Key Parameters on the Antibacterial Activity of Silver Camphor Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Antibacterial Activity
2.3. Redox Properties
3. Materials and Methods
3.1. General
3.2. Synthesis
3.2.1. Ligands
3.2.2. Complexes
3.3. Cyclic Voltammetry Studies
3.4. X-ray Diffraction Analysis
3.5. DFT Calculations
3.6. Bacterial Strains and Minimum Inhibitory Concentration Assays
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control (ECDC). Summary of the Latest Data on Antibiotic Resistance in the European Union. 2012. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/antibiotics-resistance-EU-data-2012.pdf (accessed on 19 November 2020).
- Theuretzbacher, U. Future antibiotics scenarios: Is the tide starting to turn? Int. J. Antimicrob. Agents 2009, 34, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.; Braese, S.; Brown, C.; Chen, F.; Dowson, C.G.; Dujardin, G.; Jung, N.; et al. Metal complexes as a promising source for new antibiotics. Chem. Sci. 2020, 11, 2627–2639. [Google Scholar] [CrossRef] [Green Version]
- Alexander, J.W. History of the medical use of silver. Surg. Infect. 2009, 10, 289–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atiyeh, B.S.; Costagliola, M.; Hayek, S.N.; Dibo, S.A. Effect of silver on burn wound infection control and healing: Review of the literature. Burns 2007, 33, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.A.; Southerland, M.R.; Youngs, W.J. Recent Developments in the Medicinal Applications of Silver-NHC Complexes and Imidazolium Salts. Molecules 2017, 22, 1263. [Google Scholar] [CrossRef] [PubMed]
- Medici, S.; Peana, M.; Crisponi, G.; Nurchi, V.M.; Lachowicz, J.I.; Remelli, M.; Zoroddu, M.A. Silver coordination compounds: A new horizon in medicine. Coord. Chem. Rev. 2016, 327–328, 349–359. [Google Scholar] [CrossRef]
- Liang, X.; Luan, S.; Yin, Z.; He, M.; He, C.; Yin, L.; Zou, Y.; Yuan, Z.; Li, L.; Song, X.; et al. Recent advances in the medical use of silver complex. Eur. J. Med. Chem. 2018, 157, 62–80. [Google Scholar] [CrossRef]
- Azócar, M.I.; Gómez, G.; Levín, P.; Paez, M.; Muñoz, H.; Dinamarca, N. Review: Antibacterial behavior of carboxylate silver(I) complexes. J. Coord. Chem. 2014, 67, 3840–3853. [Google Scholar] [CrossRef]
- Abdulkareem, M.; Youngs, W.J. Silver and its application as an antimicrobial agent. Expert Opin. Ther. Pat. 2005, 15, 125–130. [Google Scholar]
- Cardoso, J.M.S.; Guerreiro, S.I.; Lourenço, A.; Alves, M.M.; Montemor, M.F.; Mira, N.P.; Leitão, J.H.; Carvalho, M.F.N.N. Ag(I) camphorimine complexes with antimicrobial activity towards clinically important bacteria and species of the Candida genus. PLoS ONE 2017, 12, e0177355. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.F.N.N.; Leite, S.; Costa, J.P.; Galvão, A.M.; Leitão, J.H. Ag(I) camphor complexes: Antimicrobial activity by design. J. Inorg. Biochem. 2019, 199, 110791. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.P.; Pinheiro, M.J.F.; Sousa, S.A.; Botelho do Rego, A.M.; Marques, F.; Oliveira, M.C.; Leitão, J.H.; Mira, N.; Carvalho, M.F.N.N. Antimicrobial Activity of Silver Camphorimine Complexes against Candida Strains. Antibiotics 2019, 8, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Yang, N.J.; Hinner, M.J. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. Methods Mol. Biol. 2015, 1266, 29–53. [Google Scholar]
- Shokovaa, E.A.; Kimb, J.K.; Kovaleva, V.V. Camphor and Its Derivatives. Unusual Transformations and Biological Activity. Russ. J. Org. Chem. 2016, 52, 459–488. [Google Scholar] [CrossRef]
- Leitão, J.H.; Sousa, S.A.; Leite, S.A.; Carvalho, M.F.N.N. Silver Camphor Imine Complexes: Novel Antibacterial Compounds from Old Medicines. Antibiotics 2018, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, J.M.S.; Galvão, A.M.; Guerreiro, S.I.; Leitão, J.H.; Suarez, A.C.; Carvalho, M.F.N.N. Antibacterial activity of silver camphorimine coordination polymers. Dalton Trans. 2016, 45, 7114–7123. [Google Scholar] [CrossRef]
- Sjulstok, E.; Olsen, J.M.H.; Solov’yov, I.A. Quantifying electron transfer reactions in biological systems: What interactions play the major role? Sci. Rep. 2015, 5, 18446. [Google Scholar] [CrossRef] [Green Version]
- Brett, A.M. Electron Transfer Reactions in Biological Systems. In Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–8. [Google Scholar]
- Carvalho, M.F.N.N. A Search for the Influence of the Electronic Characteristics of the Camphor Derived Ligands and Complexes on their Redox Properties. Port. Electrochem. Acta 2004, 22, 3–10. [Google Scholar]
- Muller, M. Bacterial Silver Resistance Gained by Cooperative Interspecies Redox Behavior. Antimicrob. Agents Chemother. 2018, 62, e00672–e00718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, M.F.N.N.; Costa, L.M.G.; Pombeiro, A.J.L.; Schier, A.; Scherer, W.; Harbi, S.K.; Verfürth, U.; Herrmann, R. Synthesis, structure, and electrochemistry of palladium complexes with camphor-derived chiral ligands. Inorg. Chem. 1994, 33, 6270–6277. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals, 6th ed.; Elsevier Inc.: Oxford, UK, 2008. [Google Scholar]
- Weissberger, A.; Bunger, W.B.; Sakano, T.K. Organic Solvents: Physical Properties and Methods of Purification, 4th ed.; Riddick, J.A., Bunger, W.B., Eds.; Wiley-Interscience: New York, NY, USA, 1986. [Google Scholar]
- Sheldrick, G.M. SHELX-97-Programs for Crystal Structure Analysis (Release 97–2); Institüt für Anorganische Chemie der Universität: Göttingen, Germany, 1998. [Google Scholar]
- Farrugia, L.J. WINGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S.; et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.; Handy, N. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef] [Green Version]
. | E (Volt) a | MIC (μg/mL) | ||||
---|---|---|---|---|---|---|
Gram-Negative | Gram-Positive | |||||
COMPLEX | Y | AgI→Ag0 | E. coli ATCC25922 | P. aeruginosa 477 | B. contaminans IST408 | S. aureus Newman |
[Ag(NO3)(OC10H14NY)] | NH2 1a | 0.12 | 22 ± 1 | 27 ± 1 | 27 ± 1 | 56 ± 3 |
[Ag(NC10H14NY)]NO3 b | C6H4 6a | 0.031 | 98 ± 1 | 68 ± 1 | 97 ± 1 | 118 ± 2 |
[{Ag(OC10H14NY)}2(μ-O)] b | C6H5 3b | −1.61 −2.09 | 59.4 ± 0.3 | 19.0 ± 3 | 47.0 ± 7 | 125 ± 0 |
[{Ag(OC10H14NY)}2(μ-O)] b | C6H4CH3 5b | −1.60 | 56.0 ± 5.0 | 43.0 ± 11.0 | 78.0 ± 2.0 | 58 ± 2 |
[Ag(OH)(OC10H14NY)] | OH 2c | 0.053 | 7.2 ± 0.1 | 3.4 ± 0.1 | 6.4 ± 0.1 | 9.3 ± 1.1 |
[Ag(OH)(OC10H14NY)] | 3-OHC6H4 4c | −1.61 | 12.8 ± 1.2 | 3.9 ± 0.1 | 8.4 ± 0.1 | 15.1 ± 4.6 |
[Ag(OH)(OC10H14NY)] | C6H4NH2 7c | −1.55 −1.80 | 14.6 ± 4.1 | 10.9 ± 3.3 | 16.4 ± 2.9 | 38.2 ± 2.6 |
[Ag(NO3)(SO2NC10H13NY)2] c | NH2 8d | 0.10 −1.52 | 26.7 ± 0.1 | 13.2 ± 0.2 | 14.6 ± 1.1 | 39.3 ± 3.9 |
[Ag(NO3)(SO2NC10H13NY)2] | C6H5 9d | 0.16 −1.13 d −1.62 | 15.5 ± 1.9 | 6.7 ± 0.3 | 15.1 ± 1.9 | 41 ± 6.3 |
[{Ag(SO2NC10H13NY)2}2(μ-O)] | C6H5 9e | −1.15 d | 125 ± 0 | 125 ± 0 | >125 | 125 ± 0 |
[Ag(OH)(SO2NC10H13NY)] | C6H4NH2 10f | −1.20 −1.29 −1.74 | 15.6 ± 5.0 | 11.2 ± 2.6 | 16.1 ± 2.4 | 32.5 ± 1.7 |
[Ag(OH)(SO2NC10H13NY)] | C6H4CH3 11f | −1.16 d −1.66 | 25 ± 2 | 12.4 ± 1.1 | 16.9 ± 1.3 | 41 ± 2 |
Ag(CH3COO)2 | −0.043 −1.33 | 30.9 ± 0.4 | 16 ± 3 | 12 ± 2 | 29.5 ± 0.1 | |
AgNO3 c | 0.18 | 47 | 39 | 74 | 73 |
[Ag(NO3)(NC10H14NC6H4)] | SO2NC10H14NC6H4CH3-4 | |
---|---|---|
Empirical formula | Ag2N6C32H36O6 | N4C34H40O4S2 |
Formula weight | 816.42 | 632.82 |
Crystal system | Monclinic | Orthorhombic |
Space group | C2 | P212121 |
Unit cell dimensions | ||
a/Å | 28.720 (5) | 8.9160 (3) |
b/Å | 7.3319 (9) | 12.0253 (4) |
c/Å | 7.2379 (9) | 14.8492 (4) |
α/deg | 90 | 90 |
β/deg | 95.29 (1) | 90 |
γ/deg | 90 | 90 |
Volume (Å−3) | 1517.6 (4) | 1592.10 (9) |
Z, Dcal (g/cm3) | 2, 1.787 | 2, 1.320 |
Absorption coefficient (mm−1) | 1.347 | 0.212 |
F(000) | 824 | 672 |
Crystal size (mm3) | 0.3 × 0.2 × 0.3 | 0.2 × 0.3 × 0.2 |
θ range for data collection (deg) | 1.4 to 33.0 | 2.2 to 32.6 |
Index ranges | −37 ≤ h ≤ 43, −8 ≤ k ≤ 11, −11 ≤ l ≤ 11 | −13 ≤ h ≤ 13, −16 ≤ k ≤ 18, −22 ≤ l ≤ 22 |
Reflections collected / unique | 7272/4840 [R(int) = 0.048] | 22635/5803 [R(int) = 0.050] |
Data/restraints/parameters | 4840/1/211 | 5803/0/202 |
Final R (observed) | R1 = 0.065, wR2 = 0.19 | R1 = 0.034, wR2 = 0.092 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, J.P.; Sousa, S.A.; Galvão, A.M.; Mata, J.M.; Leitão, J.H.; Carvalho, M.F.N.N. Key Parameters on the Antibacterial Activity of Silver Camphor Complexes. Antibiotics 2021, 10, 135. https://doi.org/10.3390/antibiotics10020135
Costa JP, Sousa SA, Galvão AM, Mata JM, Leitão JH, Carvalho MFNN. Key Parameters on the Antibacterial Activity of Silver Camphor Complexes. Antibiotics. 2021; 10(2):135. https://doi.org/10.3390/antibiotics10020135
Chicago/Turabian StyleCosta, Joana P., Sílvia A. Sousa, Adelino M. Galvão, J. Miguel Mata, Jorge H. Leitão, and M. Fernanda N. N. Carvalho. 2021. "Key Parameters on the Antibacterial Activity of Silver Camphor Complexes" Antibiotics 10, no. 2: 135. https://doi.org/10.3390/antibiotics10020135
APA StyleCosta, J. P., Sousa, S. A., Galvão, A. M., Mata, J. M., Leitão, J. H., & Carvalho, M. F. N. N. (2021). Key Parameters on the Antibacterial Activity of Silver Camphor Complexes. Antibiotics, 10(2), 135. https://doi.org/10.3390/antibiotics10020135