Label-Free Rapid Quantification of Abscisic Acid in Xylem Sap Samples Using Surface Plasmon Resonance
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Plant Material, Growth Conditions, and Xylem Sap Sampling
2.3. Abiotic Stress Treatments
2.4. Development of a Direct Label-Free SPR Immunoassay
2.4.1. Biacore™ CM5 Sensor Chip Functionalization with Anti-ABA Antibody
2.4.2. Anti-ABA Antibody Characterization Using the Biacore™ SPR Platform
2.4.3. Development of an ABA Calibration Curve in Running Buffer
2.5. Quantification of ABA in Xylem Sap Samples from Abiotic Stress Plants
2.6. Statistical Analysis
3. Results
3.1. Anti-ABA Antibody Characterization Using the Biacore™ SPR Platform
3.2. Development of a Direct Label-Free SPR Immunoassay
3.3. Quantification of ABA in Xylem Sap Samples from Abiotically Stressed Plants
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABA | Abscisic acid |
| ABA aldehyde | Abscisic aldehyde |
| ABA-BSA | Abscisic acid bovine serum albumin |
| ABA-GE | ABA glucosyl ester |
| ABI1 | Abscisic acid insensitive 1 |
| ACC | 1-aminocyclopropane-1-carboxylic acid |
| C | Control plant sample |
| EC | Electrical conductivity |
| EDC | 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide |
| Fc | Flow cell |
| ka | Association rate constant |
| kd | Dissociation rate constant |
| KD | Equilibrium dissociation constant |
| LOD | Limit of detection |
| NHS | N-hydroxysuccinimide |
| PP2C | Protein phosphatase 2C |
| PYL1 | Pyrabactin resistant 1 like 1 |
| RI | Refractive index |
| SPR | Surface plasmon resonance |
| T | Treated plant sample |
| UPLC | Ultra-performance liquid chromatography |
References
- IPCC Summary for Policymakers. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Lamers, J.; Van Der Meer, T.; Testerink, C. How Plants Sense and Respond to Stressful Environments. Plant Physiol. 2020, 182, 1624–1635. [Google Scholar] [CrossRef]
- Nadeem, S.M.; Ahmad, M.; Zahir, Z.A.; Kharal, M.A. Role of Phytohormones in Stress Tolerance of Plants. In Plant, Soil and Microbes: Volume 2: Mechanisms and Molecular Interactions; Springer International Publishing: Cham, Switzerland, 2016; pp. 385–421. [Google Scholar] [CrossRef]
- Bari, R.; Jones, J.D.G. Role of Plant Hormones in Plant Defence Responses. Plant Mol. Biol. 2009, 69, 473–488. [Google Scholar] [CrossRef]
- EL Sabagh, A.; Islam, M.S.; Hossain, A.; Iqbal, M.A.; Mubeen, M.; Waleed, M.; Reginato, M.; Battaglia, M.; Ahmed, S.; Rehman, A.; et al. Phytohormones as Growth Regulators During Abiotic Stress Tolerance in Plants. Front. Agron. 2022, 4, 765068. [Google Scholar] [CrossRef]
- Chen, H.; Bullock, D.A.; Alonso, J.M.; Stepanova, A.N. To Fight or to Grow: The Balancing Role of Ethylene in Plant Abiotic Stress Responses. Plants 2021, 11, 33. [Google Scholar] [CrossRef]
- Lim, C.W.; Baek, W.; Jung, J.; Kim, J.H.; Lee, S.C. Function of ABA in Stomatal Defense against Biotic and Drought Stresses. Int. J. Mol. Sci. 2015, 16, 15251–15270. [Google Scholar] [CrossRef] [PubMed]
- Rajasheker, G.; Jawahar, G.; Jalaja, N.; Kumar, S.A.; Kumari, P.H.; Punita, D.L.; Karumanchi, A.R.; Reddy, P.S.; Rathnagiri, P.; Sreenivasulu, N.; et al. Role and Regulation of Osmolytes and ABA Interaction in Salt and Drought Stress Tolerance. In Plant Signaling Molecules: Role and Regulation Under Stressful Environments; Elsevier: Amsterdam, The Netherlands, 2019; pp. 417–436. [Google Scholar] [CrossRef]
- Singh, A.; Roychoudhury, A. Abscisic Acid in Plants under Abiotic Stress: Crosstalk with Major Phytohormones. Plant Cell Rep. 2023, 42, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Bi, C.; Chi, W.; Hu, N.; Gehring, C. Amino Acid Motifs for the Identification of Novel Protein Interactants. Comput. Struct. Biotechnol. J. 2022, 21, 326. [Google Scholar] [CrossRef]
- Kermode, A.R. Role of Abscisic Acid in Seed Dormancy. J. Plant Growth Regul. 2005, 24, 319–344. [Google Scholar] [CrossRef]
- Skubacz, A.; Daszkowska-Golec, A.; Skubacz, A.; Daszkowska-Golec, A. Seed Dormancy: The Complex Process Regulated by Abscisic Acid, Gibberellins, and Other Phytohormones That Makes Seed Germination Work. In Phytohormones-Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- Salem, M.A.; Zayed, A. Liquid Chromatography-Tandem Mass Spectrometry-Based Profiling of Plant Hormones. Methods Mol. Biol. 2022, 2462, 125–133. [Google Scholar] [CrossRef]
- Šimura, J.; Antoniadi, I.; Široká, J.; Tarkowská, D.; Strnad, M.; Ljung, K.; Novák, O. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiol. 2018, 177, 476–489. [Google Scholar] [CrossRef]
- Cai, W.J.; Ye, T.T.; Wang, Q.; Cai, B.D.; Feng, Y.Q. A Rapid Approach to Investigate Spatiotemporal Distribution of Phytohormones in Rice. Plant Methods 2016, 12, 47. [Google Scholar] [CrossRef]
- Novák, O.; Floková, K. An UHPLC-MS/MS Method for Target Profiling of Stress-Related Phytohormones. Methods Mol. Biol. 2018, 1778, 183–192. [Google Scholar] [CrossRef]
- Pérez-Alonso, M.M.; Ortiz-García, P.; Moya-Cuevas, J.; Pollmann, S. Mass Spectrometric Monitoring of Plant Hormone Cross Talk During Biotic Stress Responses in Potato (Solanum tuberosum L.). Methods Mol. Biol. 2021, 2354, 143–154. [Google Scholar] [CrossRef]
- Verslues, P.E. Rapid Quantification of Abscisic Acid by GC-MS/MS for Studies of Abiotic Stress Response. Methods Mol. Biol. 2017, 1631, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.A.; Yoshida, T.; Perez de Souza, L.; Alseekh, S.; Bajdzienko, K.; Fernie, A.R.; Giavalisco, P. An Improved Extraction Method Enables the Comprehensive Analysis of Lipids, Proteins, Metabolites and Phytohormones from a Single Sample of Leaf Tissue under Water-Deficit Stress. Plant J. 2020, 103, 1614–1632. [Google Scholar] [CrossRef] [PubMed]
- Turečková, V.; Novák, O.; Strnad, M. Profiling ABA Metabolites in Nicotiana Tabacum L. Leaves by Ultra-Performance Liquid Chromatography–Electrospray Tandem Mass Spectrometry. Talanta 2009, 80, 390–399. [Google Scholar] [CrossRef]
- Weiler, E.W. Radioimmunoassay for the Determination of Free and Conjugated Abscisic Acid. Planta 1979, 144, 255–263. [Google Scholar] [CrossRef]
- Asch, F. Laboratory Manual on Determination of Abscisic Acid by Indirect Enzyme Linked Immuno Sorbent Assay (ELISA); Technical Series 1; Royal Veterinary and Agricultural University: Frederiksberg, Denmark, 2000. [Google Scholar]
- Pagter, M.; Liu, F.; Jensen, C.R.; Petersen, K.K. Effects of Chilling Temperatures and Short Photoperiod on PSII Function, Sugar Concentrations and Xylem Sap ABA Concentrations in Two Hydrangea Species. Plant Sci. 2008, 175, 547–555. [Google Scholar] [CrossRef]
- Piechowiak, T. Elucidation of the Mechanism of Elicitation of Edible Sprouts Using UV-C Radiation. Biocatal. Agric. Biotechnol. 2024, 57, 103081. [Google Scholar] [CrossRef]
- Mphande, W.; Farrell, A.D.; Vickers, L.H.; Grove, I.G.; Kettlewell, P.S. Yield Improvement with Antitranspirant Application in Droughted Wheat Associated with Both Reduced Transpiration and Reduced Abscisic Acid. J. Agric. Sci. 2024, 162, 33–45. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, X.; Fang, J.; An, Z.; Hu, Y.; Huang, H. Comparative Transcriptome Analysis Reveals an Early Gene Expression Profile That Contributes to Cold Resistance in Hevea Brasiliensis (the Para Rubber Tree). Tree Physiol. 2018, 38, 1409–1423. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Zhang, Z.; Sun, L.; Gao, X.; Zhao, X.; Chen, X.; Zhu, X.; Li, A.; Sun, L. In Vivo Detection of Abscisic Acid in Tomato Leaves Based on a Disposable Stainless Steel Electrochemical Immunosensor. J. Agric. Food Chem. 2024, 72, 17666–17674. [Google Scholar] [CrossRef]
- Garrote, B.L.; Vegas-García, M.; Hedberg, E.; Ribet, F.; Roxhed, N.; García-Carmona, L.; Quijano-López, A.; García-Pellicer, M. Wearable Device for In-Situ Plant Sap Analysis: Electrochemical Lateral Flow (ELF) for Stress Monitoring in Living Plants. Biosens. Bioelectron. 2025, 283, 117550. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.; Grangé-Guermente, M.; Exposito-Rodriguez, M.; Wimalasekera, R.; Lenz, M.O.; Shetty, K.N.; Cutler, S.R.; Jones, A.M. Next-Generation ABACUS Biosensors Reveal Cellular ABA Dynamics Driving Root Growth at Low Aerial Humidity. Nat. Plants 2023, 9, 1103–1115. [Google Scholar] [CrossRef]
- Waadt, R.; Köster, P.; Andrés, Z.; Waadt, C.; Bradamante, G.; Lampou, K.; Kudla, J.; Schumacher, K. Dual-Reporting Transcriptionally Linked Genetically Encoded Fluorescent Indicators Resolve the Spatiotemporal Coordination of Cytosolic Abscisic Acid and Second Messenger Dynamics in Arabidopsis. Plant Cell 2020, 32, 2582–2601. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Alci, K.; Van Gaever, F.; Driege, Y.; Bicalho, K.; Goeminne, G.; Libert, C.; Goossens, A.; Beyaert, R.; Staal, J. Engineering a Highly Sensitive Biosensor for Abscisic Acid in Mammalian Cells. FEBS Lett. 2022, 596, 2576–2590. [Google Scholar] [CrossRef]
- Cytiva Biacore. Available online: https://www.cytivalifesciences.com/en/us/about-us/our-brands/biacore?srsltid=AfmBOopi1j-EcvMVxwWaqY1GXwD27n9UTymEyyucdP2pPoAOlXWaTrxp (accessed on 28 March 2025).
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Homola, J. Present and Future of Surface Plasmon Resonance Biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539. [Google Scholar] [CrossRef]
- Scarano, S.; Mascini, M.; Turner, A.P.F.; Minunni, M. Surface Plasmon Resonance Imaging for Affinity-Based Biosensors. Biosens. Bioelectron. 2010, 25, 957–966. [Google Scholar] [CrossRef]
- Ito, T.; Kondoh, Y.; Yoshida, K.; Umezawa, T.; Shimizu, T.; Shinozaki, K.; Osada, H. Novel Abscisic Acid Antagonists Identified with Chemical Array Screening. ChemBioChem 2015, 16, 2471–2478. [Google Scholar] [CrossRef]
- Hao, Q.; Yin, P.; Li, W.; Wang, L.; Yan, C.; Lin, Z.; Wu, J.Z.; Wang, J.; Yan, S.F.; Yan, N. The Molecular Basis of ABA-Independent Inhibition of PP2Cs by a Subclass of PYL Proteins. Mol. Cell 2011, 42, 662–672. [Google Scholar] [CrossRef]
- Spinelli, S.; Begani, G.; Guida, L.; Magnone, M.; Galante, D.; D’Arrigo, C.; Scotti, C.; Iamele, L.; De Jonge, H.; Zocchi, E.; et al. LANCL1 Binds Abscisic Acid and Stimulates Glucose Transport and Mitochondrial Respiration in Muscle Cells via the AMPK/PGC-1α/Sirt1 Pathway. Mol. Metab. 2021, 53, 101263. [Google Scholar] [CrossRef]
- Miyazono, K.I.; Miyakawa, T.; Sawano, Y.; Kubota, K.; Kang, H.J.; Asano, A.; Miyauchi, Y.; Takahashi, M.; Zhi, Y.; Fujita, Y.; et al. Structural Basis of Abscisic Acid Signalling. Nature 2009, 462, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Holsteens, K.; De Jaegere, I.; Wynants, A.; Prinsen, E.L.J.; Van de Poel, B. Mild and Severe Salt Stress Responses Are Age-Dependently Regulated by Abscisic Acid in Tomato. Front. Plant Sci. 2022, 13, 982622. [Google Scholar] [CrossRef]
- Feller, C.; Bleiholder, H.; Buhr, L.; Hack, H.; He, M.; Klose, R.; Meier, U.; Stau, R.; Van Den Boom, T.; Weber, E. Phänologische Entwicklungsstadien von Gemüsepflanzen II. Fruchtgemüse Und Hülsenfrüchte. Nachr. Dtsch. Pflanzenschutzd. 1995, 47, 217–232. [Google Scholar]
- Cytiva BiacoreTM Sensor Surface. In BiacoreTM Application Guide; Cytiva: Marlborough, MA, USA, 2022.
- Cytiva Solvent Correction: Principles and Practice. In Biacore Application Guide; Cytiva: Marlborough, MA, USA, 2020.
- Cytiva Concentration Measurements with BiacoreTM Systems. In BiacoreTM Application Guide; Cytiva: Marlborough, MA, USA, 2021.
- Shapiro, S.S.; Wilk, M.B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Agostino, R.D.; Pearson, E.S. Tests for Departure from Normality. Empirical Results for the Distributions of b 2 And. Biometrika 1973, 60, 613–622. [Google Scholar]
- Mann, H.B.; Whitney, D.R. On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Pearson, K. VII. Mathematical Contributions to the Theory of Evolution.—III. Regression, Heredity, and Panmixia. In Philosophical Transactions of the Royal Society of London; Series A, Containing Papers of a Mathematical or Physical Character; Royal Society: London, UK, 1896; Volume 187, pp. 253–318. [Google Scholar]
- Cytiva Principles of Kinetics and Affinity Analysis. In Biacore Application Guide; Cytiva: Marlborough, MA, USA, 2020.
- Mitchell, J. Small Molecule Immunosensing Using Surface Plasmon Resonance. Sensors 2010, 10, 7323–7346. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, H.S. Aptamer-Based Au Nanoparticles-Enhanced Surface Plasmon Resonance Detection of Small Molecules. Anal. Chem. 2008, 80, 7174–7178. [Google Scholar] [CrossRef]
- Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials Enhanced Surface Plasmon Resonance for Biological and Chemical Sensing Applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Li, Y.W.; Xia, K.; Wang, R.Z.; Jiang, J.H.; Xiao, L.T. An Impedance Immunosensor for the Detection of the Phytohormone Abscisic Acid. Anal. Bioanal. Chem. 2008, 391, 2869–2874. [Google Scholar] [CrossRef]
- Carella, P.; Wilson, D.C.; Kempthorne, C.J.; Cameron, R.K. Vascular Sap Proteomics: Providing Insight into Long-Distance Signaling during Stress. Front. Plant Sci. 2016, 7, 198391. [Google Scholar] [CrossRef]
- De Boer, A.H.; Volkov, V. Logistics of Water and Salt Transport through the Plant: Structure and Functioning of the Xylem. Plant Cell Environ. 2003, 26, 87–101. [Google Scholar] [CrossRef]
- Lucas, W.J.; Groover, A.; Lichtenberger, R.; Furuta, K.; Yadav, S.R.; Helariutta, Y.; He, X.Q.; Fukuda, H.; Kang, J.; Brady, S.M.; et al. The Plant Vascular System: Evolution, Development and Functions. J. Integr. Plant Biol. 2013, 55, 294–388. [Google Scholar] [CrossRef] [PubMed]
- Bialczyk, J.; Lechowski, Z. Chemical Composition of Xylem Sap of Tomato Grown on Bicarbonate Containing Medium. J. Plant Nutr. 1995, 18, 2005–2021. [Google Scholar] [CrossRef]
- Pérez-Alfocea, F.; Balibrea, M.E.; Alarcón, J.J.; Bolarín, M.C. Composition of Xylem and Phloem Exudates in Relation to the Salt-Tolerance of Domestic and Wild Tomato Species. J. Plant Physiol. 2000, 156, 367–374. [Google Scholar] [CrossRef]
- Lowe-Power, T.M.; Hendrich, C.G.; von Roepenack-Lahaye, E.; Li, B.; Wu, D.; Mitra, R.; Dalsing, B.L.; Ricca, P.; Naidoo, J.; Cook, D.; et al. Metabolomics of Tomato Xylem Sap during Bacterial Wilt Reveals Ralstonia Solanacearum Produces Abundant Putrescine, a Metabolite That Accelerates Wilt Disease. Environ. Microbiol. 2018, 20, 1330–1349. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Hartung, W. Long-Distance Signalling of Abscisic Acid (ABA): The Factors Regulating the Intensity of the ABA Signal. J. Exp. Bot. 2008, 59, 37–43. [Google Scholar] [CrossRef]
- Schachtman, D.P.; Goodger, J.Q.D. Chemical Root to Shoot Signaling under Drought. Trends Plant Sci. 2008, 13, 281–287. [Google Scholar] [CrossRef]
- Moosavi, S.M.; Ghassabian, S.; Moosavi, S.M.; Ghassabian, S. Linearity of Calibration Curves for Analytical Methods: A Review of Criteria for Assessment of Method Reliability. In Calibration and Validation of Analytical Methods—A Sampling of Current Approaches; InTech Open: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Conrad, M.; Fechner, P.; Proll, G.; Gauglitz, G. (R)Evolution of the Standard Addition Procedure for Immunoassays. Biosensors 2023, 13, 849. [Google Scholar] [CrossRef]
- Pang, S.; Cowen, S. A Generic Standard Additions Based Method to Determine Endogenous Analyte Concentrations by Immunoassays to Overcome Complex Biological Matrix Interference. Sci. Rep. 2017, 7, 17542. [Google Scholar] [CrossRef]
- Perin, E.C.; Crizel, R.L.; Galli, V.; da Silva Messias, R.; Rombaldi, C.V.; Chaves, F.C. Extraction and Quantification of Abscisic Acid and Derivatives in Strawberry by LC-MS. Food Anal. Methods 2018, 11, 2547–2552. [Google Scholar] [CrossRef]
- Albacete, A.; Ghanem, M.E.; Martínez-Andújar, C.; Acosta, M.; Sánchez-Bravo, J.; Martínez, V.; Lutts, S.; Dodd, I.C.; Pérez-Alfocea, F. Hormonal Changes in Relation to Biomass Partitioning and Shoot Growth Impairment in Salinized Tomato (Solanum lycopersicum L.) Plants. J. Exp. Bot. 2008, 59, 4119–4131. [Google Scholar] [CrossRef]
- Kudoyarova, G.R.; Vysotskaya, L.B.; Cherkozyanova, A.; Dodd, I.C. Effect of Partial Rootzone Drying on the Concentration of Zeatin-Type Cytokinins in Tomato (Solanum lycopersicum L.) Xylem Sap and Leaves. J. Exp. Bot. 2007, 58, 161–168. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, R.; Liu, Y.; Xiang, D.; Liu, Y.; Gui, W.; Li, M.; Zhu, G. A Non-Competitive Surface Plasmon Resonance Immunosensor for Rapid Detection of Triazophos Residue in Environmental and Agricultural Samples. Sci. Total Environ. 2018, 613–614, 783–791. [Google Scholar] [CrossRef]
- Qu, J.H.; Leirs, K.; Maes, W.; Imbrechts, M.; Callewaert, N.; Lagrou, K.; Geukens, N.; Lammertyn, J.; Spasic, D. Innovative FO-SPR Label-Free Strategy for Detecting Anti-RBD Antibodies in COVID-19 Patient Serum and Whole Blood. ACS Sens. 2022, 7, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Yildizhan, Y.; Vajrala, V.S.; Geeurickx, E.; Declerck, C.; Duskunovic, N.; De Sutter, D.; Noppen, S.; Delport, F.; Schols, D.; Swinnen, J.V.; et al. FO-SPR Biosensor Calibrated with Recombinant Extracellular Vesicles Enables Specific and Sensitive Detection Directly in Complex Matrices. J. Extracell. Vesicles 2021, 10, e12059. [Google Scholar] [CrossRef] [PubMed]
- Goodger, J.Q.D.; Sharp, R.E.; Marsh, E.L.; Schachtman, D.P. Relationships between Xylem Sap Constituents and Leaf Conductance of Well-Watered and Water-Stressed Maize across Three Xylem Sap Sampling Techniques. J. Exp. Bot. 2005, 56, 2389–2400. [Google Scholar] [CrossRef] [PubMed]
- Netting, A.G.; Theobald, J.C.; Dodd, I.C. Xylem Sap Collection and Extraction Methodologies to Determine in Vivo Concentrations of ABA and Its Bound Forms by Gas Chromatography-Mass Spectrometry (GC-MS). Plant Methods 2012, 8, 11. [Google Scholar] [CrossRef] [PubMed]





| ABA | ABA Aldehyde | ABA-GE | ACC | |
|---|---|---|---|---|
![]() | ![]() | ![]() | ![]() | |
| ka (1/Ms) | 7.86 ± 0.90 × 104 | 4.82 ± 0.38 × 103 | 1.97 ± 0.29 × 103 | ND |
| kd (1/s) | 3.69 ± 0.04 × 10−2 | 3.74 ± 0.11 × 10−2 | 3.09 ± 0.20 × 10−2 | ND |
| KD (M) | 4.66 ± 0.73 × 10−7 | 8.12 ± 0.83 × 10−6 | 1.74 ± 0.31 × 10−5 | ND |
| RU at 150 ng/mL | 8.97 ± 0.42 | 1.91 ± 0.04 | 0.76 ± 0.09 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkaert, L.; Noppen, S.; Turečková, V.; Novák, O.; Schols, D.; Lammertyn, J.; Van de Poel, B.; Spasic, D. Label-Free Rapid Quantification of Abscisic Acid in Xylem Sap Samples Using Surface Plasmon Resonance. Biosensors 2025, 15, 725. https://doi.org/10.3390/bios15110725
Volkaert L, Noppen S, Turečková V, Novák O, Schols D, Lammertyn J, Van de Poel B, Spasic D. Label-Free Rapid Quantification of Abscisic Acid in Xylem Sap Samples Using Surface Plasmon Resonance. Biosensors. 2025; 15(11):725. https://doi.org/10.3390/bios15110725
Chicago/Turabian StyleVolkaert, Laurien, Sam Noppen, Veronika Turečková, Ondřej Novák, Dominique Schols, Jeroen Lammertyn, Bram Van de Poel, and Dragana Spasic. 2025. "Label-Free Rapid Quantification of Abscisic Acid in Xylem Sap Samples Using Surface Plasmon Resonance" Biosensors 15, no. 11: 725. https://doi.org/10.3390/bios15110725
APA StyleVolkaert, L., Noppen, S., Turečková, V., Novák, O., Schols, D., Lammertyn, J., Van de Poel, B., & Spasic, D. (2025). Label-Free Rapid Quantification of Abscisic Acid in Xylem Sap Samples Using Surface Plasmon Resonance. Biosensors, 15(11), 725. https://doi.org/10.3390/bios15110725





