An Extracellular Vesicle (EV) Paper Strip for Rapid and Convenient Estimation of EV Concentration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Methods
2.2.1. Cell Culture
2.2.2. Size Exclusion Chromatography (SEC) EV Isolation
2.2.3. EV Total Protein Concentration Measurement
2.2.4. Immunoassay Procedure for the Estimation of EV Concentration
2.2.5. Signal Acquisition and Data Analysis
3. Results
3.1. Optimizing Dye Application Sequence to Enhance EV Detection Sensitivity
3.2. Determining Optimal Incubation Duration for Enhanced EV Fluorescence Signal
3.3. Evaluation of Single vs. Multi-Antibody Capture Strategies for EV Detection
3.4. Optimization of ExoBrite™ Dye Concentration to Enhance EV Detection Sensitivity
3.5. Estimating Different EV Concentrations with the EV Paper Strip
3.6. Validation Using Total Protein Quantification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EVs | Extracellular vesicles |
DLS | Dynamic Light Scattering |
SEC | Size exclusion chromatography |
SPR | Surface plasmon resonance |
NTA | Nanoparticle tracking analysis |
TRPS | Tunable resistive pulse sensing |
FCM | Flow cytometry |
ELISA | Enzyme-linked immunosorbent assay |
NC | Nitrocellulose |
References
- Shehzad, A.; Islam, S.U.; Shahzad, R.; Khan, S.; Lee, Y.S. Extracellular vesicles in cancer diagnostics and therapeutics. Pharmacol. Ther. 2021, 223, 107806. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, I.K.; Wood, M.J.A.; Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 2021, 16, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Ghadami, S.; Dellinger, K. The lipid composition of extracellular vesicles: Applications in diagnostics and therapeutic delivery. Front. Mol. Biosci. 2023, 10, 1198044. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, aau6977. [Google Scholar] [CrossRef]
- Bordanaba-Florit, G.; Royo, F.; Kruglik, S.G.; Falcón-Pérez, J.M. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat. Protoc. 2021, 16, 3163–3185. [Google Scholar] [CrossRef]
- Willms, E.; Cabañas, C.; Mäger, I.; Wood, M.J.A.; Vader, P. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front. Immunol. 2018, 9, 738. [Google Scholar] [CrossRef]
- Estévez-Souto, V.; Da Silva-Álvarez, S.; Collado, M. The role of extracellular vesicles in cellular senescence. FEBS J. 2023, 290, 1203–1211. [Google Scholar] [CrossRef]
- Raposo, G.; Niel, G.; Stahl, P.D. Extracellular vesicles and homeostasis—An emerging field in bioscience research. FASEB Bioadv. 2021, 3, 456–458. [Google Scholar] [CrossRef]
- Li, C.-J.; Fang, Q.-H.; Liu, M.-L.; Lin, J.-N. Current understanding of the role of Adipose-derived Extracellular Vesicles in Metabolic Homeostasis and Diseases: Communication from the distance between cells/tissues. Theranostics 2020, 10, 7422–7435. [Google Scholar] [CrossRef]
- Schnatz, A.; Müller, C.; Brahmer, A.; Krämer-Albers, E.M. Extracellular Vesicles in neural cell interaction and CNS homeostasis. FASEB Bioadv. 2021, 3, 577–592. [Google Scholar] [CrossRef]
- Ströhle, G.; Gan, J.; Li, H. Affinity-based isolation of extracellular vesicles and the effects on downstream molecular analysis. Anal. Bioanal. Chem. 2022, 414, 7051–7067. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tang, Y.; Fan, G.-C.; Duan, D.D. Extracellular vesicles as novel biomarkers and pharmaceutic targets of diseases. Acta Pharmacol. Sin. 2018, 39, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R. The biology and function of extracellular vesicles in immune response and immunity. Immunity 2024, 57, 1752–1768. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.P.; Dittmer, D.P. Extracellular vesicles in virus infection and pathogenesis. Curr. Opin. Virol. 2020, 44, 129–138. [Google Scholar] [CrossRef]
- Gratpain, V.; Mwema, A.; Labrak, Y.; Muccioli, G.G.; van Pesch, V.; des Rieux, A. Extracellular vesicles for the treatment of central nervous system diseases. Adv. Drug Deliv. Rev. 2021, 174, 535–552. [Google Scholar] [CrossRef]
- Lane, R.E.; Korbie, D.; Hill, M.M.; Trau, M. Extracellular vesicles as circulating cancer biomarkers: Opportunities and challenges. Clin. Transl. Med. 2018, 7, 1–11. [Google Scholar] [CrossRef]
- Dickhout, A.; Koenen, R.R. Extracellular Vesicles as Biomarkers in Cardiovascular Disease; Chances and Risks. Front. Cardiovasc. Med. 2018, 5, 113. [Google Scholar] [CrossRef]
- Thietart, S.; Rautou, P.-E. Extracellular vesicles as biomarkers in liver diseases: A clinician’s point of view. J. Hepatol. 2020, 73, 1507–1525. [Google Scholar] [CrossRef]
- Bamankar, S.; Londhe, V.Y. The Rise of Extracellular Vesicles as New Age Biomarkers in Cancer Diagnosis: Promises and Pitfalls. Technol. Cancer Res. Treat. 2023, 22, 15330338221149266. [Google Scholar] [CrossRef]
- Ayers, L.; Pink, R.; Carter, D.R.F.; Nieuwland, R. Clinical requirements for extracellular vesicle assays. J. Extracell. Vesicles 2019, 8, 1593755. [Google Scholar] [CrossRef]
- Hartjes, T.A.; Mytnyk, S.; Jenster, G.W.; van Steijn, V.; van Royen, M.E. Extracellular Vesicle Quantification and Characterization: Common Methods and Emerging Approaches. Bioengineering 2019, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Vago, R.; Radano, G.; Zocco, D.; Zarovni, N. Urine stabilization and normalization strategies favor unbiased analysis of urinary EV content. Sci. Rep. 2022, 12, 17663. [Google Scholar] [CrossRef] [PubMed]
- Comfort, N.; Cai, K.; Bloomquist, T.R.; Strait, M.D.; Ferrante, A.W.; Baccarelli, A.A. Nanoparticle Tracking Analysis for the Quantification and Size Determination of Extracellular Vesicles. J. Vis. Exp. 2021, 169, 10-3791. [Google Scholar] [CrossRef]
- Kowkabany, G.; Bao, Y. Nanoparticle Tracking Analysis: An Effective Tool to Characterize Extracellular Vesicles. Molecules 2024, 29, 4672. [Google Scholar] [CrossRef]
- Kashkanova, A.D.; Blessing, M.; Reischke, M.; Baur, J.O.; Baur, A.S.; Sandoghdar, V.; Van Deun, J. Label-free discrimination of extracellular vesicles from large lipoproteins. J. Extracell. Vesicles 2023, 12, e12348. [Google Scholar] [CrossRef]
- Kashkanova, A.D.; Blessing, M.; Gemeinhardt, A.; Soulat, D.; Sandoghdar, V. Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nat. Methods 2022, 19, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Vasudev, R.; Mathew, S.; Afonina, N. Characterization of Submicron (0.1–1 μm) Particles in Therapeutic Proteins by Nanoparticle Tracking Analysis. J. Pharm. Sci. 2015, 104, 1622–1631. [Google Scholar] [CrossRef]
- Maas, S.L.N.; De Vrij, J.; Broekman, M.L.D. Quantification and Size-profiling of Extracellular Vesicles Using Tunable Resistive Pulse Sensing. J. Vis. Exp. 2014, 92, e51623. [Google Scholar] [CrossRef]
- Pei, Y.; Vogel, R.; Minelli, C. Tunable resistive pulse sensing (TRPS). In Characterization of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 117–136. [Google Scholar]
- Maas, S.L.N.; Broekman, M.L.D.; de Vrij, J.; Hill, A.F. Tunable Resistive Pulse Sensing for the Characterization of Extracellular Vesicles. In Exosomes and Microvesicles; Humana Press: Totowa, NJ, USA, 2017; pp. 21–33. [Google Scholar] [CrossRef]
- Akers, J.C.; Ramakrishnan, V.; Nolan, J.P.; Duggan, E.; Fu, C.-C.; Hochberg, F.H.; Chen, C.C.; Carter, B.S.; Yin, H.H. Comparative Analysis of Technologies for Quantifying Extracellular Vesicles (EVs) in Clinical Cerebrospinal Fluids (CSF). PLoS ONE 2016, 11, e0149866. [Google Scholar] [CrossRef]
- Vogel, R.; Coumans, F.A.W.; Maltesen, R.G.; Böing, A.N.; Bonnington, K.E.; Broekman, M.L.; Broom, M.F.; Buzás, E.I.; Christiansen, G.; Hajji, N.; et al. A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing. J. Extracell. Vesicles 2016, 5, 31242. [Google Scholar] [CrossRef]
- Welsh, J.A.; Holloway, J.A.; Wilkinson, J.S.; Englyst, N.A. Extracellular Vesicle Flow Cytometry Analysis and Standardization. Front. Cell Dev. Biol. 2017, 5, 78. [Google Scholar] [CrossRef] [PubMed]
- Botha, J.; Pugsley, H.R.; Handberg, A. Conventional, High-Resolution and Imaging Flow Cytometry: Benchmarking Performance in Characterisation of Extracellular Vesicles. Biomedicines 2021, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Pospichalova, V.; Svoboda, J.; Dave, Z.; Kotrbova, A.; Kaiser, K.; Klemova, D.; Ilkovics, L.; Hampl, A.; Crha, I.; Jandakova, E.; et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J. Extracell. Vesicles 2015, 4, 25530. [Google Scholar] [CrossRef]
- Donnenberg, V.S.; Donnenberg, A.D. Coping with artifact in the analysis of flow cytometric data. Methods 2015, 82, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, R.W.; Botha, J.; Prip, F.; Sanden, M.; Nielsen, M.H.; Handberg, A. Zoom in on Antibody Aggregates: A Potential Pitfall in the Search of Rare EV Populations. Biomedicines 2021, 9, 206. [Google Scholar] [CrossRef]
- Midekessa, G.; Godakumara, K.; Ord, J.; Viil, J.; Lättekivi, F.; Dissanayake, K.; Kopanchuk, S.; Rinken, A.; Andronowska, A.; Bhattacharjee, S.; et al. Zeta Potential of Extracellular Vesicles: Toward Understanding the Attributes that Determine Colloidal Stability. ACS Omega 2020, 5, 16701–16710. [Google Scholar] [CrossRef]
- Savchenko, E.A.; Nepomnyashchaya, E.K. Combined technique based on light scattering for investigation of the colloid’s parameters. J. Physics. Conf. Ser. 2019, 1368, 22028. [Google Scholar] [CrossRef]
- Palmieri, V.; Lucchetti, D.; Gatto, I.; Maiorana, A.; Marcantoni, M.; Maulucci, G.; Papi, M.; Pola, R.; De Spirito, M.; Sgambato, A. Dynamic light scattering for the characterization and counting of extracellular vesicles: A powerful noninvasive tool. J. Nanopart. Res. Interdiscip. Forum Nanoscale Sci. Technol. 2014, 16, 1–8. [Google Scholar] [CrossRef]
- Velegol, D.; Feick, J.D.; Collins, L.R. Electrophoresis of Spherical Particles with a Random Distribution of Zeta Potential or Surface Charge. J. Colloid Interface Sci. 2000, 230, 114–121. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Andriantsitohaina, R.; Baharvand, H.; Bauer, N.N.; Baxter, A.A.; Beckham, C.; Bielska, E.; Boireau, W.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Im, H.; Shao, H.; Park, Y.I.; Peterson, V.M.; Castro, C.M.; Weissleder, R.; Lee, H. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat. Biotechnol. 2014, 32, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Nikoloff, J.M.; Saucedo-Espinosa, M.A.; Kling, A.; Dittrich, P.S. Identifying extracellular vesicle populations from single cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2106630118. [Google Scholar] [CrossRef]
- Logozzi, M.; Di Raimo, R.; Mizzoni, D.; Fais, S. Immunocapture-based ELISA to characterize and quantify exosomes in both cell culture supernatants and body fluids. Methods Enzymol. 2020, 645, 155–180. [Google Scholar] [CrossRef]
- Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.M.; Seurynck-Servoss, S.L.; Crowley, S.A.; Brown, M.; Omenn, G.S.; Hayes, D.F.; Zangar, R.C. Development and Validation of Sandwich ELISA Microarrays with Minimal Assay Interference. J. Proteome Res. 2008, 7, 2406–2414. [Google Scholar] [CrossRef]
- Nahar, P.; Bora, U.; Sharma, G.L.; Kannoujia, D.K. Microwave-mediated enzyme-linked immunosorbent assay procedure. Anal. Biochem. 2012, 421, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Popp, R.; Frohlich, B.; Chen, M.X.; Borchers, C.H. Peptide and Protein Quantification Using Automated Immuno-MALDI (iMALDI). J. Vis. Exp. 2017, 126, 55933. [Google Scholar] [CrossRef]
- Erdbrügger, U.; Lannigan, J. Analytical challenges of extracellular vesicle detection: A comparison of different techniques. Cytometry. Part A 2016, 89, 123–134. [Google Scholar] [CrossRef]
- Lucchetti, D.; Fattorossi, A.; Sgambato, A. Extracellular Vesicles in Oncology: Progress and Pitfalls in the Methods of Isolation and Analysis. Biotechnol. J. 2019, 14, e1700716. [Google Scholar] [CrossRef] [PubMed]
- Cloet, T.; Momenbeitollahi, N.; Li, H. Recent advances on protein-based quantification of extracellular vesicles. Anal. Biochem. 2021, 622, 114168. [Google Scholar] [CrossRef] [PubMed]
- Baldauf, K.J.; Royal, J.M.; Hamorsky, K.T.; Matoba, N. Cholera toxin B: One subunit with many pharmaceutical applications. Toxins 2015, 7, 974–996. [Google Scholar] [CrossRef] [PubMed]
- Brealey, J.; Lees, R.; Tempest, R.; Law, A.; Guarnerio, S.; Maani, R.; Puvanenthiran, S.; Peake, N.; Pink, R.; Peacock, B. Shining a light on fluorescent EV dyes: Evaluating efficacy, specificity and suitability by nano-flow cytometry. J. Extracell. Biol. 2024, 3, e70006. [Google Scholar] [CrossRef] [PubMed]
- Biotium, I. ExoBriteTM True EV Membrane Stains. Available online: https://biotium.com/wp-content/uploads/2024/04/PI-ExoBrite-True-Membrane-EV-Stains.pdf (accessed on 12 April 2025).
- Gene [Internet]. National Library of Medicine (US): Bethesda, MD, USA. National Center for Biotechnology Information. 2004. Available online: https://www.ncbi.nlm.nih.gov/gene/ (accessed on 22 November 2022).
- Mathieu, M.; Névo, N.; Jouve, M.; Valenzuela, J.I.; Maurin, M.; Verweij, F.J.; Palmulli, R.; Lankar, D.; Dingli, F.; Loew, D.; et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun. 2021, 12, 4389. [Google Scholar] [CrossRef]
- Cocucci, E.; Meldolesi, J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015, 25, 364–372. [Google Scholar] [CrossRef]
- Kozela, E.; Petrovich-Kopitman, E.; Berger, Y.; Camacho, A.C.; Shoham, Y.; Morandi, M.I.; Rosenhek-Goldian, I.; Rotkopf, R.; Regev-Rudzki, N. Spectral flow cytometry for detecting DNA cargo in malaria parasite-derived extracellular vesicles. J. Biol. Chem. 2025, 0, 108481. [Google Scholar] [CrossRef]
- Momenbeitollahi, N.; Aggarwal, R.; Strohle, G.; Bouriayee, A.; Li, H. Extracellular Vesicle (EV) Dot Blotting for Multiplexed EV Protein Detection in Complex Biofluids. Anal. Chem. 2022, 94, 7368–7374. [Google Scholar] [CrossRef]
- Goodrum, R.; Li, H. Lysis of Extracellular Vesicles and Multiplexed Protein Detection via a Reverse Phase Immunoassay Using a Gold-Nanoparticle-Embedded Membrane Platform. Langmuir 2024, 40, 22177–22189. [Google Scholar] [CrossRef]
- Ma, S.; Mangala, L.S.; Hu, W.; Bayaktar, E.; Yokoi, A.; Hu, W.; Pradeep, S.; Lee, S.; Piehowski, P.D.; Villar-Prados, A.; et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021, 36, 109549. [Google Scholar] [CrossRef]
- Hurwitz, S.N.; Nkosi, D.; Conlon, M.M.; York, S.B.; Liu, X.; Tremblay, D.C.; Meckes, J.D.G. CD63 Regulates Epstein-Barr Virus LMP1 Exosomal Packaging, Enhancement of Vesicle Production, and Noncanonical NF-κB Signaling. J. Virol. 2017, 91, 10.1128. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer Nature: Boston, MA, USA, 2006. [Google Scholar] [CrossRef]
- Maas, S.L.N.; de Vrij, J.; van der Vlist, E.J.; Geragousian, B.; van Bloois, L.; Mastrobattista, E.; Schiffelers, R.M.; Wauben, M.H.M.; Broekman, M.L.D.; Nolte-’t Hoen, E.N.M. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J. Control. Release 2015, 200, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.E.M.; McParland, D.; Szklanna, P.B.; Guang, M.H.Z.; O’Connell, K.; O’Connor, H.D.; McGuigan, C.; Ní Áinle, F.; McCann, A.; Maguire, P.B. A Protocol for Improved Precision and Increased Confidence in Nanoparticle Tracking Analysis Concentration Measurements between 50 and 120 nm in Biological Fluids. Front. Cardiovasc. Med. 2017, 4, 68. [Google Scholar] [CrossRef]
- Belkina, A.C.; Roe, C.E.; Tang, V.A.; Back, J.B.; Bispo, C.; Conway, A.; Chakraborty, U.; Daniels, K.T.; de la Cruz, G.; Ferrer-Font, L.; et al. Guidelines for establishing a cytometry laboratory. Cytometry. Part A 2024, 105, 88–111. [Google Scholar] [CrossRef] [PubMed]
- Buzatu, D.A.; Moskal, T.J.; Williams, A.J.; Cooper, W.M.; Mattes, W.B.; Wilkes, J.G. An integrated flow cytometry-based system for real-time, high sensitivity bacterial detection and identification. PLoS ONE 2014, 9, e94254. [Google Scholar] [CrossRef]
- Mitsui, Y. Development of a simple and specific direct competitive ELISA for the determination of artesunate using an anti-artesunate polyclonal antiserum. Trop. Med. Health 2016, 44, 37. [Google Scholar] [CrossRef]
- Eskeziyaw, B.M.; Maina, N.; Waihenya, R.; Munyao, M.M.; Nyandwaro, T.T.; Inoue, S.; Nzou, S.M. Development and optimization of a new competitive ELISA using recombinant (rPSA D15 and rCag11) antigens for the detection of Helicobacter pylori infection. PLoS ONE 2025, 20, e0317227. [Google Scholar] [CrossRef] [PubMed]
- Kruse, T.; Schneider, S.; Reger, L.N.; Kampmann, M.; Reif, O.W. A novel approach for enumeration of extracellular vesicles from crude and purified cell culture samples. Eng. Life Sci. 2022, 22, 334–343. [Google Scholar] [CrossRef]
- Capelli, D.; Scognamiglio, V.; Montanari, R. Surface plasmon resonance technology: Recent advances, applications and experimental cases. TrAC Trends Anal. Chem. (Regul. Ed.) 2023, 163, 117079. [Google Scholar] [CrossRef]
- Prabowo, B.A.; Purwidyantri, A.; Liu, K.-C. Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors 2018, 8, 80. [Google Scholar] [CrossRef]
- Mirzaei, M.; Pla-Roca, M.; Safavieh, R.; Nazarova, E.; Safavieh, M.; Li, H.; Vogel, J.; Juncker, D. Microfluidic perfusion system for culturing and imaging yeast cell microarrays and rapidly exchanging media. Lab A Chip 2010, 10, 2449–2457. [Google Scholar] [CrossRef]
- Li, H.; Bergeron, S.; Annis, M.G.; Siegel, P.M.; Juncker, D. Serial Analysis of 38 Proteins during the Progression of Human Breast Tumor in Mice Using an Antibody Colocalization Microarray[S]. Mol. Cell. Proteom. 2015, 14, 1024–1037. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ströhle, G.; Goodrum, R.; Li, H. An Extracellular Vesicle (EV) Paper Strip for Rapid and Convenient Estimation of EV Concentration. Biosensors 2025, 15, 294. https://doi.org/10.3390/bios15050294
Ströhle G, Goodrum R, Li H. An Extracellular Vesicle (EV) Paper Strip for Rapid and Convenient Estimation of EV Concentration. Biosensors. 2025; 15(5):294. https://doi.org/10.3390/bios15050294
Chicago/Turabian StyleStröhle, Gisela, Rebecca Goodrum, and Huiyan Li. 2025. "An Extracellular Vesicle (EV) Paper Strip for Rapid and Convenient Estimation of EV Concentration" Biosensors 15, no. 5: 294. https://doi.org/10.3390/bios15050294
APA StyleStröhle, G., Goodrum, R., & Li, H. (2025). An Extracellular Vesicle (EV) Paper Strip for Rapid and Convenient Estimation of EV Concentration. Biosensors, 15(5), 294. https://doi.org/10.3390/bios15050294