Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Preparation of the Sensor Surface
2.3. Optimisation of Immobilisation Conditions
2.4. BLG Cumulative Binding Assay Optimisation
3. Results and Discussion
3.1. Sensor Chip Preparation
3.2. β-lactoglobulin Binding Assay
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lifschitz, C.; Szajewska, H. Cow’s milk allergy: Evidence-based diagnosis and management for the practitioner. Eur. J. Pediatr. 2015, 174, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Huby, R.; Dearman, R.; Kimber, I. Why are some proteins allergens? Toxicol. Sci. 2000, 55, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Council of the European Union. Council Regulation No 428/2009 of 5 May 2009 Setting up a Community Regime for the Control of Exports, Transfer, Brokering and Transit of Dual-Use Items (Recast). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32009R0428 (accessed on 27 March 2018).
- Ylitalo, L.; Mäkinen-Kiljunen, S.; Turjanmaa, K.; Palosuo, T.; Reunala, T. Cow’s milk casein, a hidden allergen in natural rubber latex gloves. J. Allergy Clin. Immunol. 1999, 104, 177–180. [Google Scholar] [CrossRef]
- Courtney, R.C.; Taylor, S.L.; Baumert, J.L. Evaluation of Commercial Milk-Specific Lateral Flow Devices. J. Food Prot. 2016, 79, 1767–1774. [Google Scholar] [CrossRef] [PubMed]
- Monaci, L.; Brohée, M.; Tregoat, V.; van Hengel, A. Influence of baking time and matrix effects on the detection of milk allergens in cookie model food system by ELISA. Food Chem. 2011, 127, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Monaci, L.; Visconti, A. Immunochemical and DNA-based methods in food allergen analysis and quality assurance perspectives. Trends Food Sci. Technol. 2010, 21, 272–283. [Google Scholar] [CrossRef]
- Schubert-Ullrich, P.; Rudolf, J.; Ansari, P.; Galler, B.; Führer, M.; Molinelli, A.; Baumgartner, S. Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: An overview. Anal. Bioanal. Chem. 2009, 395, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.Y.; Nowatzke, W.; Oliver, K.; Garber, E.A.E. Multiplex detection of food allergens and gluten. Anal. Bioanal. Chem. 2015, 407, 4195–4206. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.E.; Rigby, N.M.; Dainty, J.R.; Mackie, A.R.; Immer, U.U.; Rogers, A.; Titchener, P.; Shoji, M.; Ryan, A.; Mata, L.; et al. A multi-laboratory evaluation of a clinically-validated incurred quality control material for analysis of allergens in food. Food Chem. 2014, 148, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Morgan, F.; Bouhallab, S.; Mollé, D.; Henry, G.; Maubois, J.; Léonil, J. Lactolation of β-Lactoglobulin Monitored by Electrospray Ionisation Mass Spectrometry. Int. Dairy J. 1998, 8, 95–98. [Google Scholar] [CrossRef]
- Croote, D.; Quake, S.R.; Schmidt, A.; Aebersold, R.; MacCoss, M.J. Food allergen detection by mass spectrometry: The role of systems biology. NPJ Syst. Biol. Appl. 2016, 2, 16022. [Google Scholar] [CrossRef] [PubMed]
- Ashley, J.; Shahbazi, M.; Kant, K.; Chidambara, V.A.; Wolff, A.; Bang, D.D.; Sun, Y. Molecularly Imprinted Polymers for Sample Preparation and Biosensing in Food analysis: Progress and Perspectives. Biosens. Bioelectron. 2017, 91, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Salam, F.; Uludag, Y.; Tothill, I.E. Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Talanta 2013, 115, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Tothill, I.E. Biosensors and nanomaterials and their application for mycotoxin determination. World Mycotoxin J. 2011, 4, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Yman, I.M.; Eriksson, A.; Johansson, M.A.; Hellenäs, K. Food allergen detection with biosensor immunoassays. J. AOAC Int. 2006, 89, 856–861. [Google Scholar] [PubMed]
- Raz, S.R.; Liu, H.; Norde, W.; Bremer, M.G.E.G. Food allergens profiling with an imaging surface plasmon resonance-based biosensor. Anal. Chem. 2010, 82, 8485–8491. [Google Scholar] [CrossRef]
- Vasilescu, A.; Nunes, G.; Hayat, A.; Latif, U.; Marty, J. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens. Sensors 2016, 16, 1863. [Google Scholar] [CrossRef] [PubMed]
- Inaba, I.; Kuramitz, H.; Sugawara, K. Electrochemical Sensing of Casein Based on the Interaction between Its Phosphate Groups and a Ruthenium (III) Complex. Anal. Sci. 2016, 32, 853–859. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.; Deshaires, C. Monitoring Protein Fouling of Metal Surfaces via a Quartz Crystal Microbalance. J. Colloid Interface Sci. 2000, 227, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Aoki, N.; Tsuchiya, A.; Kaneko, S.; Suzuki, K. Sequential Analysis of β-Lactoglobulin for Allergen Check Using QCM with a Passive Flow System. Chem. Lett. 2015, 44, 981–983. [Google Scholar] [CrossRef]
- Billakanti, J.M.; Fee, C.J.; Lane, F.R.; Kash, A.S.; Fredericks, R. Simultaneous, quantitative detection of five whey proteins in multiple samples by surface plasmon resonance. Int. Dairy J. 2010, 20, 96–105. [Google Scholar] [CrossRef]
- Indyk, H.E.; Filonzi, E.L. Council of the European Determination of lactoferrin in bovine milk, colostrum and infant formulas by optical biosensor analysis. Int. Dairy J. 2005, 15, 429–438. [Google Scholar] [CrossRef]
- Muller-Renaud, S.; Dupont, D.; Dulieu, P. Development of a biosensor immunoassay for the quantification of αS1-casein in milk. J. Dairy Res. 2005, 72, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Ashley, J.; Piekarska, M.; Segers, C.; Trinh, L.; Rodgers, T.; Willey, R.; Tothill, I.E. An SPR based sensor for allergens detection. Biosens. Bioelectron. 2017, 88, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.Y.; Bewley, M.C.; Creamer, L.K.; Baker, H.M.; Baker, E.N.; Jameson, G.B. Structural basis of the Tanford transition of bovine β-lactoglobulin. Biochemistry 1998, 37, 14014–14023. [Google Scholar] [CrossRef] [PubMed]
- Chun, Y.S.; Wen, L.C.; Ming, C.Y.; Jen, P.H.; Mao, S.J.T. Epitope mapping of a monoclonal antibody specific to bovine dry milk: Involvement of residues 66-76 of strand D in thermal denatured ß-Lactoglobulin. J. Biol. Chem. 2005, 280, 3574–3582. [Google Scholar]
- Monaci, L.; van Hengel, A.J. Development of a method for the quantification of whey allergen traces in mixed-fruit juices based on liquid chromatography with mass spectrometric detection. J. Chromatogr. A 2008, 1192, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Morishita, N.; Akiyama, E.; Arikawa, N.; Iida, T.; Tase, K.; Hamaji, M.; Hiraoka, S.; Shiroyanagi, R.; Kamijou, S.; Matsumoto, T.; et al. Evaluation of immunochromatographic test kits for food allergens using processed food models, Shokuhin Eiseigaku zasshi. J. Food Hyg. Soc. Jpn. 2006, 47, 66–75. [Google Scholar] [CrossRef]
- Kong, X.; Wang, J.; Tang, Y.; Li, D.; Zhang, N.; Jiang, J.; Liu, N. HPLC Analysis of α-lactalbumin and β-lactoglobulin in Bovine Milk with C 4 and C 18 Column. J. Northeast Agric. Univ. 2012, 19, 76–82. [Google Scholar]
- Wu, X.; Li, Y.; Liu, B.; Feng, Y.; He, W.; Liu, Z.; Liu, L.; Wang, Z.; Huang, H. Two-Site Antibody Immunoanalytical Detection of Food Allergens by Surface Plasmon Resonance. Food Anal. Methods 2015. [Google Scholar] [CrossRef]
- Stephan, O.; Weisz, N.; Vieths, S.; Weiser, T.; Rabe, B.; Vatterott, W. Protein quantification, sandwich ELISA, and real-time PCR used to monitor industrial cleaning procedures for contamination with peanut and celery allergens. J. AOAC Int. 2004, 87, 1448–1457. [Google Scholar] [PubMed]
Buffer | Concentration (mM) | pH | Additives |
---|---|---|---|
Sodium acetate | 100 mM | 4 | - |
Glycine-HCl | 100 mM | 3.0 | - |
PBS | 10 mM | 7.4 | - |
HEPES | 10 mM | 6.8 | - |
HBS-EP | 10 mM | 7.4 | 150 mM NaCl 3.4 mM EDTA, 0.005% Tween® 20 |
MES | 10 mM | 5.5 | - |
MES | 10 mM | 5.5 | NaCl (50 mM, 100 mM, 150 mM) |
MES | 10 mM | 5.5 | 0.05% Tween® 20 |
Allergens | Test Type | Matrix | LOD | Reference |
---|---|---|---|---|
BLG | MS | Fruit juice | 1 μg mL−1 | [28] |
BLG | IC dipstick | Cookie, Dumplings fried/steamed, Jelly, Pickles in Vinegar/soy, Potato salad, Sauce, chicken hot dog | 5 μg g−1 | [29] |
BLG | RP HPLC | Whey proteins | 12 μg mL−1 | [30] |
Whey proteins | SPR | Milk and other milk products | - | [22] |
BLG | SPR | - | 5.54 ng mL−1 | [31] |
CASs and BLG | IC-dipstick | Chicken meatball or burger, cookie, Dumplings fried/steamed, sauce, jelly, Potato salad, Pickles in Vinegar/soy | 5 µg g−1 | [29] |
Whey proteins (ALA, BLG) | Mass Spectrometry | Fruit juice | 1 µg mL−1 | [28] |
KIT Name | Test Format | Target | LOD | Time Required |
---|---|---|---|---|
Reveal for Total Milk Allergen (Neogen) | LFD | Casein and whey | 5 g mL−1 | 5 min |
Beta Lactoglobulin Residue ELISA (Oxoid) | ELISA Sandwich, quantitative | β-lactoglobulin | 0.1 µg mL−1 | 45 min |
Alert for Total Milk Allergen (Neogen) | ELISA Sandwich, quantitative | Milk proteins | 5 g mL−1 | 30 min |
Veratox for Total Milk Allergen (Neogen) | ELISA Sandwich, quantitative | Milk proteins | 5 g mL−1 | 30 min |
Beta-lactoglobulin ELISA Kit (Crystal Chem) | ELISA Sandwich, quantitative | β-lactoglobulin in food | 0.3 µg g−1 | - |
AgraQuant® ELISA ß-Lactoglobulin (Romer Labs) | ELISA Sandwich, quantitative | β-lactoglobulin in food | 1.5 ng mL−1 | 60 min |
ELISA Kit for Beta-Lactoglobulin (Biomatik) | ELISA Sandwich, quantitative | β-lactoglobulin | <0.073 ng mL−1 | 4.5 h |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashley, J.; D’Aurelio, R.; Piekarska, M.; Temblay, J.; Pleasants, M.; Trinh, L.; Rodgers, T.L.; Tothill, I.E. Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection. Biosensors 2018, 8, 32. https://doi.org/10.3390/bios8020032
Ashley J, D’Aurelio R, Piekarska M, Temblay J, Pleasants M, Trinh L, Rodgers TL, Tothill IE. Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection. Biosensors. 2018; 8(2):32. https://doi.org/10.3390/bios8020032
Chicago/Turabian StyleAshley, Jon, Roberta D’Aurelio, Monika Piekarska, Jeff Temblay, Mike Pleasants, Linda Trinh, Thomas L. Rodgers, and Ibtisam E. Tothill. 2018. "Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection" Biosensors 8, no. 2: 32. https://doi.org/10.3390/bios8020032
APA StyleAshley, J., D’Aurelio, R., Piekarska, M., Temblay, J., Pleasants, M., Trinh, L., Rodgers, T. L., & Tothill, I. E. (2018). Development of a β-Lactoglobulin Sensor Based on SPR for Milk Allergens Detection. Biosensors, 8(2), 32. https://doi.org/10.3390/bios8020032