Point-of-Care NSE Biosensor for Objective Assessment of Stroke Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Biosensor Fabrication
2.3. NSE Detection
2.4. Establishment of Mouse Stroke Model
2.5. Assessment of Mouse Stroke Model
2.6. Statistical Analysis
3. Results
3.1. Fabrication of Biosensor Biochips for Detection of Standard NSE
3.2. Establishing a Stroke Mouse Model
3.3. NSE Detection via Biosensor
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiu, D.; Krieger, D.; Villar-Cordova, C.; Kasner, S.E.; Morgenstern, L.B.; Bratina, P.L.; Yatsu, F.M.; Grotta, J.C. Intravenous tissue plasminogen activator for acute ischemic stroke: Feasibility, safety, and efficacy in the first year of clinical practice. Stroke 1998, 29, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Papanagiotou, P.; Ntaios, G. Endovascular thrombectomy in acute ischemic stroke. Circ. Cardiovasc. Interv. 2018, 11, e005362. [Google Scholar] [CrossRef] [PubMed]
- Saver, J.L.; Fonarow, G.C.; Smith, E.E.; Reeves, M.J.; Grau-Sepulveda, M.V.; Pan, W.; Olson, D.M.; Hernandez, A.F.; Peterson, E.D.; Schwamm, L.H. Time to Treatment With Intravenous Tissue Plasminogen Activator and Outcome From Acute Ischemic Stroke. JAMA 2013, 309, 2480–2488. [Google Scholar] [CrossRef] [PubMed]
- Saver, J.L.; Goyal, M.; Van der Lugt, A.; Menon, B.K.; Majoie, C.B.; Dippel, D.W.; Campbell, B.C.; Nogueira, R.G.; Demchuk, A.M.; Tomasello, A. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: A meta-analysis. JAMA 2016, 316, 1279–1289. [Google Scholar] [CrossRef]
- Kwakkel, G.; Kollen, B.; Twisk, J. Impact of time on improvement of outcome after stroke. Stroke 2006, 37, 2348–2353. [Google Scholar] [CrossRef]
- Khatri, P.; Abruzzo, T.; Yeatts, S.D.; Nichols, C.; Broderick, J.P.; Tomsick, T.A.; IMS I and II Investigators. Good clinical outcome after ischemic stroke with successful revascularization is time-dependent. Neurology 2009, 73, 1066–1072. [Google Scholar] [CrossRef]
- Lacy, C.R.; Suh, D.C.; Bueno, M.; Kostis, J.B. Delay in presentation and evaluation for acute stroke: Stroke Time Registry for Outcomes Knowledge and Epidemiology (STROKE). Stroke 2001, 32, 63–69. [Google Scholar] [CrossRef]
- El Ammar, F.; Ardelt, A.; Del Brutto, V.J.; Loggini, A.; Bulwa, Z.; Martinez, R.C.; McKoy, C.J.; Brorson, J.; Mansour, A.; Goldenberg, F.D. BE-FAST: A sensitive screening tool to identify in-hospital acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2020, 29, 104821. [Google Scholar] [CrossRef]
- Aroor, S.; Singh, R.; Goldstein, L.B. BE-FAST (balance, eyes, face, arm, speech, time) reducing the proportion of strokes missed using the FAST mnemonic. Stroke 2017, 48, 479–481. [Google Scholar] [CrossRef]
- Berglund, A.; Svensson, L.; Wahlgren, N.; Von Euler, M. Face Arm Speech Time Test use in the prehospital setting, better in the ambulance than in the emergency medical communication center. Cerebrovasc. Dis. 2014, 37, 212–216. [Google Scholar] [CrossRef]
- Newman-Toker, D.E. Missed stroke in acute vertigo and dizziness: It is time for action, not debate. Ann. Neurol. 2015, 79, 27. [Google Scholar] [CrossRef] [PubMed]
- Newman-Toker, D.E.; Hsieh, Y.-H.; Camargo, C.A., Jr.; Pelletier, A.J.; Butchy, G.T.; Edlow, J.A. Spectrum of dizziness visits to US emergency departments: Cross-sectional analysis from a nationally representative sample. Mayo Clin. Proc. 2008, 83, 765–775. [Google Scholar] [CrossRef]
- Castle, J.; Mlynash, M.; Lee, K.; Caulfield, A.F.; Wolford, C.; Kemp, S.; Hamilton, S.; Albers, G.W.; Olivot, J.-M. Agreement Regarding Diagnosis of Transient Ischemic Attack Fairly Low Among Stroke-Trained Neurologists. Stroke 2010, 41, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Dawar, D.; Mehmood, E.; Pandian, J.D.; Sahonta, R.; Singla, S.; Batra, A.; Kumar, C.S.; Mahadevappa, M. Determining diagnostic utility of EEG for assessing stroke severity using deep learning models. Biomed. Eng. Adv. 2024, 7, 100121. [Google Scholar] [CrossRef]
- Newman-Toker, D.E.; Moy, E.; Valente, E.; Coffey, R.; Hines, A.L. Missed diagnosis of stroke in the emergency department: A cross-sectional analysis of a large population-based sample. Diagnosis 2014, 1, 155–166. [Google Scholar] [CrossRef]
- Isgrò, M.A.; Bottoni, P.; Scatena, R. Neuron-specific enolase as a biomarker: Biochemical and clinical aspects. Adv. Exp. Med. Biol. 2015, 867, 125–143. [Google Scholar]
- Anand, N.; Stead, L.G. Neuron-specific enolase as a marker for acute ischemic stroke: A systematic review. Cerebrovasc. Dis. 2005, 20, 213–219. [Google Scholar] [CrossRef]
- Bharosay, A.; Bharosay, V.V.; Saxena, K.; Varma, M. Role of brain biomarker in predicting clinical outcome in hypertensive cerebrovascular ischemic stroke. Indian J. Clin. Biochem. 2018, 33, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xie, J.; Zhang, H.; Zheng, H.; Zheng, W.; Pang, C.; Cai, Y.; Deng, B. Neuron-specific enolase in hypertension patients with acute ischemic stroke and its value forecasting long-term functional outcomes. BMC Geriatr. 2023, 23, 294. [Google Scholar] [CrossRef]
- Zaheer, S.; Beg, M.; Rizvi, I.; Islam, N.; Ullah, E.; Akhtar, N. Correlation between serum neuron specific enolase and functional neurological outcome in patients of acute ischemic stroke. Ann. Indian Acad. Neurol. 2013, 16, 504–508. [Google Scholar]
- Khandare, P.; Saluja, A.; Solanki, R.S.; Singh, R.; Vani, K.; Garg, D.; Dhamija, R.K. Serum S100B and NSE levels correlate with infarct size and bladder-bowel involvement among acute ischemic stroke patients. J. Neurosci. Rural. Pract. 2022, 13, 218. [Google Scholar] [CrossRef]
- Chen, L.-C.; Wang, E.; Tai, C.-S.; Chiu, Y.-C.; Li, C.-W.; Lin, Y.-R.; Lee, T.-H.; Huang, C.-W.; Chen, J.-C.; Chen, W.L. Improving the reproducibility, accuracy, and stability of an electrochemical biosensor platform for point-of-care use. Biosens. Bioelectron. 2020, 155, 112111. [Google Scholar] [CrossRef]
- Björklund, E.; Lindberg, E.; Rundgren, M.; Cronberg, T.; Friberg, H.; Englund, E. Ischaemic brain damage after cardiac arrest and induced hypothermia–a systematic description of selective eosinophilic neuronal death. A neuropathologic study of 23 patients. Resuscitation 2014, 85, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.H.; Liu, K.-F.; Ho, K.-L. Neuronal necrosis after middle cerebral artery occlusion in Wistar rats progresses at different time intervals in the caudoputamen and the cortex. Stroke 1995, 26, 636–643. [Google Scholar] [CrossRef]
- Ghosh, K.C.; Bhattacharya, R.; Ghosh, S.; Mahata, M.; Das, S.; Das, S.; Mondal, G.P. Predictors of severity and outcome and roles of intravenous thrombolysis and biomarkers in first ischemic stroke. Neuroimmunol. Neuroinflamm. 2018, 5, 38. [Google Scholar] [CrossRef]
- Fang, Y.; Li, Y.; Zhang, M.; Cui, B.; Hu, Q.; Wang, L. A novel electrochemical strategy based on porous 3D graphene-starch architecture and silver deposition for ultrasensitive detection of neuron-specific enolase. Analyst 2019, 144, 2186–2194. [Google Scholar] [CrossRef] [PubMed]
- Çimen, D.; Bereli, N.; Günaydın, S.; Denizli, A. Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta 2020, 219, 121259. [Google Scholar] [CrossRef]
- Shibayama, T.; Ueoka, H.; Nishii, K.; Kiura, K.; Tabata, M.; Miyatake, K.; Kitajima, T.; Harada, M. Complementary roles of pro-gastrin-releasing peptide (ProGRP) and neuron specific enolase (NSE) in diagnosis and prognosis of small-cell lung cancer (SCLC). Lung Cancer 2001, 32, 61–69. [Google Scholar] [CrossRef]
- Amalia, L. Glial fibrillary acidic protein (GFAP): Neuroinflammation biomarker in acute ischemic stroke. J. Inflamm. Res. 2021, 14, 7501–7506. [Google Scholar] [CrossRef]
- Lee, T.-H.; Chen, L.-C.; Wang, E.; Wang, C.-C.; Lin, Y.-R.; Chen, W.-L. Development of an electrochemical immunosensor for detection of cardiac troponin I at the point-of-care. Biosensors 2021, 11, 210. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu Chen, C.; Wang, E.; Lee, T.-H.; Huang, C.-C.; Tai, C.-S.; Lin, Y.-R.; Chen, W.-L. Point-of-Care NSE Biosensor for Objective Assessment of Stroke Risk. Biosensors 2025, 15, 264. https://doi.org/10.3390/bios15040264
Hsu Chen C, Wang E, Lee T-H, Huang C-C, Tai C-S, Lin Y-R, Chen W-L. Point-of-Care NSE Biosensor for Objective Assessment of Stroke Risk. Biosensors. 2025; 15(4):264. https://doi.org/10.3390/bios15040264
Chicago/Turabian StyleHsu Chen, Cheng, Erick Wang, Tsung-Han Lee, Cheng-Chieh Huang, Chun-San Tai, Yan-Ren Lin, and Wen-Liang Chen. 2025. "Point-of-Care NSE Biosensor for Objective Assessment of Stroke Risk" Biosensors 15, no. 4: 264. https://doi.org/10.3390/bios15040264
APA StyleHsu Chen, C., Wang, E., Lee, T.-H., Huang, C.-C., Tai, C.-S., Lin, Y.-R., & Chen, W.-L. (2025). Point-of-Care NSE Biosensor for Objective Assessment of Stroke Risk. Biosensors, 15(4), 264. https://doi.org/10.3390/bios15040264