Efficacy of Lysophosphatidylcholine as Direct Treatment in Combination with Colistin against Acinetobacter baumannii in Murine Severe Infections Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Antimicrobial Agents and Reagents
2.3. Animals
2.4. Experimental Murine Model of Peritoneal Sepsis
2.5. Experimental Murine Model of Pneumonia
2.6. Statistical Analysis
3. Results
3.1. Efficacy of LPC in Combination with Colistin in a Murine Experimental Model of Peritoneal Sepsis
3.2. The Efficacy of LPC in Combination with Colistin in a Murine Experimental Model of Pneumonia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sazlly Lim, S.M.; Sime, F.B.; Roberts, J.A. Multidrug-resistant Acinetobacter baumannii infections: Current evidence on treatment options and the role of pharmacokinetics/pharmacodynamics in dose optimisation. Int. J. Antimicrob. Agents 2019, 53, 726–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef]
- Mesquita, R.D.; Carneiro, A.B.; Bafica, A.; Gazos-Lopes, F.; Takiya, C.M.; Souto-Padron, T.; Vieira, D.P.; Ferreira-Pereira, A.; Almeida, I.C.; Figueiredo, R.T.; et al. Trypanosoma cruzi infection is enhanced by vector saliva through immunosuppressant mechanisms mediated by lysophosphatidylcholine. Infect. Immun. 2008, 76, 5543–5552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, M.T.; Parthasarathy, S.; Steinberg, D. Lysophosphatidylcholine: A chemotactic factor for human monocytes and its potential role in atherogenesis. Proc. Natl. Acad. Sci. USA 1998, 85, 2805–2809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, M.; Miyazaki, A.; Hakamata, H.; Kodama, T.; Suzuki, H.; Kobori, S.; Shichiri, M.; Horiuchi, S. The scavenger receptor serves as a route for internalization of lysophosphatidylcholine in oxidized low density lipoprotein-induced macrophage proliferation. J. Biol. Chem. 1996, 271, 27346–27352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauber, K.; Bohn, E.; Kröber, S.M.; Xiao, Y.J.; Blumenthal, S.G.; Lindemann, R.K.; Marini, P.; Wiedig, C.; Zobywalski, A.; Baksh, S.; et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 2003, 113, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Smani, Y.; Domínguez-Herrera, J.; Ibáñez-Martínez, J.; Pachón, J. Therapeutic efficacy of lysophosphatidylcholine in severe infections caused by Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 3920–3924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra Millán, R.; Jiménez Mejías, M.E.; Sánchez Encinales, V.; Ayerbe Algaba, R.; Gutiérrez Valencia, A.; Pachón Ibáñez, M.E.; Díaz, C.; Pérez del Palacio, J.; López Cortés, L.F.; Pachón, J.; et al. Efficacy of lysophosphatidylcholine in combination with antimicrobial agents against Acinetobacter baumannii in experimental murine peritoneal sepsis and pneumonia models. Antimicrob. Agents Chemother. 2016, 60, 4464–4470. [Google Scholar] [CrossRef] [Green Version]
- Parra-Millán, R.; Jiménez-Mejías, M.E.; Ayerbe-Algaba, R.; Domínguez-Herrera, J.; Díaz, C.; Pérez Del Palacio, J.; Pachón, J.; Smani, Y. Impact of the immune response modification by lysophosphatidylcholine in the efficacy of antibiotic therapy of experimental models of peritoneal sepsis and pneumonia by Pseudomonas aeruginosa: LPC therapeutic effect in combined therapy. Enferm. Infecc. Microbiol. Clin. 2020, in press. [Google Scholar] [CrossRef]
- Yadav, J.; Ismaeel, S.; Qadri, A. Lysophosphatidylcholine potentiates antibacterial activity of polymexin B. Antimicrob. Agents Chemother. 2020, 64, e01337-20. [Google Scholar] [CrossRef]
- Fernández-Cuenca, F.; Tomás-Carmona, M.; Caballero-Moyano, F.; Bou, G.; Martínez-Martínez, L.; Vila, J.; Pachón, J.; Miguel Cisneros, J.; Rodríguez-Baño, J.; Pascual, A. In vitro activity of 18 antimicrobial agents against clinical isolates of Acinetobacter spp.: Multicenter national study GEIH-REIPI-Ab 2010. Enferm. Infecc. Microbiol. Clin. 2013, 31, 4–9. [Google Scholar] [CrossRef]
- National Research Council. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011.
- Garnacho-Montero, J.; Ortiz-Leyba, C.; Jiménez-Jiménez, F.J.; Barrero-Almodóvar, A.E.; García-Garmendia, J.L.; Bernabeu-Wittell, M.; Gallego-Lara, S.L.; Madrazo-Osuna, J. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: A comparison with imipenem-susceptible VAP. Clin. Infect. Dis. 2003, 36, 1111–1118. [Google Scholar] [CrossRef] [Green Version]
- Markou, N.; Markantonis, S.L.; Dimitrakis, E.; Panidis, D.; Boutzouka, E.; Karatzas, S.; Rafailidis, P.; Apostolakos, H.; Baltopoulos, G. Colistin serum concentrations after intravenous administration in critically ill patients with serious multidrug-resistant, Gram negative bacilli infections: A prospective, open-label, uncontrolled study. Clin. Ther. 2008, 30, 143–151. [Google Scholar] [CrossRef]
- Smani, Y.; Domínguez-Herrera, J.; Pachón, J. Rifampin protects human lung epithelial cells against cytotoxicity induced by clinical multi and pandrug-resistant Acinetobacter baumannii. J. Infect. Dis. 2011, 203, 1110–1119. [Google Scholar] [CrossRef]
- Smani, Y.; Docobo-Pérez, F.; McConnell, M.J.; Pachón, J. Acinetobacter baumannii-induced lung cell death: Role of inflammation, oxidative stress and cytosolic calcium. Microb. Pathog. 2011, 50, 224–232. [Google Scholar] [CrossRef]
- García-Patiño, M.G.; García-Contreras, R.; Licona-Limón, P. The immune response against Acinetobacter baumannii, an emerging pathogen in nosocomial infections. Front. Immunol. 2017, 8, 441. [Google Scholar] [CrossRef] [PubMed]
- van Faassen, H.; KuoLee, R.; Harris, G.; Zhao, X.; Conlan, J.W.; Chen, W. Neutrophils play an important role in host resistance to respiratory infection with Acinetobacter baumannii in mice. Infect. Immun. 2007, 75, 5597–5608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breslow, J.M.; Meissler, J.J., Jr.; Hartzell, R.R.; Spence, P.B.; Truant, A.; Gaughan, J.; Eisenstein, T.K. Innate immune responses to systemic Acinetobacter baumannii infection in mice: Neutrophils, but not interleukin-17, mediate host resistance. Infect. Immun. 2011, 79, 3317–3327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.J.; Jung, J.S.; Lee, J.E.; Lee, J.; Huh, S.O.; Kim, H.S.; Jung, K.C.; Cho, J.Y.; Nam, J.S.; Suh, H.W.; et al. Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat. Med. 2004, 10, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, H.; Midorikawa, N.; Fujimoto, S.; Miyoshi, N.; Yoshida, H.; Matsumoto, T. Antimicrobial effects of lysophophatidylcholine on methicillin-resistant Staphylococcus aureus. Ther. Adv. Infect. Dis. 2017, 4, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Treatment | n | Spleen (log10 CFU/g) | Lung (log10 CFU/g) | Blood (log10 CFU/mL) | Mortality (%) |
---|---|---|---|---|---|
CTL | 10 | 9.55 ± 0.99 | 9.85 ± 0.72 | 8.59 ± 0.04 | 100 |
LPC | 8 | 9.82 ± 0.08 | 9.69 ± 0.91 | 9.20 ± 0.04 a | 100 |
CST | 8 | 4.48 ± 0.30 a,b | 4.17 ± 0.29 a | 3.26 ± 0.40 a,b | 25 a |
LPC1 + CST | 8 | 3.98 ± 0.66 a,b | 3.83 ± 0.65 a | 2.92 ± 0.58 a,b | 0 a |
LPC2 + CST | 8 | 3.42 ± 0.50 a,b | 3.13 ± 0.46 a | 1.85 ± 0.38 a,b | 0 a |
Treatment | n | Spleen (log10 CFU/g) | Lung (log10 CFU/g) | Blood (log10 CFU/mL) | Mortality (%) |
---|---|---|---|---|---|
CTL | 13 | 9.79 ± 0.06 | 9.63 ± 0.13 | 8.89 ± 0.03 | 100 |
LPC | 8 | 10.48 ± 0.03 | 10.03 ± 0.03 | 9.29 ± 0.03 | 100 |
CST | 8 | 2.86 ± 1.54 a,b | 2.90 ± 1.57 a,b | 2.19 ± 1.63 a,b | 75 |
LPC1 + CST | 12 | 1.58 ± 0.48 a,b | 1.43 ± 0.54 a | 0.22 ± 0.21 a,b | 0 a,b |
LPC2 + CST | 12 | 0.22 ± 0.29 a,b | 0.75 ± 0.32 a | 0.08 ± 0.12 a,b | 0 a,b |
Treatment | n | Lung (log10 CFU/g) | Blood (log10 CFU/mL) | Mortality (%) |
---|---|---|---|---|
CTL | 8 | 9.64 ± 0.55 | 7.95 ± 0.83 | 87.5 |
LPC | 8 | 9.13 ± 0.28 | 7.27 ± 0.04 a | 100 |
CST | 8 | 3.11 ± 1.18 a,b | 2.14 ± 0.57 a,b | 12.5 a,b |
LPC1 + CST | 8 | 2.88 ± 1.12 a,b | 1.87 ± 0.6 a,b | 12.5 a,b |
LPC2 + CST | 8 | 1.90 ± 1.13 a,b | 1.31 ± 0.80 a,b | 12.5 a,b |
Treatment | n | Lung (log10 CFU/g) | Blood (log10 CFU/mL) | Mortality (%) |
---|---|---|---|---|
CTL | 8 | 9.21 ± 0.45 | 7.76 ± 0.39 | 100 |
LPC | 8 | 9.01 ± 0.07 | 7.33 ± 0.03 | 100 |
CST | 8 | 1.66 ± 0.49 a,b | 0.97 ± 0.30 a,b | 0 a,b |
LPC1 + CST | 8 | 1.11 ± 0.54 a,b | 0.59 ± 0.29 a,b | 0 a,b |
LPC2 + CST | 8 | 0.65 ± 0.43 a,b | 0.43 ± 0.28 a,b | 0 a,b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miró-Canturri, A.; Ayerbe-Algaba, R.; Jiménez-Mejías, M.E.; Pachón, J.; Smani, Y. Efficacy of Lysophosphatidylcholine as Direct Treatment in Combination with Colistin against Acinetobacter baumannii in Murine Severe Infections Models. Antibiotics 2021, 10, 194. https://doi.org/10.3390/antibiotics10020194
Miró-Canturri A, Ayerbe-Algaba R, Jiménez-Mejías ME, Pachón J, Smani Y. Efficacy of Lysophosphatidylcholine as Direct Treatment in Combination with Colistin against Acinetobacter baumannii in Murine Severe Infections Models. Antibiotics. 2021; 10(2):194. https://doi.org/10.3390/antibiotics10020194
Chicago/Turabian StyleMiró-Canturri, Andrea, Rafael Ayerbe-Algaba, Manuel Enrique Jiménez-Mejías, Jerónimo Pachón, and Younes Smani. 2021. "Efficacy of Lysophosphatidylcholine as Direct Treatment in Combination with Colistin against Acinetobacter baumannii in Murine Severe Infections Models" Antibiotics 10, no. 2: 194. https://doi.org/10.3390/antibiotics10020194
APA StyleMiró-Canturri, A., Ayerbe-Algaba, R., Jiménez-Mejías, M. E., Pachón, J., & Smani, Y. (2021). Efficacy of Lysophosphatidylcholine as Direct Treatment in Combination with Colistin against Acinetobacter baumannii in Murine Severe Infections Models. Antibiotics, 10(2), 194. https://doi.org/10.3390/antibiotics10020194