Abstract
Neuroplasticity-based active movement opens an avenue for functional recovery in post-stroke patients. Active rehabilitation techniques have attracted wide attention based on their abilities to enhance patient involvement, facilitate precise personalized intervention, and provide comprehensive treatment via cross-domain approaches. Emerging evidence suggests that active rehabilitation methods can respond to patients’ motor intentions in real-time and significantly increase motivation and engagement, leading to efficient utilization of critical recovery windows and better rehabilitation outcomes. In this review, we focus on the physiological basis of active rehabilitation, including mechanisms of neuroplasticity, and discuss recent advances in intent detection and feedback devices. We also examine treatment options for different stages of stroke recovery, providing a comprehensive reference for engineers to design optimized rehabilitation techniques and for clinicians to select appropriate rehabilitation protocols. These developments create new opportunities to improve the lives of stroke patients and offer greater hope for their recovery.