Antibiotic Susceptibility, Virulome, and Clinical Outcomes in European Infants with Bloodstream Infections Caused by Enterobacterales
Abstract
:1. Introduction
2. Results
2.1. Demographic and Clinical Data
2.2. Microbiological Data
2.3. Determinants of 28-Day Case-Fatality
3. Discussion
4. Materials and Methods
4.1. Study Design and Data Source
4.2. Selection Criteria, Available Data and Definitions
4.3. Microbiological Methods
4.4. Statistical Analysis
4.5. Ethics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballot, D.E.; Bandini, R.; Nana, T.; Bosman, N.; Thomas, T.; Davies, V.A.; Cooper, P.A.; Mer, M.; Lipman, J. A review of -multidrug-resistant Enterobacteriaceae in a neonatal unit in Johannesburg, South Africa. BMC Pediatr. 2019, 19, 320. [Google Scholar] [CrossRef] [Green Version]
- Cole, B.K.; Ilikj, M.; McCloskey, C.B.; Chavez-Bueno, S. Antibiotic resistance and molecular characterization of bacteremia Escherichia coli isolates from newborns in the United States. PLoS ONE 2019, 14, e0219352. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Chen, F.; Cai, K.; Tan, J.; Xie, W.; Qian, R.; Liu, X.; Zhang, W.; Du, H.; et al. A risk score based on pediatric sequential organ failure assessment predicts 90-day mortality in children with Klebsiella pneumoniae bloodstream infection. BMC Infect. Dis. 2020, 20, 916. [Google Scholar] [CrossRef]
- Nour, I.; Eldegla, H.E.; Nasef, N.; Shouman, B.; Abdel-Hady, H.; Shabaan, A.E. Risk factors and clinical outcomes for carbapenem-resistant Gram-negative late-onset sepsis in a neonatal intensive care unit. J. Hosp. Infect. 2017, 97, 52–58. [Google Scholar] [CrossRef]
- Thatrimontrichai, A.; Premprat, N.; Janjindamai, W.; Dissaneevate, S.; Maneenil, G. Risk Factors for 30-Day Mortality in Neonatal Gram-Negative Bacilli Sepsis. Am. J. Perinatol. 2020, 37, 689–694. [Google Scholar] [CrossRef]
- Sands, K.; Carvalho, M.J.; Portal, E.; Thomson, K.; Dyer, C.; Akpulu, C.; Andrews, R.; Ferreira, A.; Gillespie, D.; Hender, T.; et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat. Microbiol. 2021, 6, 512–523. [Google Scholar] [CrossRef]
- Budhram, D.R.; Mac, S.; Bielecki, J.M.; Patel, S.N.; Sander, B. Health outcomes attributable to carbapenemase-producing Enterobacteriaceae infections: A systematic review and meta-analysis. Infect. Control. Hosp. Epidemiol. 2020, 41, 37–43. [Google Scholar] [CrossRef]
- Burnham, J.P.; Lane, M.A.; Kollef, M.H. Impact of Sepsis Classification and Multidrug-Resistance Status on Outcome among Patients Treated with Appropriate Therapy. Crit. Care Med. 2015, 43, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Folgori, L.; Bernaschi, P.; Piga, S.; Carletti, M.; Cunha, F.P.; Lara, P.H.; de Castro Peixoto, N.C.; Alves Guimarães, B.G.; Sharland, M.; Araujo da Silva, A.R.; et al. Healthcare-Associated Infections in Pediatric and Neonatal Intensive Care Units: Impact of Underlying Risk Factors and Antimicrobial Resistance on 30-Day Case-Fatality in Italy and Brazil. Infect. Control. Hosp. Epidemiol. 2016, 37, 1302–1309. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Gutiérrez, B.; Salamanca, E.; de Cueto, M.; Hsueh, P.R.; Viale, P.; Paño-Pardo, J.R.; Venditti, M.; Tumbarello, M.; Daikos, G.; Cantón, R.; et al. Effect of appropriate combination therapy on mortality of patients with bloodstream infections due to carbapenemase-producing Enterobacteriaceae (INCREMENT): A retrospective cohort study. Lancet Infect. Dis. 2017, 17, 726–734. [Google Scholar] [CrossRef]
- Kyo, M.; Ohshimo, S.; Kosaka, T.; Fujita, N.; Shime, N. Impact of inappropriate empiric antimicrobial therapy on mortality in pediatric patients with bloodstream infection: A retrospective observational study. J. Chemother. 2019, 31, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Sakellariou, C.; Gürntke, S.; Steinmetz, I.; Kohler, C.; Pfeifer, Y.; Gastmeier, P.; Schwab, F.; Kola, A.; Deja, M.; Leistner, R. Sepsis Caused by Extended-Spectrum Beta-Lactamase (ESBL)-Positive, K. pneumoniae and E. coli: Comparison of Severity of Sepsis, Delay of Anti-Infective Therapy and ESBL Genotype. PLoS ONE 2016, 11, e0158039. [Google Scholar] [CrossRef]
- Sianipar, O.; Asmara, W.; Dwiprahasto, I.; Mulyono, B. Mortality risk of bloodstream infection caused by either Escherichia coli or Klebsiella pneumoniae producing extended-spectrum β-lactamase: A prospective cohort study. BMC Res. Notes 2019, 12, 719. [Google Scholar] [CrossRef]
- Tanır Basaranoglu, S.; Ozsurekci, Y.; Aykac, K.; Karadag Oncel, E.; Bıcakcigil, A.; Sancak, B.; Cengiz, A.B.; Kara, A.; Ceyhan, M. A comparison of blood stream infections with extended spectrum beta-lactamase-producing and non-producing Klebsiella pneumoniae in pediatric patients. Ital. J. Pediatr. 2017, 43, 79. [Google Scholar] [CrossRef] [Green Version]
- Zarkotou, O.; Pournaras, S.; Tselioti, P.; Dragoumanos, V.; Pitiriga, V.; Ranellou, K.; Prekates, A.; Themeli-Digalaki, K.; Tsakris, A. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin. Microbiol. Infect. 2011, 17, 1798–1803. [Google Scholar] [CrossRef] [Green Version]
- Lisboa, T.; Waterer, G.; Rello, J. We should be measuring genomic bacterial load and virulence factors. Crit. Care Med. 2010, 38 (Suppl. S10), S656–S662. [Google Scholar] [CrossRef]
- Ron, E.Z. Distribution and evolution of virulence factors in septicemic Escherichia coli. Int. J. Med. Microbiol. 2010, 300, 367–370. [Google Scholar] [CrossRef]
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Daga, A.P.; Koga, V.L.; Soncini, J.G.M.; de Matos, C.M.; Peruginim, M.R.E.; Pelisson, M.; Kobayashi, R.K.T.; Vespero, E.C. Escherichia coli Bloodstream Infections in Patients at a University Hospital: Virulence Factors and Clinical Characteristics. Front. Cell Infect. Microbiol. 2019, 9, 191. [Google Scholar] [CrossRef]
- Du, F.; Wei, D.D.; Wan, L.G.; Cao, X.W.; Zhang, W.; Liu, Y. Evaluation of ompK36 allele groups on clinical characteristics and virulence features of Klebsiella pneumoniae from bacteremia. J. Microbiol. Immunol. Infect. 2019, 52, 779–787. [Google Scholar] [CrossRef]
- Hung, W.T.; Cheng, M.F.; Tseng, F.C.; Chen, Y.S.; Shin-Jung Lee, S.; Chang, T.H.; Lin, H.H.; Hung, C.H.; Wang, J.L. Bloodstream infection with extended-spectrum beta-lactamase-producing Escherichia coli: The role of virulence genes. J. Microbiol. Immunol. Infect. 2019, 52, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.H.; Tsau, Y.K.; Kuo, C.Y.; Su, L.H.; Lin, T.Y. Comparison of extended virulence genotypes for bacteria isolated from pediatric patients with urosepsis, acute pyelonephritis, and acute lobar nephronia. Pediatr. Infect. Dis. J. 2010, 29, 736–740. [Google Scholar] [CrossRef]
- Palma, N.; Gomes, C.; Riveros, M.; García, W.; Martínez-Puchol, S.; Ruiz-Roldán, L.; Mateu, J.; García, C.; Jacobs, J.; Ochoa, T.J.; et al. Virulence factors profiles and ESBL production in Escherichia coli causing bacteremia in Peruvian children. Diagn. Microbiol. Infect. Dis. 2016, 86, 70–75. [Google Scholar] [CrossRef]
- Roy, S.; Datta, S.; DAS, P.; Gaind, R.; Pal, T.; Tapader, R.; Mukherjee, S.; Basu, S. Insight into neonatal septicaemic Escherichia coli from India with respect to phylogroups, serotypes, virulence, extended-spectrum-β-lactamases and association of ST131 clonal group. Epidemiol. Infect. 2015, 143, 3266–3276. [Google Scholar] [CrossRef] [PubMed]
- Tapader, R.; Chatterjee, S.; Singh, A.K.; Dayma, P.; Haldar, S.; Pal, A.; Basu, S. The high prevalence of serine protease autotransporters of Enterobacteriaceae (SPATEs) in Escherichia coli causing neonatal septicemia. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 2015–2024. [Google Scholar] [CrossRef]
- Burdet, C.; Clermont, O.; Bonacorsi, S.; Laouénan, C.; Bingen, E.; Aujard, Y.; Mentré, F.; Lefort, A.; Denamur, E. Escherichia coli bacteremia in children: Age and portal of entry are the main predictors of severity. Pediatr. Infect. Dis. J. 2014, 33, 872–879. [Google Scholar] [CrossRef] [Green Version]
- Horváth, A.; Dobay, O.; Sahin-Tóth, J.; Juhász, E.; Pongrácz, J.; Iván, M.; Fazakas, E.; Kristóf, K. Characterisation of antibiotic resistance, virulence, clonality and mortality in MRSA and MSSA bloodstream infections at a tertiary-level hospital in Hungary: A 6-year retrospective study. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- Zürn, K.; Lander, F.; Hufnagel, M.; Monecke, S.; Berner, R. Microarray Analysis of Group B Streptococci Causing Invasive Neonatal Early- and Late-onset Infection. Pediatr. Infect. Dis. J. 2020, 39, 449–453. [Google Scholar] [CrossRef]
- Xu, M.; Fu, Y.; Kong, H.; Chen, X.; Chen, Y.; Li, L.; Yang, Q. Bloodstream infections caused by Klebsiella pneumoniae: Prevalence of bla(KPC), virulence factors and their impacts on clinical outcome. BMC Infect. Dis. 2018, 18, 358. [Google Scholar] [CrossRef] [Green Version]
- Neonatal Infection Surveillance Database. Available online: https://www.neonin.org.uk/ (accessed on 15 April 2021).
- Lutsar, I.; Chazallon, C.; Trafojer, U.; de Cabre, V.M.; Auriti, C.; Bertaina, C.; Calo Carducci, F.I.; Canpolat, F.E.; Esposito, S.; Fournier, I.; et al. Meropenem vs standard of care for treatment of neonatal late onset sepsis (NeoMero1): A randomised controlled trial. PLoS ONE 2020, 15, e0229380. [Google Scholar] [CrossRef] [Green Version]
- CLAHRC-Infection Theme-Gram-Negative Project—Bloodstream Infection. Available online: http://www.clahrc-southlondon.nihr.ac.uk/infection/investigating-causes-and-care-septicaemia-caused-gram-negative-bacteria (accessed on 15 April 2021).
- Derakhshan, S.; Najar Peerayeh, S.; Bakhshi, B. Association between Presence of Virulence Genes and Antibiotic Resistance in Clinical Klebsiella Pneumoniae Isolates. Lab. Med. 2016, 47, 306–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pop-Vicas, A.; Opal, S.M. The clinical impact of multidrug-resistant gram-negative bacilli in the management of septic shock. Virulence 2014, 5, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Viale, P.; Giannella, M.; Lewis, R.; Trecarichi, E.M.; Petrosillo, N.; Tumbarello, M. Predictors of mortality in multidrug-resistant Klebsiella pneumoniae bloodstream infections. Expert Rev. Anti Infect. Ther. 2013, 11, 1053–1063. [Google Scholar] [CrossRef]
- Ray, S.; Anandm, D.; Purwar, S.; Samanta, A.; Upadhye, K.V.; Gupta, P.; Dhar, D. Association of high mortality with extended-spectrum β-lactamase (ESBL) positive cultures in community acquired infections. J. Crit. Care 2018, 44, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Mora-Rillo, M.; Fernández-Romero, N.; Navarro-San Francisco, C.; Díez-Sebastián, J.; Romero-Gómez, M.P.; Fernández, F.A.; López, J.R.A.; Mingorance, J. Impact of virulence genes on sepsis severity and survival in Escherichia coli bacteremia. Virulence 2015, 6, 93–100. [Google Scholar] [CrossRef]
- Kim, D.; Park, B.Y.; Choi, M.H.; Yoon, E.J.; Lee, H.; Lee, K.J.; Park, Y.S.; Shin, J.H.; Uh, Y.; Shin, K.S.; et al. Antimicrobial resistance and virulence factors of Klebsiella pneumoniae affecting 30 day mortality in patients with bloodstream infection. J. Antimicrob. Chemother. 2019, 74, 190–199. [Google Scholar] [CrossRef]
- Namikawa, H.; Niki, M.; Niki, M.; Yamada, K.; Nakaie, K.; Sakiyama, A.; Oinuma, K.I.; Tsubouchi, T.; Tochino, Y.; Takemoto, Y.; et al. Clinical and virulence factors related to the 30-day mortality of Klebsiella pneumoniae bacteremia at a tertiary hospital: A case-control study. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2291–2297. [Google Scholar] [CrossRef]
- Geisinger, E.; Isberg, R.R. Interplay between Antibiotic Resistance and Virulence during Disease Promoted by Multidrug-Resistant Bacteria. J. Infect. Dis. 2017, 215 (Suppl. S1), S9–S17. [Google Scholar] [CrossRef] [Green Version]
- Gharrah, M.M.; El-Mahdy, A.M.; Barwa, R.F. Association between Virulence Factors and Extended Spectrum Beta-Lactamase Producing Klebsiella pneumoniae Compared to Nonproducing Isolates. Interdiscip. Perspect. Infect. Dis. 2017, 2017, 7279830. [Google Scholar] [CrossRef] [Green Version]
- Cepas, V.; Soto, S.M. Relationship between Virulence and Resistance among Gram-Negative Bacteria. Antibiotics 2020, 9, 719. [Google Scholar] [CrossRef]
- Gomez-Simmonds, A.; Uhlemann, A.C. Clinical Implications of Genomic Adaptation and Evolution of Carbapenem-Resistant Klebsiella pneumoniae. J. Infect. Dis. 2017, 215 (Suppl. S1), S18–S27. [Google Scholar] [CrossRef]
- Abd El-Baky, R.M.; Ibrahim, R.A.; Mohamed, D.S.; Ahmed, E.F.; Hashem, Z.S. Prevalence of Virulence Genes and Their Association with Antimicrobial Resistance Among Pathogenic, E. coli Isolated from Egyptian Patients with Different Clinical Infections. Infect. Drug Resist. 2020, 13, 1221–1236. [Google Scholar] [CrossRef]
- Beceiro, A.; Tomás, M.; Bou, G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin. Microbiol. Rev. 2013, 26, 185–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents. 2010, 35, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.J.; Nolan, L.K. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol. Mol. Biol. Rev. 2009, 73, 750–774. [Google Scholar] [CrossRef] [Green Version]
- Vergnano, S.; Menson, E.; Kennea, N.; Embleton, N.; Russell, A.B.; Watts, T.; Robinson, M.J.; Collinson, A. Heath PT. Neonatal infections in England: The NeonIN surveillance network. Arch. Dis. Child. Fetal. Neonatal. Ed. 2011, 96, F9–F14. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef] [PubMed]
- Schemper, M.; Wakounig, S.; Heinze, G. The estimation of average hazard ratios by weighted Cox regression. Stat. Med. 2009, 28, 2473–2489. [Google Scholar] [CrossRef] [PubMed]
- ATC/DDD Index 2020. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 23 November 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 15 April 2021).
Category | Sub-Category | Function | Genes | Pathogens |
---|---|---|---|---|
Adherence | Anti-aggregation protein-dispersin | Bound to the outer membrane, assisting dispersion across the surface by overcoming electrostatic attraction between fimbriae and bacterial surface | aap | Escherichia coli |
Adhesins | Cell-surface components that allow bacteria to attach to host cells or to surfaces | afa, dra, fde | Escherichia coli | |
Fimbriae | Major adhesive structures in biofilm formation and binding to abiotic surfaces | agg, bcf, csg, daa, fim, foc, lpf, mrk, paa, pap, sfa, yag.ecp, ykg.ecp | Escherichia coli Enterobacter spp. Klebsiella spp. | |
Intimin | Outer membrane protein needed for intimate adherence | eae, tir | Escherichia coli | |
Zinc metalloprotease | Contributes to intimate adherence to host cells | stc | Escherichia coli | |
Bacterial metabolism | Allantoin Metabolism | Enzymes involved in degradation of allantoin | all A-D | Klebsiella spp. Escherichia coli Enterobacter spp. |
Transcription factors | DNA-binding transcriptional activator/repressor | all R-S | Klebsiella spp. Escherichia coli Enterobacter spp. | |
Bacterial survival promoters | Methionine aminopeptidase | map | Escherichia coli | |
Magnesium transporter | mgt | Klebsiella spp. Escherichia coli Enterobacter spp. | ||
Toll-like receptor and MyD88-specific signalling inhibitor | tcp | Escherichia coli | ||
Capsule | Capsule | Extracellular polysaccharide matrix that envelops the bacteria, prevents phagocytosis, hinders the bactericidal action of antimicrobial peptides, blocks complement components | cps, gal, glf, gnd, gtr, kfo, kps, man, rcs, rmp, ugd, wca, wza, wzi, wzm, wzt | Klebsiella spp. Escherichia coli Enterobacter spp. |
Lipopolysaccharide | Component of the outer leaflet of the cell membrane of all Gram-negative bacteria (GNB) which protects against humoral defences | lpx, waa, wbb | All GNB | |
Cell invasion | Arylsulfatase | Penetration of the blood-brain barrier | asl | Escherichia coli |
Outer membrane porin A | Adherence to epithelial cells, translocation into epithelial cells nucleus, induction of epithelial cell death, biofilm formation, binding to factor H to allow bacteria to develop serum-resistance | ompA | Escherichia coli Enterobacter spp. Klebsiella spp. | |
Invasion protein A | Cell invasion into the host tissues | ibeA | Escherichia coli | |
Iron metabolism | Siderophores-Hemin uptake | Enable using of Fe from haemoglobin in the host system | chu | Escherichia coli Enterobacter spp. |
Siderophores-Enterobactin | Mediation of iron acquisition, obstacole macrophages antimicrobial responses | ent, fep, fes | All GNB | |
Siderophores-Yersiniabactin | Can solubilise iron bound to host binding proteins and transport it back to the bacteria | fyu, irp, ybt | Escherichia coli Klebsiella spp. | |
Siderophores-Salmochelin | Siderophore receptor, use of Fe ions obtained from the body host | iro | Escherichia coli Enterobacter spp. Klebsiella spp. | |
Siderophores-Aerobactin | Acquisition of Fe2+/3+ in the host system | iuc, iut | Escherichia coli Klebsiella pneumoniae | |
Heme/haemoglobin transport protein and receptor | Cell survival | shu | Escherichia coli Enterobacter spp. | |
Motility and chemotaxis | Chemotaxis | Bacterial movement in response to a chemical stimulus | che, mot | Escherichia coli Enterobacter spp. |
Flagella | Motility organelle, function as adhesins | flg, flh, fli | Escherichia coli Enterobacter spp. | |
Pumps | Pumps | Efflux pump implicated in both virulence and resistance to antibiotics | acr | Escherichia coli Enterobacter spp. Klebsiella spp. |
Secretion system factor | Type I secretion system protein (T1SS) | Enables pathogens to inject effector proteins into host cells | hly | Escherichia coli |
Type II secretion system protein (T2SS) | Enables pathogens to inject effector proteins into host cells | exe, gsp | Escherichia coli Klebsiella spp. | |
Type III secretion system (T3SS) | Enables pathogens to inject effector proteins into host cells | ces, esc | Escherichia coli | |
Type VI secretion system (T6SS) | Enables pathogens to inject effector proteins into host cells | clpV.tssH, dotU.tssL, hcp, hsiB1.vip, icmF.tss | Escherichia coli Enterobacter spp. Klebsiella spp. | |
Toxins | Colibactin | Genotoxin causing genomic instability in eukaryotic cells by induction of double-strand breaks in DNA | clb | Escherichia coli Klebsiella pneumoniae |
T3SS effector | Cytoskeletal rearrangements | esp | Escherichia coli | |
Hemolysin A | Creating of pores in membranes of host cells (cell lysis) | hly | Escherichia coli |
Variable | Overall, n = 87 (%) |
---|---|
Gender | |
Male | 43 (49) |
Female | 44 (51) |
Age at the onset (days, median (IQR)) | 15.2 (6.7–31) |
Gestational age category (weeks of GA) | |
<28 0/7 | 37 (42) |
28 0/7–31 6/7 | 21 (24) |
32 0/7–33 6/7 | 8 (9) |
34 0/7–36 6/7 | 8 (9) |
37 0/7–38 6/7 | 7 (8) |
39 0/7–40 6/7 | 6 (7) |
Birth weight category (grams) | |
>=2500 | 20 (23) |
1500–<2500 | 15 (17) |
1000–<1500 | 15 (17) |
<1000 | 37 (42) |
Small for Gestational Age (SGA) | |
Yes | 11 (13) |
No | 76 (87) |
Underlying conditions | |
Yes | 51 (59) |
No | 36 (41) |
Gestational age (weeks) at onset, median (IQR) | 33 (28–37) |
Isolated organism | |
Escherichia coli | 36 (41) |
Enterobacter cloacae | 18 (21) |
Klebsiella pneumoniae | 11 (13) |
Klebsiella oxytoca | 7 (8) |
Serratia marcescens | 7 (8) |
Enterobacter asburiae | 3 (3) |
Enterobacter aerogenes | 2 (2) |
Serratia liquefaciens | 1 (1) |
Enterobacter kobei | 1 (1) |
Proteus mirabilis | 1 (1) |
First 48-h antibiotic treatment * | |
Aminoglycosides anti-bacterials | 25 (29) |
Beta-lactam anti-bacterials, penicillins | 26 (30) |
Other anti-bacterials | 9 (10) |
Other beta-lactam anti-bacterials | 23 (26) |
Quinolone anti-bacterials | 4 (5) |
First 48-h treatment concordance with the anti-biogram | |
Concordant | 81 (93) |
Discordant | 6 (7) |
Multidrug resistant ** | |
No | 61 (70) |
Yes | 26 (30) |
Number of classes of resistance genes per isolate, median (IQR) | 5 (4–5) |
Number of classes of virulence genes per isolate, median (IQR) | 7 (7–9) |
Pathogen (n) | AMK * | AMP | AMC | CRO | CAZ | ATM | CIP | GEN | MEM | TZP | SXT |
---|---|---|---|---|---|---|---|---|---|---|---|
Escherichia coli (36) | 97 | 42 | 67 | 94 | 97 | 94 | 89 | 86 | 100 | 92 | 64 |
Enterobacter cloacae (18) | 94 | 0 | 0 | 56 | 56 | 83 | 100 | 67 | 100 | 94 | 89 |
Klebsiella pneumoniae (11) | 55 | 0 | 46 | 46 | 55 | 64 | 91 | 64 | 91 | 64 | 64 |
Klebsiella oxytoca (7) | 100 | 0 | 71 | 86 | 86 | 100 | 100 | 71 | 100 | 100 | 86 |
Serratia marcescens (7) | 100 | 0 | 0 | 86 | 100 | 86 | 86 | 100 | 100 | 86 | 100 |
Enterobacter asburiae (3) | 100 | 0 | 0 | 100 | 100 | 100 | 100 | 33 | 100 | 100 | 100 |
Enterobacter aerogenes (2) | 50 | 0 | 0 | 50 | 50 | 50 | 100 | 50 | 100 | 50 | 100 |
Serratia liquefaciens (1) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Enterobacter kobei (1) | 100 | 100 | 0 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Proteus mirabilis (1) | 100 | 0 | 100 | 100 | 100 | 100 | 100 | 0 | 100 | 100 | 0 |
Pathogen (n) | Virulence Factors Category (Median Number of Genes Carried) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Adherence | Bacterial Metabolism | Capsule | Cell Invasion | Iron Metabolism | Motility and Chemotaxis | Pumps | Secretion System Factor | Toxins | |
Escherichia coli (36) | 31 | 2 | 5.5 | 2 | 37 | 8 | 2 | 13 | 6.5 |
Enterobacter cloacae (18) | 5 | 0 | 7 | 1 | 16 | 7 | 2 | 11 | 0 |
Klebsiella pneumoniae (11) | 24 | 0 | 14 | 1 | 12 | 0 | 2 | 13 | 0 |
Klebsiella oxytoca (7) | 15 | 2 | 9 | 1 | 22 | 0 | 2 | 10 | 0 |
Virulence Gene | Escherichia coli (36) | Enterobacter cloacae (18) | Klebsiella pneumoniae (11) | Klebsiella oxytoca (7) |
---|---|---|---|---|
N (%) | N (%) | N (%) | N (%) | |
Adherence | ||||
csg | 36 (100) | 18 (100) | 0 | 0 |
fde | 36 (100) | 0 | 0 | 0 |
fim | 36 (100) | 0 | 10 (91) | 7 (100) |
mrk | 0 | 2 (11) | 11 (100) | 7 (100) |
pap | 26 (72) | 0 | 0 | 0 |
yag.ecp | 36 (100) | 0 | 11 (100) | 7 (100) |
ykgK.ecp | 35 (97) | 0 | 11 (100) | 0 |
Bacterial metabolism | ||||
all | 36 (100) | 0 | 0 | 3 (43) |
mgt | 0 | 0 | 0 | 7 (100) |
Capsule | ||||
cps | 0 | 0 | 10 (91) | 0 |
gal | 36 (100) | 18 (100) | 11 (100) | 7 (100) |
gif | 0 | 0 | 6 (54) | 7 (100) |
gnd | 36 (100) | 18 (100) | 11 (100) | 7 (100) |
kps | 33 (92) | 0 | 0 | 0 |
man | 0 | 18 (100) | 7 (64) | 2 (29) |
rcs | 36 (100) | 18 (100) | 11 (100) | 7 (100) |
ugd | 2 (6) | 18 (100) | 11 (100) | 7 (100) |
Cell invasion | ||||
asl | 36 (100) | 0 | 0 | 1 (14) |
ompA | 36 (100) | 18 (100) | 11 (100) | 7 (100) |
Iron metabolism | ||||
chu | 35 (97) | 6 (33) | 0 | 0 |
ent | 36 (100) | 18 (100) | 11 (100) | 7 (100) |
fep | 36 (100) | 18 (100) | 11 (100) | 7 (100) |
fes | 36 (100) | 0 | 11 (100) | 7 (100) |
fyu | 35 (97) | 0 | 2 (18) | 5 (71) |
iro | 11 (31) | 11 (61) | 11 (100) | 0 |
irp | 35 (97) | 0 | 2 (18) | 5 (71) |
iuc | 25 (69) | 0 | 1 (9) | 0 |
iut | 25 (69) | 0 | 1 (9) | 0 |
Motility and chemotaxis | ||||
che | 36 (100) | 18 (100) | 0 | 0 |
flg | 36 (100) | 18 (100) | 0 | 0 |
fli | 36 (100) | 18 (100) | 0 | 0 |
Pumps | ||||
acr | 36 (100) | 18 (100) | 11 (100) | 7 (100) |
Secretion system factor | ||||
clpV.tssH | 0 | 13 (72) | 11 (100) | 3 (43) |
dotU.tssL | 0 | 13 (72) | 11 (100) | 4 (57) |
exe | 0 | 0 | 11 (100) | 7 (100) |
gsp | 35 (97) | 0 | 0 | 0 |
hcp | 21 (58) | 14 (78) | 11 (100) | 7 (100) |
hsiB1.vip | 0 | 18 (100) | 0 | 0 |
icmF.tss | 0 | 11 (61) | 10 (91) | 4 (57) |
impA.tss | 0 | 0 | 11 (100) | 0 |
vasE.tssK | 0 | 12 (67) | 11 (100) | 4 (57) |
vip.tss | 21 (58) | 15 (83) | 11 (100) | 7 (100) |
ybd | 0 | 18 (100) | 10 (91) | 7 (100) |
Toxins | ||||
clb | 7 (19) | 0 | 1 (9) | 0 |
esp | 15 (42) | 0 | 0 | 0 |
Variable | Alive, n = 69 (%) | Died, n = 18 (%) | p-Value |
---|---|---|---|
Male | 31 (45) | 12 (67) | 0.168 |
Female | 38 (55) | 6 (33) | |
Age at the onset (days, median (IQR)) | 19.1 (8.8–35) | 7.1 (3.3–9.8) | 0.002 |
Gestational age category (weeks of GA) | |||
<28 0/7 | 27 (39) | 10 (56) | 0.323 |
28 0/7–31 6/7 | 17 (25) | 4 (22) | 1.000 |
32 0/7–33 6/7 | 7 (10) | 1 (6) | 1.000 |
34 0/7–36 6/7 | 8 (12) | 0 (0) | 0.197 |
37 0/7–38 6/7 | 5 (7) | 2 (11) | 0.631 |
39 0/7–40 6/7 | 5 (7) | 1 (6) | 1.000 |
Birth weight category (grams) | |||
>=2500 | 17 (25) | 3 (17) | 0.754 |
1500–<2500 | 13 (19) | 2 (11) | 0.727 |
1000–<1500 | 13 (19) | 2 (11) | 0.727 |
<1000 | 26 (38) | 11 (61) | 0.128 |
Small for Gestational Age (SGA) | |||
Yes | 8 (12) | 3 (17) | 0.690 |
No | 61 (88) | 15 (83) | |
Underlying conditions | |||
Yes | 39 (56) | 12 (67) | 0.610 |
No | 30 (43) | 6 (33) | |
Gestational age (weeks) at onset, median (IQR) | 33 (30–38) | 27 (25–33) | 0.003 |
Isolated organism | |||
Escherichia coli | 24 (35) | 12 (67) | 0.029 |
Enterobacter spp. | 20 (29) | 4 (22) | 0.769 |
Klebsiella spp. | 16 (23) | 2 (11) | 0.342 |
Serratia spp/Proteus mirabilis | 9 (13) | 0 (0) | 0.194 |
First 48-h antibiotic treatment * | |||
Aminoglycosides antibacterials | 19 (27) | 6 (33) | 0.848 |
Beta-lactam antibacterials, penicillins | 22 (32) | 4 (22) | 0.611 |
Other antibacterials | 7 (10) | 2 (11) | 1.000 |
Other beta-lactam antibacterials | 19 (27) | 4 (22) | 0.770 |
Quinolone antibacterials | 2 (3) | 2 (11) | 0.188 |
First 48-h treatment concordance with the antibiogram | |||
Concordant | 64 (93) | 17 (94) | 1.000 |
Discordant | 5 (7) | 1 (6) | 1.000 |
Multidrug resistant | |||
No | 47 (68) | 14 (78) | 1.000 |
Yes | 22 (32) | 4 (22) | 1.000 |
Number of classes of resistance genes per isolate, median (IQR) | 5 (4–5) | 5 (4–5) | 0.203 |
Number of classes of virulence genes per isolate, median (IQR) | 7 (7–9) | 9 (8–9) | 0.022 |
Variable | N | HR * (L.95–U.95) | p-Value |
---|---|---|---|
Age at the onset (days) | 87 | 0.97 (0.93–1.01) | 0.125 |
N. classes of virulence genes | 87 | 1.35 (0.92–1.97) | 0.128 |
Gestational Age (weeks) at onset | 87 | 0.91 (0.83–1) | 0.056 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folgori, L.; Di Carlo, D.; Comandatore, F.; Piazza, A.; Witney, A.A.; Bresesti, I.; Hsia, Y.; Laing, K.; Monahan, I.; Bielicki, J.; et al. Antibiotic Susceptibility, Virulome, and Clinical Outcomes in European Infants with Bloodstream Infections Caused by Enterobacterales. Antibiotics 2021, 10, 706. https://doi.org/10.3390/antibiotics10060706
Folgori L, Di Carlo D, Comandatore F, Piazza A, Witney AA, Bresesti I, Hsia Y, Laing K, Monahan I, Bielicki J, et al. Antibiotic Susceptibility, Virulome, and Clinical Outcomes in European Infants with Bloodstream Infections Caused by Enterobacterales. Antibiotics. 2021; 10(6):706. https://doi.org/10.3390/antibiotics10060706
Chicago/Turabian StyleFolgori, Laura, Domenico Di Carlo, Francesco Comandatore, Aurora Piazza, Adam A. Witney, Ilia Bresesti, Yingfen Hsia, Kenneth Laing, Irene Monahan, Julia Bielicki, and et al. 2021. "Antibiotic Susceptibility, Virulome, and Clinical Outcomes in European Infants with Bloodstream Infections Caused by Enterobacterales" Antibiotics 10, no. 6: 706. https://doi.org/10.3390/antibiotics10060706
APA StyleFolgori, L., Di Carlo, D., Comandatore, F., Piazza, A., Witney, A. A., Bresesti, I., Hsia, Y., Laing, K., Monahan, I., Bielicki, J., Alvaro, A., Zuccotti, G. V., Planche, T., Heath, P. T., & Sharland, M. (2021). Antibiotic Susceptibility, Virulome, and Clinical Outcomes in European Infants with Bloodstream Infections Caused by Enterobacterales. Antibiotics, 10(6), 706. https://doi.org/10.3390/antibiotics10060706