | |
Proteus mirabilis | 1 | |
Staphylococcus coagulase negative | 1 | |
Bordetella bronchiseptica | 1 | |
Total number of cases | 13 | |
Abscess/Wound Swabs | Pseudomonas aeruginosa | 9 |
Staphylococcus pseudintermedius | 22 | |
Vagococcus | 1 | |
Enterococcus sp. | 6 | |
Escherichia coli | 10 | |
Pasteurella canis | 1 | |
Pasteurella stomatis | 1 | |
Proteus vulgaris | 1 | |
Staphylococcus aureus | 3 | |
Staphylococcus schleiferi | 2 | |
Staphylococcus sp. | 10 | |
Staphylococcus coagulase negative | 5 | |
Staphylococcus β-hemolytic | 7 | |
Enterobacter sp. | 4 | |
Total number of cases | 82 | |
Ear/Eye Swabs | Escherichia coli | 1 |
Streptococcus β-hemolytic | 1 | |
Staphylococcus coagulase negative | 1 | |
Total number of cases | 3 | |
Urine | Enterobacter sp. | 1 |
Proteus vulgaris | 2 | |
Staphylococcus sp. | 1 | |
Klebsiella sp. | 1 | |
Staphylococcus pseudintermedius | 13 | |
Enterococcus sp. | 7 | |
Pseudomonas aeruginosa | 2 | |
Citrobacter sp. | 2 | |
Escherichia coli | 26 | |
Total number of cases | 55 |
Infection Site | Number of Cases | Most Common Pathogens | Antibiotics with Activity (% Susceptible Bacteria) | Notes |
---|---|---|---|---|
Ear/Eye | 3 | Escherichia coli, Streptococcus β-hemolytic, Staphylococcus coagulase negative | Amikacin (66%), gentamicin (100%), tobramycin (66%), amoxicillin/clav (100%), ampicillin (100%), cefovecin (100%), cefpodoxime (100%), cephalothin (100%) enrofloxacin (50%), marbofloxacin (100%), SMX/TMP (100%), tetracycline (66%) | All the isolates were resistant to orbifloxacin |
(BALF) | 13 | Escherichia coli, Pasteurella multocida (9 cases) | Amikacin (71.4%), tobramycin (71.4), amoxicillin/clav (83.3%), cefovecin (100%), enrofloxacin (83.3%), TMP-SMX (83.3%) | |
Abscess | 4 | Vagococcus, Escherichia coli, Staphylococcus aureus | Amikacin (100%), amoxicillin/clav (100%), cefovecin (100%), cefpodoxime (100%), cephalothin (75%), chloramphenicol (75%), marbofloxacin (100%), orbifloxacin (100%), enofloxacin (75), SMX/TMP (75) (*) | (*) can be inactive |
Wounds Swabs | 78 | Staphylococcus pseudintermedius (27%) | Amikacin (80.7%), gentamicin (64%), cefovecin (69%), cefpodoxime (61%) enrofloxacin (67.6%), marboflaxcin (69%), SMX/TMP (61%), polymyxin B (61%), imipenem (100%), ceftaroline (100%) | |
Escherichia coli (12%) | ||||
Staphylococcus sp. (12%) | ||||
Pseudomonas aeruginosa (11%) | ||||
Staphylococcus β-hemolyticus (8.5%) | ||||
Enterococcus sp. (7.3%) | ||||
Urine | 55 | Escherichia coli (47%) | Amikacin (87%), gentamicin (75%), tobramycin (75%), amoxicillin/clav (75%), cefovecin (81%), cefpodoxime (80%), ceftaroline (100%) (*) Enrofloxacin (79%), marbofloxacin (79%), orbifloxacin (73%), SMX/TMP (76%) | (*) fifth-generation cephalosporin with activity against Gram-positive bacteria |
Staphylococcus pseudintermedius (24%) | ||||
Enterococcus sp. (13%) |
Site of Infection | Bacteria | Susceptibility |
---|---|---|
Skin infection | E. coli | Amikacin, Gentamicin, Tobramycin, Polymyxin B, Enrofloxacin, Marbofloxacin, TMP/sulfa |
Peritoneal swab | E. coli | Amikacin, Gentamicin, Tobramycin, Polymyxin B, Enrofloxacin, Marbofloxacin, TMP/sulfa |
Surgical site | E. coli | Amikacin, Imipenem, Polymyxin B |
Skin swab | P. aeruginosa | Amikacin, Gentamicin, Tobramycin, Marbofloxacin, Polymyxin B, Imipenem |
Skin Swab | P. aeruginosa | Amikacin, Gentamicin, Tobramycin, Enrofloxacin, Marbofloxacin, Imipenem |
Urine | P. aeruginosa | Amikacin, Enrofloxacin, Marbofloxacin, |
Surgical swab | P. aeruginosa | Amikacin, Gentamicin, Tobramycin, Enrofloxacin, Marbofloxacin |
Surgical swab | P. aeruginosa | Amikacin, Gentamicin, Tobramycin, Imipenem |
Surgical swab | P. aeruginosa | Amikacin, Gentamicin, Tobramycin, Imipenem, Marbofloxacin |
Bacterial Species | Number | Susceptibility to Antibiotics of Isolates |
---|---|---|
Staphylococcus coagulase + | 7 | All susceptible to amikacin, TMP/SMX 4 susceptible to amoxicillin 5 susceptible to cefpodoxime |
Staphylococcus pseudintermidius | 31 | 16 were methicillin-resistant 27 susceptible to amikacin 19 susceptible to cefpodoxime 13 susceptible to enrofloxacin 13 susceptible to TMP/SMX 15 susceptible to rifampin |
Staphylococcus coagulase − | 7 | 3 were methicillin-resistant All susceptible to amikacin 5 susceptible to TMP/SMX 6 susceptible to cephalosporins 5 susceptible to enrofloxacin |
Staphylococcus aureus | 3 | All susceptible to amikacin, amoxicillin 2 susceptible to enrofloxacin, cephalosporins |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curran, K.; Leeper, H.; O’Reilly, K.; Jacob, J.; Bermudez, L.E. An Analysis of the Infections and Determination of Empiric Antibiotic Therapy in Cats and Dogs with Cancer-Associated Infections. Antibiotics 2021, 10, 700. https://doi.org/10.3390/antibiotics10060700
Curran K, Leeper H, O’Reilly K, Jacob J, Bermudez LE. An Analysis of the Infections and Determination of Empiric Antibiotic Therapy in Cats and Dogs with Cancer-Associated Infections. Antibiotics. 2021; 10(6):700. https://doi.org/10.3390/antibiotics10060700
Chicago/Turabian StyleCurran, Katie, Haley Leeper, Kathy O’Reilly, Joelle Jacob, and Luiz E. Bermudez. 2021. "An Analysis of the Infections and Determination of Empiric Antibiotic Therapy in Cats and Dogs with Cancer-Associated Infections" Antibiotics 10, no. 6: 700. https://doi.org/10.3390/antibiotics10060700
APA StyleCurran, K., Leeper, H., O’Reilly, K., Jacob, J., & Bermudez, L. E. (2021). An Analysis of the Infections and Determination of Empiric Antibiotic Therapy in Cats and Dogs with Cancer-Associated Infections. Antibiotics, 10(6), 700. https://doi.org/10.3390/antibiotics10060700