Electrochemical Impedance Spectroscopy for Ion Sensors with Interdigitated Electrodes: Capacitance Calculations, Equivalent Circuit Models and Design Optimizations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Manufacturing and Characterization
2.2. Sensor Models and Simulations
3. Results
3.1. Transducer Model—Materials, Geometry, and Capacitance
3.1.1. Interdigitated Electrodes
3.1.2. Passivation and Sensing Layer
3.1.3. Substrate
3.2. Measurement Results and Equivalent Circuit Models
3.3. Measurement Results and FEM Simulations
3.3.1. Validation of Equivalent Circuit Models
3.3.2. Sensor Design Optimizations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ISM | Ion-selective membrane |
FEM | Finite element |
CPE | Constant phase element |
IDE | Interdigitated electrode |
PEN | Polyethylene naphthalate |
PPC | Parallel partial capacitance |
SPC | Serial partial capacitance |
References
- Criscuolo, F.; Hanitra, M.; Taurino, I.; Carrara, S.; De Micheli, G. All-solid-state ion-selective electrodes: A tutorial for correct practice. IEEE Sens. J. 2021, 21, 22143–22154. [Google Scholar] [CrossRef]
- Golparvar, A.; Tonello, S.; Meimandi, A.; Carrara, S. Inkjet-Printed Soft Intelligent Medical Bracelet for Simultaneous Real-Time Sweat Potassium (K+), Sodium (Na+), and Skin Temperature Analysis. IEEE Sens. Lett. 2023, 7, 5501504. [Google Scholar] [CrossRef]
- Bobacka, J.; Ivasaka, A.; Lewenstam, A. Plasticizer-free all-solid-state potassium-selective electrode based on poly(3-octylthiophene) and valinomycin. Anal. Chim. Acta 1999, 385, 195–202. [Google Scholar] [CrossRef]
- Kovács, M.; Höfler, L. Effect of Kinetic and Thermodynamic Properties of Solid Contact Ion-Selective Electrodes on the Electrochemical Impedance Spectroscopy Response. J. Electrochem. Soc. 2022, 169, 026509. [Google Scholar] [CrossRef]
- Guimerà, A.; Gabriel, G.; Prats-Alfonso, E.; Abramova, N.; Bratov, A.; Villa, R. Effect of surface conductivity on the sensitivity of interdigitated impedimetric sensors and their design considerations. Sens. Actuators B Chem. 2015, 207, 1010–1018. [Google Scholar] [CrossRef]
- Zhang, W.; Spichiger, U. An impedance study of Mg2+-selective membranes. Electrochim. Acta 2000, 45, 2259–2266. [Google Scholar] [CrossRef]
- Gutierrez, H.C.; Panigrahi, S. Selective Impedimetric Interdigitated Electrode for Sensing Gaseous, Biological, and Inorganic Targets: A State-of-the-Art Review. IEEE Sens. J. 2023. [Google Scholar] [CrossRef]
- Bertok, T.; Lorencova, L.; Chocholova, E.; Jane, E.; Vikartovska, A.; Kasak, P.; Tkac, J. Electrochemical Impedance Spectroscopy Based Biosensors: Mechanistic Principles, Analytical Examples and Challenges towards Commercialization for Assays of Protein Cancer Biomarkers. ChemElectroChem 2018, 6, 989–1003. [Google Scholar] [CrossRef]
- Korek, E.; Kounoupioti, E.; Brederlow, R. Manufacturing of Flexible, Impedimetric Potassium Sensors. IEEE Sens. Lett. 2023, 7, 2000604. [Google Scholar] [CrossRef]
- Kazemi, S.H.; Shanehsaz, M.; Ghaemmaghami, M. Non-Faradaic electrochemical impedance spectroscopy as a reliable and facile method: Determination of the potassium ion concentration using a guanine rich aptasensor. Mater. Sci. Eng. C. Mater. Biol. Appl. 2015, 52, 151–154. [Google Scholar] [CrossRef]
- Dudala, S.; Srikanth, S.; Dubey, S.; Javed, A.; Goel, S. Rapid Inkjet-Printed Miniaturized Interdigitated Electrodes for Electrochemical Sensing of Nitrite and Taste Stimuli. Micromachines 2021, 12, 1037. [Google Scholar] [CrossRef] [PubMed]
- Day, C.; Søpstad, S.; Ma, H.; Jiang, C.; Nathan, A.; Elliott, S.R.; Hutter, T. Impedance-based sensor for potassium ions. Anal. Chim. Acta 2018, 1034, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Aicher, M.; Grothe, H.; Wolf, B. A novel thin film impedance Ca ion sensor for drinking water. Sens. Actuators B Chem. 2017, 244, 1103–1112. [Google Scholar] [CrossRef]
- Lazanas, A.; Prodromidis, M. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef] [PubMed]
- Ameer, S.; Ibrahim, H.; Yaseen, M.; Kulsoom, F.; Cinti, S.; Sher, M. Electrochemical Impedance Spectroscopy-Based Sensing of Biofilms: A Comprehensive Review. Biosensors 2023, 13, 777. [Google Scholar] [CrossRef]
- Tolouei, N.E.; Ghamari, S.; Shavezipur, M. Development of circuit models for electrochemical impedance spectroscopy (EIS) responses of interdigitated MEMS biochemical sensors. J. Electroanal. Chem. 2020, 878, 114598. [Google Scholar] [CrossRef]
- Wang, Z.; Murphy, A.; O’Riordan, A.; O’Connell, I. Equivalent Impedance Models for Electrochemical Nanosensor-Based Integrated System Design. Sensors 2021, 21, 3259. [Google Scholar] [CrossRef] [PubMed]
- Van Haeverbeke, M.; Stock, M.; De Baets, B. Equivalent Electrical Circuits and Their Use Across Electrochemical Impedance Spectroscopy Application Domains. IEEE Access 2022, 10, 51363–51379. [Google Scholar] [CrossRef]
- Harrington, D.A.; van den Driessche, P. Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochim. Acta 2011, 56, 8005–8013. [Google Scholar] [CrossRef]
- Freger, V.; Bason, S. Characterization of ion transport in thin films using electrochemical impedance spectroscopy I. Principles and theory. J. Membr. Sci. 2007, 302, 1–9. [Google Scholar] [CrossRef]
- Xu, N.; Riley, D. Nonlinear analysis of a classical system: The Faradaic process. Electrochim. Acta 2013, 94, 206–213. [Google Scholar] [CrossRef]
- Ibau, C.; Arshad, M.; Gopinath, S.; Nuzaihan, M.; Fathil, M.; Shamsuddin, S. Immunosensing prostate-specific antigen: Faradaic vs. non-Faradaic electrochemical impedance spectroscopy analysis on interdigitated microelectrode device. Int. J. Biol. Macromol. 2020, 162, 1924–1936. [Google Scholar] [CrossRef] [PubMed]
- Igreja, R.; Dias, C. Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sens. Actuators A Phys. 2004, 112, 291–301. [Google Scholar] [CrossRef]
- Blume, S.; Ben-Mrad, R.; Sullivan, P. Modelling the capacitance of multi-layer conductor-facing interdigitated electrode structures. Sens. Actuators B Chem. 2015, 213, 423–433. [Google Scholar] [CrossRef]
- Hasted, J.B.; Ritson, D.; Collie, C. Dielectric Properties of Aqueous Ionic Solutions. Parts I and II. J. Chem. Phys. 1948, 16, 1–21. [Google Scholar] [CrossRef]
- Córdoba-Torres, P.; Mesquita, T.; Nogueira, R. Relationship between the Origin of Constant-Phase Element Behavior in Electrochemical Impedance Spectroscopy and Electrode Surface Structure. J. Phys. Chem. C 2015, 119, 4136–4147. [Google Scholar] [CrossRef]
- Korek, E.; Kounoupioti, E.; Brederlow, R. Equivalent Circuit Models for Impedimetric Sensors. Proceedings 2024, 97, 43. [Google Scholar] [CrossRef]
- Bohinc, K.; Kralj-Iglič, V.; Iglič, A. Thickness of electrical double layer. Effect of ion size. Electrochim. Acta 2001, 46, 3033–3040. [Google Scholar] [CrossRef]
- Atkins, P.; de Paula, J. Atkins’ Physical Chemistry, 8th ed.; Oxford University Press: Oxford, UK, 2006; pp. 762–771. [Google Scholar]
- Sagiroglu, M.Z.; Demirel, E.D.; Mutlu, S. Accurate ion type and concentration detection using two bare electrodes by machine learning of non-faradaic electrochemical impedance measurements of an automated fluidic system. JEAC 2024, 961, 118256. [Google Scholar] [CrossRef]
Parameter | Range | Fixed Value PEN | Fixed Value Si |
---|---|---|---|
Substrate conductivity | S/m | S/m | - |
Substrate permittivity | 3 1 | 3.9 | |
Substrate thickness | m | m | m |
Solution conductivity | S/m | S/m | - |
Solution permittivity | - | 80 2 | 80 |
Membrane conductivity | S/m | S/m | - |
Membrane permittivity | 9 | 4 | |
Membrane thickness | m | m | m |
Electrode width | m | m | m |
Electrode gap | m | m | m |
Electrode length | mm | mm | mm |
Electrode fingers | 6 | 30 | |
AC voltage | - | mV | mV |
Component | Air | 1 mmol/L K+ | 25 mmol/L K+ | 1 mmol/L Na+ | 25 mmol/L Na+ |
---|---|---|---|---|---|
Conductivity | |||||
(pF) | <4 | 15 | 15 | ||
(F) | 1.9 | 3.9 | |||
0.8 | 0.8 | ||||
(kΩ) | 4.33 | 0.21 | |||
Reference | |||||
(pF) | 4.3–5 | − | − | − | − |
(nF) | 195 | 194 | 197 | 200 | |
0.79 | 0.77 | 0.81 | 0.81 | ||
(kΩ) | 25–55 | 24.3 | 12.1 | 26 | 14.8 |
(pF) | 6.1 | 31 | 5.2 | 22 | |
0.64 | 0.61 | 0.63 | 0.64 | ||
Potassium | |||||
(pF) | <4 | − | − | − | − |
(nF) | 20 | 31 | 16 | 16 | |
0.67 | 0.75 | 0.65 | 0.74 | ||
(kΩ) | 3000 | 370 | 3000 | 400 | |
(pF) | 34 | 57 | 28 | 54 | |
0.94 | 0.91 | 0.95 | 0.91 | ||
(kΩ) | 4.3 1 | 0.2 1 | 4.5 1 | 0.2 1 | |
Wafer | |||||
(pF) | 4.1 | 2 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korek, E.-M.; Teotia, R.; Herbig, D.; Brederlow, R. Electrochemical Impedance Spectroscopy for Ion Sensors with Interdigitated Electrodes: Capacitance Calculations, Equivalent Circuit Models and Design Optimizations. Biosensors 2024, 14, 241. https://doi.org/10.3390/bios14050241
Korek E-M, Teotia R, Herbig D, Brederlow R. Electrochemical Impedance Spectroscopy for Ion Sensors with Interdigitated Electrodes: Capacitance Calculations, Equivalent Circuit Models and Design Optimizations. Biosensors. 2024; 14(5):241. https://doi.org/10.3390/bios14050241
Chicago/Turabian StyleKorek, Eva-Maria, Reva Teotia, David Herbig, and Ralf Brederlow. 2024. "Electrochemical Impedance Spectroscopy for Ion Sensors with Interdigitated Electrodes: Capacitance Calculations, Equivalent Circuit Models and Design Optimizations" Biosensors 14, no. 5: 241. https://doi.org/10.3390/bios14050241
APA StyleKorek, E. -M., Teotia, R., Herbig, D., & Brederlow, R. (2024). Electrochemical Impedance Spectroscopy for Ion Sensors with Interdigitated Electrodes: Capacitance Calculations, Equivalent Circuit Models and Design Optimizations. Biosensors, 14(5), 241. https://doi.org/10.3390/bios14050241