Direct ECL Detection of Fentanyl Drug with Bare Screen-Printed Electrodes
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instrumentation
2.3. Methods
3. Results
3.1. Characterization of ECL System
3.2. Optimization of Experimental Parameters
3.2.1. pH Buffer Solution
3.2.2. Ru(bpy)32+ Concentration
3.2.3. Working Electrode
3.3. Fentanyl Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richter, M.M. Electrochemiluminescence (ECL). Chem. Rev. 2004, 104, 3003–3036. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, Y.; Zhu, J.-J. Recent Advances in Electrochemiluminescence Analysis. Anal. Chem. 2017, 89, 358–371. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Cao, Y.; Gou, X.; Zhu, J.-J. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal. Chem. 2020, 92, 431–454. [Google Scholar] [CrossRef] [PubMed]
- Vidal, E.; Domini, C.E.; Whitehead, D.C.; Garcia, C.D. From glow-sticks to sensors: Single-electrode electrochemical detection for paper-based devices. Sens. Diagn. 2022, 1, 496–503. [Google Scholar] [CrossRef]
- Mariani, C.; Bogialli, S.; Paolucci, F.; Pastore, P.; Zanut, A.; Valenti, G. Enhancing electrochemiluminescence intensity through emission layer control. Electrochim. Acta 2024, 489, 144256. [Google Scholar] [CrossRef]
- Liu, Z.; Qi, W.; Xu, G. Recent advances in electrochemiluminescence. Chem. Soc. Rev. 2015, 44, 3117–3142. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, M.; Wang, F.; Xia, X. Graphene–Ruthenium(II) Complex Composites for Sensitive ECL Immunosensors. Small 2014, 10, 706–716. [Google Scholar] [CrossRef]
- Zhang, A.; Guo, W.; Ke, H.; Zhang, X.; Zhang, H.; Huang, C.; Yang, D.; Jia, N.; Cui, D. Sandwich-format ECL immunosensor based on Au star@BSA-Luminol nanocomposites for determination of human chorionic gonadotropin. Biosens. Bioelectron. 2018, 101, 219–226. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, S.; Li, L.; Zhu, J. Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today 2017, 12, 98–115. [Google Scholar] [CrossRef]
- Song, Q.; Greenway, G.M.; McCreedy, T. Tris(2,2′-bipyridine)ruthenium(II) electrogenerated chemiluminescence of alkaloid type drugs with solid phase extraction sample preparation. Analyst 2001, 126, 37–40. [Google Scholar] [CrossRef]
- Cai, Q.; Chen, L.; Luo, F.; Qiu, B.; Lin, Z.; Chen, G. Determination of cocaine on banknotes through an aptamer-based electrochemiluminescence biosensor. Anal. Bioanal. Chem. 2011, 400, 289–294. [Google Scholar] [CrossRef]
- Hua, M.; Ahmad, W.; Li, S.; Zhang, X.; Chen, X.; Chen, Q. Recent advances in electrochemiluminescence sensors for monitoring mycotoxins in food. Trends Food Sci. Technol. 2024, 153, 104706. [Google Scholar] [CrossRef]
- Shen, Y.; Gao, X.; Lu, H.-J.; Nie, C.; Wang, J. Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices. Coord. Chem. Rev. 2023, 476, 214927. [Google Scholar] [CrossRef]
- Muzyka, K.; Sun, J.; Fereja, T.H.; Lan, Y.; Zhang, W.; Xu, G. Boron-doped diamond: Current progress and challenges in view of electroanalytical applications. Anal. Methods 2019, 11, 397–414. [Google Scholar] [CrossRef]
- Zhao, Y.; Bouffier, L.; Xu, G.; Loget, G.; Sojic, N. Electrochemiluminescence with semiconductor (nano)materials. Chem. Sci. 2022, 13, 2528–2550. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Gao, C.; Wang, E. Applications of carbon quantum dots in electrochemiluminescence: A mini review. Electrochem. Commun. 2014, 48, 151–154. [Google Scholar] [CrossRef]
- Brown, K.; Dennany, L. Electrochemiluminescence sensors and forensic investigations: A viable technique for drug detection? Pure Appl. Chem. 2022, 94, 535–545. [Google Scholar] [CrossRef]
- Adcock, J.L.; Barrow, C.J.; Barnett, N.W.; Conlan, X.A.; Hogan, C.F.; Francis, P.S. Chemiluminescence and electrochemiluminescence detection of controlled drugs. Drug Test. Anal. 2011, 3, 145–160. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Zhang, C.; Yi, H.; Li, B.; Deng, R.; Liu, S.; et al. Recent advances in sensors for tetracycline antibiotics and their applications. TrAC Trends Anal. Chem. 2018, 109, 260–274. [Google Scholar] [CrossRef]
- Neves, M.M.P.S.; Bobes-Limenes, P.; Pérez-Junquera, A.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Miniaturized analytical instrumentation for electrochemiluminescence assays: A spectrometer and a photodiode-based device. Anal. Bioanal. Chem. 2016, 408, 7121–7127. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. Fentanyl. (n.d.). Available online: https://nida.nih.gov/research-topics/fentanyl#feel (accessed on 1 April 2025).
- Armenian, P.; Vo, K.T.; Barr-Walker, J.; Lynch, K.L. Fentanyl, fentanyl analogs and novel synthetic opioids: A comprehensive review. Neuropharmacology 2018, 134, 121–132. [Google Scholar] [CrossRef]
- Wester, N.; Mynttinen, E.; Etula, J.; Lilius, T.; Kalso, E.; Mikladal, B.F.; Zhang, Q.; Jiang, H.; Sainio, S.; Nordlund, D.; et al. Single-walled carbon nanotube network electrodes for the detection of fentanyl citrate. ACS Appl. Nano Mater. 2020, 3, 1203–1212. [Google Scholar] [CrossRef]
- Naghian, E.; Khosrowshahi, E.M.; Sohouli, E.; Ahmadi, F.; Rahimi-Nasrabadi, M.; Safarifard, V. A new electrochemical sensor for the detection of fentanyl lethal drug by a screen-printed carbon electrode modified with the open-ended channels of Zn(II)-MOF. New J. Chem. 2020, 44, 9271–9277. [Google Scholar] [CrossRef]
- Sohouli, E.; Keihan, A.H.; Shahdost-fard, F.; Naghian, E.; Plonska-Brzezinska, M.E.; Rahimi-Nasrabadi, M.; Ahmadi, F. A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl. Mater. Sci. Eng. C 2020, 110, 110684. [Google Scholar] [CrossRef]
- Ahmar, H.; Fakhari, A.R.; Tabani, H.; Shahsavani, A. Optimization of electromembrane extraction combined with differential pulse voltammetry using modified screen-printed electrode for the determination of sufentanil. Electrochim. Acta 2013, 96, 117–123. [Google Scholar] [CrossRef]
- Barfidokht, A.; Mishra, R.K.; Seenivasan, R.; Liu, S.; Hubble, L.J.; Wang, J.; Hall, D. Wearable electrochemical glove-based sensor for rapid and on-site detection of fentanyl. Sens. Actuators B Chem. 2019, 296, 126422. [Google Scholar] [CrossRef]
- Goodchild, S.A.; Hubble, L.J.; Mishra, R.K.; Li, Z.; Goud, K.Y.; Barfidokht, A.; Shah, R.; Bagot, K.S.; McIntosh, A.J.S.; Wang, J. Ionic Liquid-Modified Disposable Electrochemical Sensor Strip for Analysis of Fentanyl. Anal. Chem. 2019, 91, 3747–3753. [Google Scholar] [CrossRef]
- Mishra, R.K.; Goud, K.Y.; Li, Z.; Moonla, C.; Mohamed, M.A.; Tehrani, F.; Teymourian, H.; Wang, J. Continuous opioid monitoring along with nerve agents on a wearable microneedle sensor array. J. Am. Chem. Soc. 2020, 142, 5991–5995. [Google Scholar] [CrossRef]
- Li, X.; Mohamed, A. Electrochemical sensing of fentanyl as an anesthesia drug on NiO nanodisks combined with the carbon nanotube-modified electrode. Front. Chem. 2022, 10, 997662. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Krishnakumar, A.; Rahimi, R. Electrochemical sensor for rapid detection of fentanyl using laser-induced porous carbon-electrodes. Microchim. Acta 2022, 189, 198. [Google Scholar] [CrossRef]
- Mostafa, N.; Sohouli, E.; Mousavi, F. An electrochemical sensor for fentanyl detection based on multi-walled carbon nanotubes as electrocatalyst and the electrooxidation mechanism. J. Anal. Chem. 2020, 75, 1209–1217. [Google Scholar] [CrossRef]
- Marenco, A.J.; Pillai, R.G.; Harris, K.D.; Chan, N.W.C.; Jemere, A.B. Electrochemical determination of fentanyl using carbon nanofiber-modified electrodes. ACS Omega 2024, 9, 17592–17601. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.S.; Mohammadnia, M.; Ghalkhani, M.; Aghaei, E.; Sohouli, M.; Rahimi-Nasrabadi, M.; Arbabi, H.R.; Banafshe, H.R.; Sobhani-Nasab, A. Development of an electrochemical fentanyl nanosensor based on MWCNT-HA/Cu-H3BTC nanocomposite. J. Ind. Eng. Chem. 2022, 114, 418–426. [Google Scholar] [CrossRef]
- Glasscott, M.W.; Vannoy, K.J.; Fernando, P.U.A.I.; Kosgei, G.K.; Moores, L.C.; Dick, J.E. Electrochemical sensors for the detection of fentanyl and its analogs: Foundations and recent advances. TrAC Trends Anal. Chem. 2020, 132, 116037. [Google Scholar] [CrossRef]
- Dai, H.; Xu, H.; Wu, X.; Chi, Y.; Chen, G. Fabrication of a new electrochemiluminescent sensor for fentanyl citrate based on glassy carbon microspheres and ionic liquid composite paste electrode. Anal. Chim. Acta 2009, 647, 60–65. [Google Scholar] [CrossRef]
- Ibáñez, D.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Understanding the ECL interaction of luminol and Ru(bpy)32+ luminophores by spectro-electrochemiluminescence. Phys. Chem. Chem. Phys. 2020, 22, 18261–18264. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Jacquet, C.; Biscay, J.; Allan, P.; Dennany, L. Tale of Two Alkaloids: pH-Controlled Electrochemiluminescence for Differentiation of Structurally Similar Compounds. Anal. Chem. 2020, 92, 2216–2223. [Google Scholar] [CrossRef]
- Bae, W.; Yoon, T.-Y.; Jeong, C. Direct evaluation of self-quenching behavior of fluorophores at high concentrations using an evanescent field. PLoS ONE 2021, 16, e0247326. [Google Scholar] [CrossRef]
- Giagu, G.; Fracassa, A.; Fiorani, A.; Villani, E.; Paolucci, F.; Valenti, G.; Zanut, A. From theory to practice: Understanding the challenges in the implementation of electrogenerated chemiluminescence for analytical applications. Microchim. Acta 2024, 191, 359. [Google Scholar] [CrossRef]
Sensor | Technique | LOD (µM) | Linear Range (µM) | Ref. |
---|---|---|---|---|
Glass/SWCNT | DPV | 0.011 | 0.01–1 | [23] |
Carbon SPE/Zn(II)-MOF | DPV | 0.3 | 1–100 | [24] |
Carbon SPE/Carbon nano-onions | DPV | 0.3 | 1–60 | [25] |
Carbon SPE/MWCNT | DPV | 0.02 | 0.064–3.62 | [26] |
Carbon SPE/MWCNT and ionic liquid | SWV | 10 | 10–100 | [27] |
Carbon SPE/Ionic liquid | CSWV | 5 | 10–100 | [28] |
Microneedle/Carbon paste | CSWV | 0.025 | 20–200 | [29] |
Graphite/MWCNT and NiO nanodisks | DPV | 0.0067 | 0.01–800 | [30] |
Laser carbonized electrode | SWV | 1 | 20–200 | [31] |
GCE/MWCNT | DPAdSV | 0.1 | 0.5–100 | [32] |
Carbon SPE/fCNF | DPV | 0.075 | 0.125–10 | [33] |
GCE/ MWCNT-HA/Cu-H3BTC | DPV | 0.03 | 0.01–100 | [34] |
GCE/Ionic liquid | ECL | 0.085 | 0.01–100 | [36] |
Gold SPE | ECL | 0.067 | 0.1–10 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibáñez, D.; González-García, M.B.; Hernández-Santos, D.; Fanjul-Bolado, P. Direct ECL Detection of Fentanyl Drug with Bare Screen-Printed Electrodes. Biosensors 2025, 15, 697. https://doi.org/10.3390/bios15100697
Ibáñez D, González-García MB, Hernández-Santos D, Fanjul-Bolado P. Direct ECL Detection of Fentanyl Drug with Bare Screen-Printed Electrodes. Biosensors. 2025; 15(10):697. https://doi.org/10.3390/bios15100697
Chicago/Turabian StyleIbáñez, David, María Begoña González-García, David Hernández-Santos, and Pablo Fanjul-Bolado. 2025. "Direct ECL Detection of Fentanyl Drug with Bare Screen-Printed Electrodes" Biosensors 15, no. 10: 697. https://doi.org/10.3390/bios15100697
APA StyleIbáñez, D., González-García, M. B., Hernández-Santos, D., & Fanjul-Bolado, P. (2025). Direct ECL Detection of Fentanyl Drug with Bare Screen-Printed Electrodes. Biosensors, 15(10), 697. https://doi.org/10.3390/bios15100697